
THE UNIVERSAL PRIMER: AN OPEN SOURCE SOLUTION FOR 
ARCHIVING, ORGANIZING AND STREAMING LIVE LECTURES

Marc Juul Christoffersen, Maciej Krajowski-Kukiel, Christian Panton, David Christian 
Askirk Fotel, Henrik Madsen, Lasse Engbo Christiansen, Povl Ole Haarlev Olsen, 

Halfdan Mouritzen and Janne Kofod Lassen

Technical University of Denmark

ABSTRACT

Many disparate projects providing open access to educational videos are currently available 
or under development. These projects lack a unifying interface for accessing content, employ 
differing content licenses, and provide little or no infrastructure for user-contribution or live 
teaching. The goal of the Universal Primer is to address these problems, and allow anyone, 
anywhere, to teach or learn anything that can be reasonably taught or learned through a 
computer. The Universal Primer is 1: A fully open source solution for streaming live lectures. 
And 2:  A  Wikipedia-like  website  for  uploading  and organizing  open-licensed  community-
contributed educational material. 

KEYWORDS

online, video, streaming, community, open-source.

PROJECT SCOPE AND REQUIREMENTS

The Universal Primer attempts to solve a very large problem, in essence, creating a system 
for free access to computer-based education to the fullest extent possible. Fully meeting this 
challenge will take a lot of time and resources, yet building even a small part of the whole 
system could present a valuable contribution to free and open education. This describes the 
result of a phase one, or version 0.1 of an ongoing project. 

The project was split into two main sub-projects, with the goal of future integration:

  1. The live-lecture project: Facilitating live interactive teaching.
  2. The wiki-site project: Giving access to prerecorded material.

The scope of the first phase of the project was limited to focus mainly on video and tightly  
coupled  materials  such  as  lecture  slides,  as  this  was  seen  as  the  most  challenging 
immediate priority. It is the future goal of the project to include support for formats such as 
Wikipedia-like web-pages, typeset documents and interactive components.

The primary goal of the first phase was specified in the form of a use-case: Use the Universal 
Primer to teach a traditional university classroom lecture in a statistics course. This goal was 
then expanded upon to list the minimal features it would take to satisfy the use-case:

1. One live audio and video stream from lecture.
2. Ability to show slides simultaneously with video.
3. Ability to annotate and/or point to features on lecture slides during the lecture.
4. Interactive communication with remote students in the form of text-based chat.

Requirements  were  added  concerning  the  required  software  and  hardware.  The  first 
requirement is that the students attending the virtual lecture should not be required to have 

Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20 - 23, 2011



anything more than an internet-connected computer with a modern standards-compliant web 
browser, and the second: That everything the lecturer needs should be affordable, easily 
available in any part of the world and require only minimal technical understanding to set up 
and use. 

Finally,  an important requirement was that the system be built  with the knowledge that it 
should eventually be able to scale to a size such as has been accomplished with Wikipedia. 
The bandwidth required for  video,  coupled with the interactive elements of  live teaching, 
make this  a  unique  challenge.  It  would  not  be feasible  to  build  such a  system using  a 
traditional,  centrally  administrated  architecture  as  is  used  to  support  video  sites  like 
YouTube, since the cost of bandwidth alone would likely overwhelm the project beyond the 
ability for donations or even ads to support it. Rather, the system should be built with highly 
decentralized  technologies  where  possible,  in  order  to  spread  the  cost  of  bandwidth, 
processing power and storage, across a large network of participating computers.

The second goal of the first phase was to develop a wiki-like site for uploading and viewing 
prerecorded video lectures. Other than a simple video upload and viewing site,  of which 
there are many, the site should serve to organize large amounts of educational material by 
subject, using a system whereby users can ask to learn about a specific subject, and the site 
will inform the user of a suggested sequence of other topics or materials with which the user 
should be familiar before attempting to learn the subject at hand. If implemented on a large 
enough scale, this would enable the site to answer questions such as "I know subject X and I 
want  to  learn  subject  Y;  How  do  I  get  from  where  I  am  to  where  I  want  to  be?".   A 
requirement  for  this  system  was  that  suggestions  given  to  the  user  regarding  which 
additional  subjects  may depend on the subject  currently  viewed,  must  be specified  in  a 
collaborative manner by the users, as opposed to being centrally specified by a group of 
administrators. Inspiration for this system comes in part from Tutor-web [1], an existing web-
based educational platform that implements a dependency system.

OPEN STANDARDS AND OPEN LICENSING

A  prime  motivator  for  this  project  was  the  lack  of  good  open  source,  open  standards 
solutions for live teaching, so a requirement for the project was that all software must be free 
software (as specified by the free software definition [2]). The target license for the software 
is the GPLv3 or AGPLv3 Copyleft license, though some components that build on existing 
free software projects will have to keep to the licenses employed by those projects. As for 
open  standards,  the  goal  is  to  build  something  that  does  not  employ  any  proprietary 
standards or technologies, and to use open standards where technically justifiable. During 
the  course  of  development,  it  was  deemed  necessary  to  temporarily  allow  the  use  of 
proprietary technologies in certain cases where the open equivalents did not yet provide the 
necessary functionality.

