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Abstract:

Since continuous glucose monitoring (CGM) technology and insulin pumps have improved recent
years, a strong interest in a closed-loop artificial pancreas for people with type 1 diabetes has
arisen. Presently, a fully automated controller of blood glucose must face many challenges, such
as daily variations of patient’s physiology and lack of accuracy of glucose sensors. In this paper
we design and discuss an algorithm for overnight closed-loop control of blood glucose in people
with type 1 diabetes. The algorithm is based on Model Predictive Control (MPC). We use an
offset-free autoregressive model with exogenous input and moving average (ARMAX) to model
the patient. Observer design and a time-varying glucose reference signal improve robustness of
the algorithm. We test the algorithm in two clinical studies conducted at Hvidovre Hospital.
The first study took place overnight, and the second one took place during daytime. These trials
demonstrate the importance of observer design in ARMAX models and show the possibility of

stabilizing blood glucose during the night.

1. INTRODUCTION

Type 1 diabetes is a disease caused by destruction of the
insulin producing beta-cells in the pancreas. Therefore,
patients with type 1 diabetes must rely on exogenous in-
sulin administration in order to tightly regulate their blood
glucose. Blood glucose should preferably be kept in the
range 4.0-8.0 mmol/l. Long periods of high blood glucose
(hyperglycemia) can lead to long-term complications like
nerve diseases, kidney diseases, or blindness. However, the
dosing of insulin must be done carefully, because a too
high dosage of insulin may lead to a too low blood glucose
(hypoglycemia). Low blood glucose has immediate effects,
such as coma or even death.

The conventional insulin therapy for people with type 1
diabetes consists of the injection of slow acting insulin
once a day and rapid acting insulin several times per
day. The slow acting insulin is used to counteract the
continuous glucose production from the liver. The fast
acting insulin compensates the intake of carbohydrates
(CHO) during the meals. The decision on the dosage of
short and fast acting insulin is based on several blood
glucose measurements per day.

However, an increasing number of patients with type
1 diabetes use an intensive insulin therapy based on
continuous glucose monitors (CGMs) and insulin pumps
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instead of the conventional therapy described above. This
regime can reduce the risk of complications. CGMs can
provide more frequent blood glucose measurements. In
addition, insulin pumps can adjust to daily variations in
insulin needs.

Nevertheless, the patients still need to be constantly in-
volved in their decisions on the insulin treatment based on
their CGMs and/or fingersticks measurements. A system
consisting of a CGM, an insulin pump and a control
algorithm that computes the insulin dose based on glucose
measurements is called an artificial pancreas. The artificial
pancreas provides closed-loop control of the blood glucose
by manipulation of the insulin injection. The artificial
pancreas has the potential to ease the life and reduce
complications for people with type 1 diabetes. Its principle
is illustrated in Fig. 1. Several review papers about closed-
loop control of blood glucose for people with type 1 dia-
betes have been published (Hovorka et al. (2006), Cobelli
et al. (2011), Bequette (2011)).

Previous publications have proven that model predictive
control (MPC) has great potential for design of an artificial
pancreas. Magni et al. (2009) established that MPC could
reduce oscillatory behaviors compared to proportional
integral derivative (PID) controllers. Boiroux et al. (2010)
applied open-loop constrained nonlinear optimal control.
Hovorka et al. (2010) tested an MPC-based controller on
children and adolescents with type 1 diabetes.

In this paper we focus on overnight blood glucose control
for people with type 1 diabetes using a CGM, an insulin
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Fig. 1. Closed-loop glucose control. Glucose is measured
subcutaneously using a continuous glucose monitor
(CGM). Insulin is dosed by an insulin pump.

Fig. 2. Picture of the pilot trial.

pump, and a controller based on MPC. Many factors, such
as meal intake, physical exercise, stress, illness, alcohol
consumption etc. affect insulin needs. Also, hormone re-
lease during the night may cause elevated blood glucose in
the early morning. This particular phenomenon is called
the dawn phenomenon. The main goal of a closed-loop
controller is to compensate these effects by adjusting the
amount of injected insulin based on frequent glucose mea-
surements coming from a CGM.

The paper is structured as following. Section 2 describes
the material and methods used for the studies. We dis-
cuss the design of the controller in Section 3. Section 4
shows the results for the two clinical studies conducted at
Hvidovre Hospital. Conclusions are provided in Section 5.

2. METHODS AND MATERIAL

This section describes the clinical protocol and the inter-
nally developed graphical user interface for the clinical
studies.

2.1 Clinical protocol

The clinical trial consists of a randomized cross-over study
including 12 patients with type 1 diabetes. The goal is
to compare overnight glucose control during open-loop
and closed-loop insulin administration. We investigate the
cases where
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Fig. 3. Study design.

The insulin bolus matches the evening meal (6 pa-
tients in total)
The insulin bolus is underdosed (6 patients in total)

study design for the 2 cases is illustrated in Fig. 3.
scenario during the clinical studies is the following:

The patient arrives at 16:00.

A meal is consumed at 18:00 and an insulin bolus
is administrated. The meal size is determined by the
weight of the patient. The bolus size depends on the
patient and the scenario (meal with the correct bolus
or underbolused meal).

The loop is closed at 22:00 (for closed-loop studies
only).

The closed-loop ends at 07:00 the following day (for
closed-loop studies only).

The purpose of the first part of the study (when the insulin
bolus matches the evening meal) is to validate the ability
of the controller to compensate for overnight physiological
changes in patients. The second part of the study (when
meals are underbolused) must ensure that the controller
can bring and keep blood glucose in the range 4.0-8.0
mmol/L.