The required license for all contributed content is Creative Commons Attribution Share-Alike 
3.0. This is the same license used by Wikipedia, and fits well with the spirit of both the Open 
Source  [3] and Free Software definitions. This choice excludes some existing educational 
videos, such as the MIT OpenCourseWare material [4] with more restrictive licenses such as 
those Creative Commons licenses containing the "non-commercial" clause. Such exclusion 
will  limit  the amount  of  available  material  for  the project,  but  the minimal  restrictions will 
hopefully encourage more people to use the material, even in for-profit educational settings, 
and contribute their improvements and additions back to the project.

DESIGN – LIVE LECTURE PROJECT

Overview

Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20 - 23, 2011



The live lecture project can be divided into three high-level units:

1. The presentation software: For broadcasting a live lecture.
2. The server software: For facilitating communication between the presenter and students.
3. The student software: For participating in a live lecture.

These high-level units are further sub-divided as seen in the following diagram and explained 
in subsequent sections:

Presentation Software

The presentation software receives live audio and video from a video camera, encodes it to 
minimize the required bandwidth, and sends it  to an audio/video server that forwards the 
streams to students. The presentation software allows the presenter to switch between a set 
of slides and annotate the slides using a pointing device. These slide change and annotion 
events are communicated to the students through a text-based communication server. The 
presentation allows two-way communication with the connected students in the form of a 
text-based chat through the same server.

The presentation software is a standalone GUI application. The optimal solution would be to 
implement it as a web-based application, but the limitations inherent in current web browsers 
would make some of the current and future goals difficult to implement, including input from 
DV and HDMI video cameras. To keep things simple for the first phase of development, a 
stand-alone application that runs on Ubuntu Linux was deemed sufficient. The application 

Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20 - 23, 2011

Illustration 1: Design of the live-lecture project. Node: Slide-changes and annotations  
are sent as text-based communication. The actual slides are uploaded as a pdf via the  
web-app.



was developed to be easily portable to the Windows and OS X operating systems; a goal for 
future versions. 

For  slide  annotation  functionality,  the  presentation  software  accepts  input  from an  input 
device, e.g. a mouse.

Server Software

The server software receives all of the data sent by the presenter software, video streams 
and  text-based  data,  and  sends  this  data  to  all  connected  students.  The  software  also 
receives chat messages from students and sends it to the presenter software and to all other 
students. The server software also hosts the website for the student software including the 
database for the website.

The server software consists of at least four separate applications. 

1. The text-based communication server.
2. The audio/video communication serer.
3. The web server.
4. The database server.

The webserver  and database server are fairly  straightforward,  together  hosting the web-
based  student  software.  The  text-based-communication  server  handles  all  text-based 
messages  sent  between  presenter  and/or  students.  These  messages  include  chat 
messages,  slide  change  messages,  and  slide  annotation  messages   The  text-based 
communication server also implements the concept of channels. The channel functions in the 
same way a chat channel does in most chat software. Each presentation has one associated 
channel, and the student and presenter software requests to join the channel when the user 
connects to a presentation.  The text-based communication server forwards all  messages 
sent with a specific channel as the recipient to every client that has joined the channel. The 
audio/video communication server allows the presenter to send a stream to the server that is 
then forwarded to the connected clients (student software) that request it.

Student Software

The  student  software  is  web-based.  It  receives  and  displays  the  data  sent  by  the 
presentation software from the server: Video stream, slide-changes, slide annotations and 
chat  messages.  In  addition,  it  allows  the students  to send chat  messages to the server 
software, which is forwarded to the presenter and all connected students.

Modules

The live lecture system is designed to be highly modular in terms of functionality. Video, slide 
and chat functionality is implemented as three separate modules. Modularity in this context is 
independence of functionality that allows any one module to be removed or added, without 
affecting the functionality of any other module. Many modules will require code to be written 
for both student and presenter software, and in some cases even for the server software as 
well, so it is not required to be modular in the sense that it is a single piece of code. A future 
goal for the project is to encourage users and/or developers to write their own modules that 
facilitate the teaching of  particular  subjects  and enables  a variety  of  teaching styles.  An 
example of such a module that is currently under development is the Piano module. The first 
version of the Piano module will  accept midi input on the presenter side and displays the 
music notation for the played notes for the students as the teacher plays. Ideas for future 
modules include a screencasting module and a module for interfacing to smartpens such as 
the livescribe [5] allowing teachers to share hand written notes with students in real time. The 

Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20 - 23, 2011



modules are implemented such that the student software chooses which modules to enable, 
and  the  server  software  only  sends  and  receives  data  for  the  modules  enabled  by  the 
student software.

On Decentralization

It may seem odd to employ such a centralized server-based design, given the focus on a 
scalable peer-to-peer solution. This choice was made in part due to a lack of browser-based 
peer-to-peer support, but also as a way of limiting the scope of the project. Though peer-to-
peer in-browser streaming video solutions do exist, these technologies are not yet adapted to 
live streams where large delays are unwanted, and require third-party plug-ins that are either 
proprietary or not yet widely deployed [6]. It is also reasonable to assume that, even with full 
peer-to-peer support in a future version of the software, a  fall-back option in the form of a 
traditional server-based approach will  be needed to ensure a dependable and backwards 
compatible  service  for  quite  some  time  to  come.  At  the  same  time,  Universal  Primer 
developers have begun developing and testing a Java applet based peer-to-peer in-browser 
solution for the Universal Primer, which may in the future be able to provide peer-to-peer 
streaming video support.

IMPLEMENTATION – LIVE-LECTURE PROJECT

Server Software 

The  server  software  facilitates  communication  between  the  student  software  and  the 
presenter software. The server software consist of four applications:

1. Icecast2 / RTMPd: The streaming video server.

Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20 - 23, 2011

Illustration 2: Implementation of the live lecture design



2. Pushy: The Comet server.
3. RabbitMQ: AMQP Server.
4. Thin: The Ruby on Rails webserver.
5. MySQL: Database for Ruby on Rails.

The Thin  [7]  and MySQL  [8]  servers  are required to host the student software web app, 
which is discussed in further detail in the next section.

Streaming Video Server

Icecast2  [9] is an open source streaming media server capable of live video streams over 
HTTP suitable for the HTML5 video support built into modern browsers. As will be explained 
in the next section, the HTML5 video support proved problematic. For now, the Universal 
Primer uses Flash video. RTMPd is an open source streaming media server with support for 
the Real  Time Messaging Protocol  (RTMP) developed by Macromedia (now Adobe)  and 
used for live streaming for Flash clients [10].

The RTMPd server is configured to receive a video stream from the presenter software over 
a TCP connection and send out the video over RTMP to all connected clients.

The video stream from the presenter software is in the FLash Video (FLV)  [11] container 
format. The video format used is H.264 [12] and the audio format is MP3 [13]. The stream is 
sent as-is to clients, except for the change of protocol to RTMP. 

Pushy and AMQP

Pushy is a Comet server: A specialized HTTP server that facilitates two-way communication 
with JavaScript running in a web browser. Whereas a normal HTTP server uses a request-
response model, with all requests originating from the client, in a Comet server a connection 
is kept open and either server or client is free to initiate communication. Pushy is written in  
Ruby using the Rack framework [14]. It is based on the code from the "Pusher" Comet server 
developed by Marc-André Cournoyer [15]. 

The purpose of Pushy is to facilitate communication for the modules that rely on text-based 
data, including the chat module and the slide module. To accomplish this, it must solve two 
main  problems.  One problem is  communicating  with  the student  software and presenter 
software, and the other is implementing the concept of "channels" that ensures that data 
received from a student or presenter in a specific presentation is only forwarded to the other 
students and presenters connected to that presentation, similar to normal chat channels, e.g. 
Internet Relay Chat (IRC).

To facilitate communication with a wide range of web browsers, Pushy implements a set of 
different techniques, referred to as transports [16]. These transports are:

1. XHR Streaming: For Firefox, Safari and Chrome support.
2. HTMLFile: For Internet Explorer support.
3. Server-sent Events: Part of the HTML5 specification. Adds Opera support.
4. Server-sent Events draft: Needed to support older Opera browsers.
5. Long polling: For older browsers in general.

Pushy  communication  is  based  on  simple  JSON  (JavaScript  Object  Notation)  formatted 
messages. 

To  implement  the  concept  of  channels,  Pushy  interfaces  to  a  RabbitMQ  process  [17]. 
RabbitMQ is  an open  source application  that  supports  the  Advanced  Message Queuing 

Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20 - 23, 2011



Protocol (AMQP)  [18].  AMQP can be used to implement complex scenarios of  message 
routing and queuing, which will  likely be needed to meet demands for advanced features 
such as private messages and privilege levels,  in future versions of the Universal Primer 
software. For now, the implementation is fairly straightforward. It is outside the scope of this 
report to explain the specifics of AMQP. Generally: Channels are implemented by using one 
named fanout exchange per channel, with each connected student or presenter creating a 
nameless queue and binding it to the fanout exchange. Sending messages to the channel is 
accomplished by publishing to the exchange, receiving messages by reading messages from 
the queue.

On Scalability

The technologies used, though based on the traditional client-server model, rather than the 
more scalable peer-to-peer mode, were chosen with some care to allow the system to scale. 
The MySQL server can be scaled using the MySQL cluster support  [19], though it may be 
beneficial  to  move  to  a  more  scalable  database  solution  such  as  the  NoSQL database 
Apache CouchDB. RabbitMQ has good built-in clustering support, which should allow it to 
scale well, and RTMPd can be set up to forward video streams to other RTMPd nodes. The 
rest of the server software does clustering support in order to scale, as the relevant data is 
kept in sync between multiple different processes by the common database cluster (MySQL) 
and AMQP cluster (RabbitMQ).

Student Software

The student software used to view and participate in the presentation is fully web-based and 
consists of a server-side web application and a client-side JavaScript application.

The server-side web app was built using the Model-View-Control framework Ruby on Rails 
3.0 [20]. The web app uses a database back-end that can be a variety of SQL servers, such 
as  the  open  source  PostgreSQL  server  [21].  The  web  app  has  four  core  pieces  of 
functionality:

1. User login and new user sign-up.
2. Upload of PDF slides and conversion into sets of images.
3. Serving  of  the  client-side  HTML,  CSS,  JavaScript  etc.  that  handles  the  actual 

presentation.
4. Exposing a web service to fetch the URL for specific slide images.

The implementation details of this web app are mostly trivial and will not be covered in this  
document, except for the pdf to image conversion and handling. The conversion is handled 
by the GraphicsMagick application [22]. This conversion is necessary because web browsers 
do not have PDF viewing capability built in. The images are generated once and saved to the 
server when the files are uploaded.  The base path name for the images is saved to the 
database, allowing the web service to return the URL for the image of a specific slide on 
demand. 

The client-side application is mainly written in a combination of JavaScript, HTML and CSS. 
It is implemented as a single HTML web page, with the associated JavaScript, HTML and 
CSS residing in external files and with a minimal amount of  in-line Ruby code to allow the 
server-side application to check if the user is logged in. 

As explained in the design section, there are three implemented modules: The video module, 
the slide module and the chat module. The implementation of these modules is explained in 
the following section.

Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20 - 23, 2011



GUI

The current GUI is exceedingly simple, and does not allow for presenter or students to resize 
or move the video or slide displays.

A new GUI is under development that will both give a more professional consistent look and 
feel, and allow more flexibility in resizing and moving the different modules. A screenshot of 
the work in progress:

This new GUI will be very task oriented. The design is as follows:

A minimalist  interface displays video (one or more streams), slides, chat,  interaction with 
lecture and other interface elements suitable for the subject.

The interface will be minimal and to some degree configurable - if there for example is a 
video stream and a slide viewer, one of these can be made central and big in the interface, 
while the other is smaller.  It  will  be easy to switch these. It will  also be possible to have 
several streams show up "big", if the screen real estate permits this.

The Video Module

It was attempted to implement the client-side of the video module using an HTML5 video tag, 
but after many tests with different configurations it was concluded that HTML5 video, though 
it  works  acceptably  with  prerecorded  video  files,  is  not  ready to  be  used  for  live  video 
streams. Observed problems included frequent and sometimes undetectable stalling, which 
is not acceptable in a live presentation situation. A HTML5 video solution will be re-evaluated 
when the technology is more mature.

Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20 - 23, 2011

Illustration 3: Elements of the new GUI



Instead,  an Adobe Flash application  was used for  the video module.  Though Flash is  a 
proprietary technology,  this  was deemed a  necessary  temporary compromise.  The open 
source FlowPlayer application  [23] was used in this first version. FlowPlayer was deemed 
overly complicated for the purposes of this project, and a team-member began to develop a 
simple Adobe Flex based video player, that would be controllable by a javascript API equal to 
the HTML5 Video component, readying the application for future drop-in replacement of the 
Flash solution with an HTML5 solution. 

The Flash player connects to the server side RTMPd server using RTMP, and starts video 
playback as soon as the presenter starts sending video.

The Slide Module

The slide module was implemented as a simple HTML image tag showing the current slide. 
This has the drawback of disabling such features as copy-paste and zoom (an improved 
solution is discussed in the “Future Work” section). Changing to a different slide from the 
presentation is controlled by the presenter. The slide module receives a message, sent by 
the presenter software, telling it to change to a different slide, given by a page number, asks 
the server what the URL for the image associated with the slide is, and then changes the 
image source of the HTML image tag to the new image path, updating the displayed image. 
The communication with the presenter software is explained in one of the later sections. 

Annotations are received as a series of messages, each commanding the slide module to 
draw a line segment between to points given by two coordinates. An SVG component is 
overlaid on the image using the cross-browser vector-drawing library Raphael [24], and the 
specified line is drawn across the image for each received message. When a message is 
received to clear all lines, the equivalent Raphael API function is called and the SVG overlay 
is cleared. When the current slide is changed to a different page, the SVG overlay is also 
cleared. Annotations are not remembered when switching back to previous slides.

The Chat Module

The chat module GUI is implemented as an HTML unordered list, a textbox, and a button. 
The user first fills in the desired nickname on the chat and clicks the button; all subsequent 
clicks of the button send messages to the other chat participants for the current presentation. 
As chat messages are received, the chat module Javascript appends the messages to the 
list.

JavaScript Comet Library

To communicate the slide change, chat and slide annotation messages, a JavaScript library 
was developed, based on the Pusher code, to allow for robust cross-browser communication 
with the Pushy Comet server. This Comet JavaScript library includes support for the five 
different transports implemented for the Pushy server.

The Comet library includes an API for connecting/disconnecting from/to a channel on the 
Pushy server, including a parameter for, if, and how many times the library should attempt to 
auto-reconnect when a disconnect is detected. The following callbacks are implemented in 
the API:

1. on_connect: Called when connection succeeds.
2. on_connect_retry: When an auto-reconnect attempt is begun.
3. on_reconnect: When an auto-reconnect attempt succeeds.
4. on_disconnect: When an unexpected disconnect is detected.
5. on_receive: When a message is received.

Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20 - 23, 2011



6. on_ping: When a keepalive ping is received from the server.
7. on_error: When an unexpected error is detected.
8. on_unload: When the library detects that the current web-page is being unloaded.

Finally, the API includes a function for sending messages to the channel.

On top of this API, a simple protocol was implemented for handling chat module and slide 
module communication. The protocol was named CHIMP, an homage to the APE  Comet 
server that was used in the early days of the Universal Primer. CHIMP defines the following 
messages:

1. slides/change: Changes the current slide to a slide specified by page number.
2. chat/public-msg: Sends a chat message to the channel.
3. draw/lines: Draw a line as annotation on the current slide.
4. draw/lines-clear: Clear currently drawn lines.

Since Pushy uses a JSON-based protocol,  these messages are also specified as JSON. 
Messages are sent to their corresponding module based on the part of the message name 
before the "/".

Presenter Software

Due to the limited functionality of the current open standards based browser technologies, a 
stand-alone  Python  application  was  developed.  Its  purpose  is  to  support  the  teacher  in 
presenting and using video, slides and chat. The application is named Emcee after a Master 
of Ceremonies: The  MC. Python  [25] is a very high-level language and was chosen for its 
rapid  development  features.  Among  those  are  its  large  standard  library,  excellent 
documentation and broad usage. For the GUI, the Qt4 [26] library was chosen. Like Python it 
is licensed under the GNU General Public License, is freely available and is implemented on 
all major platforms, ensuring cross-platform compatibility. Although the application is being 
developed with a target platform of Ubuntu Linux 10.04, it will lower the effort required to port 
the  application  to  another  platform.  The  Qt4  C++  library  is  accessed  though  the  PyQt4 
bindings.  Another  set  of  bindings,  PySide,  is  currently  being developed by Nokia  and is 
largely API compatible with PyQt4, but was disregarded due to the lack of maturity of the 
project.  The application  is  incorporating  a  large number  of  different  APIs,  hardware  and 
network communication and a lot of glue-code, to keep everything working together. The 
focus has been on developing the glue code and using existing libraries when available. 
While the core Python library is very well documented, a lot of the third party libraries are 
sparsely documented – often only using code examples.

Functionality overview

The main screen is depicted in figure 1. It shows the presenter the current slide and the 
upcoming slide, side by side. Additionally a list of all the slides is kept in a sortable list below 
the upcoming slide. This enables the presenter to sort the slides while giving a presentation. 
By clicking on a slide this also enables the presenter to set the upcoming slide, i.e. to skip a 
series of slides, go back in the presentation during an Q&A session, etc.

Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20 - 23, 2011



On the main screen there is also a chat window, which makes it possible for the presenter to 
write text based messages to the distance learners and makes it possible for the distance 
learners to ask questions to the presenter. A toolbar is also available for adding additional  
slides, toggling of video, audio and slide broadcasting and to provide information, such as the 
current time. The control  of  the presentation slides (going forward, etc.) and the types of 
media available, are controlled though a simple plug-in system. Python scripts residing in the 
plugins/  folder  are automatically  loaded  into to program.  The currently  supported plug-in 
types are pointing devices and slide content. 

Pointing Devices

Pointing devices is a broad category of keyboards, mice and remote controls for controlling 
the slides and annotating the presentation. As they are plug-in based, two pointing devices 
were implemented. The first one is a simple keyboard based flow control. It only implements 
a forward and backwards button, either as the arrow keys or the page-up and down keys. 
The main reason for also implementing page-up and down keys, is that a large number of 
wireless  remote controls  use these keys.  It  was tested using a cheap off-brand 2.4GHz 
wireless  remote  control  [27] which  enumerates  as  a  USB  HID  keyboard  on  the  host 
computer.  The  second  device  is  much  more  sophisticated.  Originally  developed  for  the 
Nintendo Wii  gaming console system, the Wii  Remote or  Wiimote is  ideal  as a pointing 
device. The device can be seen in illustration 5.

Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20 - 23, 2011

Illustration  4: The main window of  Emcee. Upper left quadrant: Current slide  
view (also mirrored on a secondary screen). Upper right quadrant: Upcoming  
slide. Lower left quadrant: Chat and questions window. Lower right quadrant:  
Next slide chooser, slide sorter and list.



The Wiimote is using the wireless Bluetooth communication protocol, which means that it can 
communicate  with  most  modern  laptops.  It  features  a  large  number  of  buttons,  3-axis 
accelerometers,  an  I2C  communications  port  (for  the  Nunchuck,  and  other  peripherals), 
vibration motor, LEDs and a 4 point-tracking infra-red camera. A number of Python libraries 
emerged when developers discovered how the communication protocol worked, but most of 
them were abandoned. The CWIID [28] library was chosen for its maturity, as it is available 
as a binary package for most Linux distributions. One thing all the libraries have in common 
is the lack of proper Bluetooth pairing [29]. The Wiimote can be placed in two modes. Host 
(PC) initiated communication and Wiimote initiated communication. Only the host-initiated is 
implemented,  as  it  is  much  simpler  to  use,  although  the  Wiimote  has  to  be  put  into 
discoverable mode every time you want to connect to it. This is done by pressing the 1 and 2 
buttons on the remote simultaneously. Although this is a cumbersome procedure, this skips 
the step of host-remote pairing and makes sure that Wiimotes can be used interchangeably 
between computers.

The Wiimote is used for controlling the flow of the presentation, using the left and right arrow 
keys. The vibration motor is used to get the attention of the presenter, when, for example, 
there is a question from a distance learner. But the primary reason to use a Wiimote over a 
much simpler remote, is the infra-red point-tracking camera. By placing two clusters of IR-
diodes above or below the projector screen, the Wiimote can be used as a digitized laser 
pointer. The IR diodes will show up as two points on the IR-camera and its build-in computer 
vision algorithm sends the positions of the diodes to the host computer. A simple algorithm 
was written based on the midpoint of the two points and it includes a small correction for  
rotation of the Wiimote. Pressing a button on the remote enables the presenter to draw on 
the screen. A vertex reduction algorithm is used to limit the amount of points created by the 
freehand drawing. The Wiimote was intended to be used like this as a mouse, but another 
configuration is also very popular: Although not implemented in this software, if the Wiimote 
is placed on a stand, using a pen with an IR-diode in the end, the projector screen can be 
used  as  blackboard  [30].  This  alternative  configuration  is  worth  considering  in  a  future 
revision of the program, as the accuracy of the drawing is much higher. Using the plug-in  

Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20 - 23, 2011

Illustration  5:  The  Wiimote  (right)  and  the  
Nunchuck  (left).  The  Nunchuck  is  currently  not  
used by the Universal Primer software.



system, it is a trivial task to add such functionality. The digitization of the pointing device is 
important, as it delivers the same teaching experience to the distance learners as it does to 
the people in the classroom. The distance learners will be able to see the gestures drawn on 
the slides by the presenter.

Slide Media Support

In order to support a large amount of different content on the slides,  such as PDF files, 
YouTube videos, etc., the slide content is defined as a plug-in system as well. All content 
plug-ins are defined by the MIME-type they support. As a matching server-side plug-in is 
needed, the MIME-type serves as a plug-in identifier. Implemented in the application are two 
types of plug-ins. Like with the pointer plug-ins above, a simple and a more advanced plug-in 
is  available.  The  simple  plug-in  is  a  blank  slide.  Its  MIME-type  is  the  non-standard 
application/x-blank-slide  and  can  be  used  to  clear  the  projector  between  multiple 
presentations or in a Q&A session.

The more advanced plug-in is the main content plug-in. It is based on PDF files and has the 
standard MIME-type application/pdf.  Rendering of the PDF files is done by the libpoppler 
librar  with a set of Python/Qt4 bindings called pypoppler-qt4. A patch was written for the 
bindings, as they did not expose the Table of Contents of the PDF file, which is often used to 
provide a slide name, usually set by presentation-creating software.

Broadcasting

The main  features of  this  application  are its  broadcasting  and interactive features.  They 
cover slide switching, slide annotation, chat and audio/video broadcast of the presentation to 
the server software. For the text-based communication (slide switching, slide annotation and 
chat), a client for the CHIMP protocol was implemented in Python. This was implemented 
over HTTP using the XHR streaming transport. Future versions should rely on either raw 
Sockets or WebSocket support [31] as there is no reason for implementing, outside of a web 
browser, what is essentially a web browser-specific hack.

For video broadcasting, the application supports a connected DV [32] camera over an IEEE-
1394  [33] (also  known  as  FireWire)  connection.  To  handle  the  video  input,  the  dvgrab 
program [34] was modified and compiled as a library. This library, written in C, was called 
from Python using the CTypes library in order to read video from the camera. The video is 
then forwarded to the ffmpeg program [35], called as a sub-process, which transcodes the 
video from DV to H.264 video with MP3 audio inside of an FLV container. The ffmpeg also 
handles sending of the FLV video to the RTMPd process running on the server. The current 
version of the application does not yet support high definition video or input sources other 
than DV cameras, though support for webcams and raw HDMI input is planned for upcoming 
releases.

In order for more than one presentation to take place simultaneously on a single server, it is 
necessary to name them. All broadcast information is associated with the presentation name 
specified by the presenter before it is sent. For the video stream, this is implemented using a 
patched version of ffmpeg that allows setting of the "stream name" feature of FLV streams. 
The stream name is  simply  set  to  the  presentation  name.  For  the  CHIMP protocol,  the 
channel name, as discussed in previous sections, is simply set to the presentation name, 
such that each presentation has exactly one channel.

DESIGN – WIKI-SITE PROJECT

The main challenges in developing the wiki site were identified as:

Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20 - 23, 2011



1. Developing a system for collaborative organization of available material.
2. Handling video contributions in a multitude of formats.

Other challenges, such as handling collaborative editing of text and images, has been solved 
by existing open source solutions such as MediaWiki  [36] and was not included in this first 
phase of development.

Organization

The organization of available material was built around the idea of a dependency system. As 
an example: The user chooses to learn how to multiply, but the website says that in order to 
learn how to multiply, the user should learn how to add numbers first. But, to learn this, the 
user  should  have  knowledge  of numbers.  In  other  words,  a  dependency  system  is  a 
recommendation system, which suggests to the user  the order  in which to read/watch the 
materials  that  are  available  in  the  system.  As an  example,  Tutor-web  [1]  is  an  existing 
dependency system, which today containsorganized information in relation to mathematics  
and statistics.

Specifying a list of dependencies for each piece of contributed material, and displaying these 
dependencies, is technically fairly straight forward. The challenge of a dependency system in 
the context of the Universal Primer is to build an interface that makes it easy for a large 
group of contributors to collaboratively define the dependencies.

There are many possible approaches to this problem. This first phase of development has 
explored a tag-based approach.

The tag-based approach idea is fairly simple: Material on the site is organized into named 
pages, and users are given the option of adding tags to the pages. Dependencies can be 
added to pages either by manually searching or by choosing from a list of suggestions that 
are generated by the site based on page tags.

Prerecorded Video

Goals

One of the goals of the Universal Primers is to enable as many people as possible to watch 
and contribute prerecorded video content. This would be simple if all video was in the same 
format, but in reality is complicated by two factors: 

1. No single video format is supported for playback on all browsers and on all platforms.
2. User-contributed video will be uploaded in a variety of open and proprietary formats.

This situation can be dealt with either by restricting the formats supported by the system, or 
developing a system for automatic conversion between formats. The Universal Primer went 
with the latter approach. User-contributed video must be converted from the existing format, 
to one or more formats that allow the video to be displayed in the most commonly used 
browsers.

For user-contributed videos, the optimal list of supported formats is simple: All formats. This 
may not  be attainable  in  practice,  but  the limiting factor  will  simply be the availability  of 
free/open software that is able to decode the video.

The problem of deciding on an optimal list of video formats needed to support the most used 
browsers required some testing.  A set  of  video formats were tested on several  different 

Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20 - 23, 2011



browsers,  browser  plug-ins  and  operating  systems.  A  minimal  list  of  video  codecs  was 
compiled  based  on  a  need  for  support  across  the  most  commonly  used  browsers  and 
browser plug-ins. The actual list used by the project when it launches for wide public use at a 
later date, will have to take into account any applicable license fees associated with the use 
of proprietary codecs, and whether it is even desirable for such a project to support non-open 
formats.

A system was designed to include functionality for upload, conversion and viewing of video 
formats, using a web-based interface (shown in Illustration 6).

Videos are uploaded via a standard web form, and are saved to a central networked file 
system. When a video is uploaded it must be converted to the list of supported formats. A 
database is kept updated with a list of all uploaded videos, and for each video, which formats 
the video is available in. When the video is uploaded, a job is added to a networked queue 
for each supported video format. A small collection of "workers", programs running on one or 
more servers,  check the job queue at regular intervals. If a worker finds a new conversion 
job, the job is marked as belonging to that particular worker and the worker starts converting 
the video.  When the worker  is  finished,  the  job  is  marked as  completed and the list  of 
available formats for that video gets updated to include the newly created file.

Users view videos by browsing a list of uploaded videos and clicking the video of interest. 
When a user selects a video to watch, a small script is started. This script firsts downloads a 
list of available formats for that particular video from the database. The script then instructs 
the browser to attempt to display the video in each of the available formats, beginning with 
the most open/free format. If the first format does not work in the browser, the next format is 
tried and so on until all the available formats have been tried. If none of the formats work, the 
user is given the option of instead downloading one of the files (a link to each of the available 

Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20 - 23, 2011

Illustration  6: System design for handling prerecorded video. Both use-cases for  
viewing video (green lines) and uploading video (dark lines) are shown.



formats is shown). Hopefully the user will then be able to play the downloaded video in a 
standalone player, outside of the browser.

IMPLEMENTATION – WIKI-SITE PROJECT

A prototype of the dependency system was implemented as a web application using the 
Ruby on Rails  framework and a MySQL database.  The system implements the following 
features:

1. User sign-up and login/logout.
2. Creating, deleting and updating wiki-pages.
3. Adding tags to a page.
4. Adding dependencies to a page.
5. Tag-based searching.
6. Intelligent algorithm for suggesting new dependencies for a page, based on tags.

The most interesting feature in this system is the tagging-based dependency system. The 
other features may be seen as supporting the development of this feature rather than being 
of specific interest  to the project  and have not  be documented in  detail  in this article.  A 
detailed report on this prototype is available upon request [37].

Tags  are  added  to  pages  by  typing  comma-separated  text  strings  into  a  text-box. 
Dependencies can be added to pages by the users, and a recommendation algorithm is used 
to suggest pages that may be candidates for becoming dependencies of the current page.

The recommendation algorithm works as follows: Assume that the user has chosen a page 
called A and wishes to set dependencies for it. First the system collects all tags that belong 
to A. Then it compares them with the tags of all other pages known to the system. Referring 
to one of the pages being compared to A as B: The more matching tags are found between A 
and B, the more points B gets. In addition, the algorithm takes into consideration how popular 
the matching tags are on the site in general: The more pages that have the tag associated,  
the more points B gets. After analysis, all  of the compared pages are sorted by points. The 
system displays up to ten pages sorted by highest number of points. If more than ten pages 
are found, then they are paginated.

An  option  to  manually  search  for  the  page  is  also  given,  for  cases  where  the 
recommendation algorithm fails to find the desired page.

Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20 - 23, 2011



Prerecorded Video

The implementation of  the system for  handling  prerecorded video uses a combination of 
existing open source applications and a set of Perl scripts [38]. The web server is a standard 
Apache 2 [39] server, and Perl CGI [40] scripts  are used for dynamic content. 

CONCLUSION

A suite of  software  for  live  education  has  been developed  with  features  suitable  for  a 
university classroom setting. A system for handling the online streaming of prerecorded video 
in a variety of formats was developed and tested. A system for collaborative organization of 
educational material using a combination of tagging and dependencies was designed and 
implemented. All software is covered by open source licenses. These systems have not yet 

Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20 - 23, 2011

Illustration 7: Screenshot of a page named "Multiplying" with one dependency  
on the "Addition" page. Two tags, "Math" and "Simple" are associated with the  
page.

Illustration  8:  The  dialog  for  setting  dependencies.  The  
system is recommending that the "Multiplying" article may  
be a relevant dependency for the current article.



been integrated into a unified whole. The software is useful as is, but requires some amount 
of technical expertise for setup. Better documentation, integration, packaging and real world 
testing are required before it can be considered for general public release.

FUTURE WORK

The work presented in  this  article,  while  functional,  needs to be integrated into a single 
system.  A  serious  testing,  documentation  and  integration  effort  is  needed  before  the 
Universal Primer is ready for wide public deployment.  Major scalability improvements are 
planned:  Moving  to  a  highly  scalable  NoSQL  database  back-end  has  already  been 
discussed, and would not represent a great challenge since the database structures used are 
relatively simple. A more pressing issue is large scale transcoding and hosting of video. A 
distributed solution for video storage must be found if the system is to scale properly. This 
could be either in the form of a distributed storage engine such as Ceph [41] or Tahoe-LAFS 
[42], or peer to peer video streaming software [6].

New modules will  be written to supplement the video,  slides and chat.  Planned modules 
include a screen-casting module, a two-way video module to allow students to ask questions 
using video+voice  and a peer-to-peer module for streaming video implemented as a Java 
applet. Minor planned improvements include the previously mentioned new GUI and a switch 
to SVG format instead of raster images for web-based display of the slides, as the vector-
based SVG allows students to copy-paste text and adjust zoom.

Support is planned for mobile platforms such as Google Android and iOS, in order to support 
smartphones and tablet devices.

Ideas for more collaborative and flexible dependency-like organization solutions are being 
considered.  A prominent  idea is  to  allow users to specify  a favoured “path”  through the 
material  on  the  website,  that  they  can  annotate  with  personal  notes,  and  then  use  an 
algorithm  to  average  over  all  user-specified  paths  when  displaying  what  might  be  a 
dependency for the current subject, and how best to move forward learning new subjects.

An  important  addition  to  the  project  before  deploying  it  in  a  public  setting  is  increased 
security and filtering, specifically for live  lectures, where the system is currently lacking  a 
good access control implementation.

It is hoped that the list of supported codecs can be replaced by a single format: WebM video 
[43]. WebM uses the VP8 video format and Ogg Vorbis audio format. These codecs are both 
open, free and unencumbered by any enforced patents. It is hoped that this format will see 
wide cross-platform and cross-browser adoption in the near future.

When it becomes possible to switch to HTML5 video instead of Flash for live video support, 
the plan is to use the free WebM video format. Right now, HTML5 Video requires different 
codecs in different browsers, which means that more processing power has to be expended 
on  transcoding.  It  is  hoped  that  future  browsers  will  all  support  the  WebM format  as  a 
common standard.

ACKNOWLEDGEMENTS

This project was developed with support from:

The Technical University of Denmark Department of Informatics and Mathematical Modelling.

Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20 - 23, 2011



Interreg IV project “Vind i Øresund”.

Special thanks to:
  Carly L. Nacmanie

REFERENCES

[1] G. Stefansson; The Tutor-web; an educational system for classroom presentation, evaluation  
and self-study. Journal Computers & Education archive Volume 43 Issue 4, December 2004  
Elsevier Science Ltd. Oxford, UK.

[2] http://www.gnu.org/philosophy/free-sw.html

[3] http://www.opensource.org/osd.html

[4] http://ocw.mit.edu/index.htm

[5] http://www.livescribe.com/en-us/

[6] http://torrentfreak.com/bittorrent-p2p-live-streaming-110119/

[7] http://code.macournoyer.com/thin/

[8] http://www.mysql.com/

[9] http://www.icecast.org/

[10] http://www.adobe.com/devnet/rtmp.html

[11] http://www.adobe.com/devnet/f4v.html

[12] http://www.itu.int/rec/T-REC-H.264

[13] http://mpeg.chiariglione.org/

[14] http://rack.rubyforge.org/

[15] https://github.com/macournoyer/pusher

[16] http://ww.telent.net/diary/Streaming_XHR_with_Ruby_and_Mongrel 
http://cometdaily.com/2007/11/18/ie-activexhtmlfile-transport-part-ii/ 
http://www.w3.org/TR/eventsource/  http://cometdaily.com/2007/11/15/the-long-polling-
technique/

[17]  http://www.rabbitmq.com

Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20 - 23, 2011



[18] http://www.amqp.org

[19] http://www.mysql.com/products/cluster/

[20] http://rubyonrails.org/

[21] http://www.postgresql.org/

[22] http://www.graphicsmagick.org/

[23] http://flowplayer.org/

[24] http://raphaeljs.com/

[25] http://python.org

[26] http://qt.nokia.com/

[27] http://www.dealextreme.com/details.dx/sku.3071

[28] http://abstrakraft.org/cwiid/

[29] http://wiibrew.org/wiki/Wiimote#Bluetooth Communication

[30] http://johnnylee.net/projects/wii/

[31] http://dev.w3.org/html5/websockets/

[32] http://dvswitch.alioth.debian.org/wiki/DV_format/

[33] http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4659231

[34] http://www.kinodv.org/

[35] http://ffmpeg.org/

[36] http://www.mediawiki.org/wiki/MediaWiki

[37] Contact Marc Juul Christoffersen: mjchristoffersen@lbl.gov

[38] http://www.perl.org/

[39] http://httpd.apache.org/docs/2.0/

[40] http://www.ietf.org/rfc/rfc3875.txt

[41] http://ceph.newdream.net/

[42] http://tahoe-lafs.org/trac/tahoe-lafs

[43] http://www.webmproject.org/

Proceedings of the 7th International CDIO Conference, Technical University of Denmark, Copenhagen, June 20 - 23, 2011