The patient is equipped with 2 Dexcom Seven Plus CGMs
and a Medtronic Paradigm insulin pump. The CGMs pro-
vide glucose measurements every 5 minutes. The clinician
decides on the sensor used by the controller, based on the
accuracy of the sensor during the days before the study.
The other CGM can be used as a backup device. Insulin is
administrated to the patient through small discrete insulin
injections (also called microboluses) every 15 minutes.

It must be pointed out that the pump used for the trials
has discrete increments of 0.025U for the microboluses,
and a minimum continuous insulin injection (or basal rate)
of 0.025 U/hr. The controller handles these restrictions by
using hard constraints on the minimal insulin infusion rate
and by rounding the suggested microbolus to the nearest
0.025U (see Section 3.6).

In addition, blood samples are taken every 30 minutes in
order to measure more accurately the blood glucose (in
case of prolonged period of low blood glucose, the sampling
time is set to 15 minutes). The blood glucose was measured
by Hemocue and after the trial by YSI. These values are
not provided to the controller.

The clinician has the authority to prevent severe hypo-
glycemia by injection of intravenous glucose. Such a deci-
sion is based on the glucose history.
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Fig. 4. Graphical User Interface screenshot
2.2 Graphical User Interface

Fig 4 provides an overview of the graphical user interface
developed for the artificial pancreas. The glucose sensor
provides a glucose measurement every 5 minutes. The
glucose measurements are transmitted from the sensor to
the software via a wireless receiver.

The graphical user interface returns a new insulin mi-
crobolus suggestion every 15 minutes. At these times, it
also returns the glucose prediction and insulin prediction
profiles. The decision on the insulin microbolus can be
overruled if there is a safety risk for the patient. The exact
time before the next microbolus suggestion is provided by
the graphical user interface.

It is also possible to add comments if necessary. These com-
ments have no influence on the microboluses computation,
but are stored.

3. CONTROLLER DESIGN

This section presents the detailed description of the con-
troller. The controller computes a discrete-time offset-free
ARMAX model. This model is then used to optimize
the future injections of insulin. The controller must be
designed in a robust and safe way for the patient, especially
regarding low blood glucose. We use here a time-varying
glucose setpoint to avoid insulin overdose.

3.1 Model computation

Several research groups investigated low-order models
to describe glucose-insulin dynamics. Kirchsteiger et al.
(2011) used a third order transfer function, Finan et al.
(2009) identified ARX models and Percival et al. (2010)
applied a first order transfer function with a delay. In this
paper we use a Single Input-Single Output (SISO) second
order continuous-time transfer function

K
(ts+1)2

The input U(s) is the insulin intake and the output Y'(s)
is the blood glucose, both expressed in terms of deviation
variables from a steady state, K is the static gain and 7
is the time constant. The gain and the time constant are
computed from known patient-specific parameters. These
parameters are the insulin action time and the insulin

G(s) = (1)
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sensitivity factor (ISF). They can be estimated for each
individual patient by looking at the impulse response for a
small insulin bolus. The insulin action time 7 corresponds
to the time that blood glucose takes to reach its minimum.
The insulin sensitivity factor (ISF) corresponds to the
maximum decrease in blood glucose per unit of insulin
bolus. These parameters are empirically estimated by the
patient and his/her physician. However, these parameters
may dramatically vary from day to day for a given patient.

The impulse response in the temporal domain of the
transfer function (1) is

(1) = K~ exp(~t/7) )

We shall now relate the insulin sensitivity factor and the
insulin action time to the gain K and the time constant
7 in (2). The insulin action time corresponds to the time
to reach the minimum blood glucose, it is therefore equal
to 7. We find K by computing the output of the impulse
response (2) at its minimum, i.e. at time ¢ = 7. It gives

y(r) = ~Isp = 2 exp(-1) )

Isolating K in the above equation yields to

K = —rexp()Isr (4)

The transfer function (1) can be reformulated as a discrete-
time transfer function model in the form

y(t) = Gla~Mu(t), (5)

which is equivalent to

A(q My(t) = ¢ ™ B(q u(t) (6)
A(qg™1) and B(q™1) are

Al =14 a1qg7 ' +axq? (7a)
B(qg ") =big " +bag? (7b)

Fig 5 depicts the exact impulse response and its second
order approximation for a virtual patient. This patient is
simulated using the model developed by Hovorka et al.
(2004). The figure demonstrates that a second order model
can provide a fairly good approximation of a patient with
type 1 diabetes. Current insulin, such as the Novorapid
insulin documented in Nov (2002) has a similar impulse
response shape, but can provide even faster action (the
minimum in glucose is reached in 60-90 minutes).

8.2 Observer design for the first study

Odelson et al. (2006), Jorgensen and Jgrgensen (2007)
and Akesson et al. (2008) proposed several methods for

Kalman filter tuning. In our controller we use the following
discrete-time, linear ARMAX model
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Fig. 5. Example of second order approximation compared
to the exact impulse response. The bolus size is here
0.1U. The parameters are: 7=4 hours and Igp = 4
mmol/L/U.

Alg M y(t) = ¢ ™ B(g "u(t) + Clge(t)  (8)

A, B and C are polynomials, and ¢! is the backward
shift operator. We assume that e(t) ~ N;;q(0,0). In the
first pilot study we used the following ARMAX model
description

= B(q u(t) + (1 —aq )e(t)  (9)

Alg) =1 —a HA@)

Bl =01-¢ "B

The model (9) is able to provide offset-free tracking due
to the integrator. The parameter o € [0;1] is a tuning
parameter. « = 0 corresponds to an integrated ARX
model, while & = 1 corresponds to an ARX model without
integrator. For further details about the choice of «, see
e.g. Huusom et al. (2010).

The ARX model (9) may be realized as a stationary state
space model in innovation form

Tht1 = Axy, + Buy + Key,
yr = Cp + €,

(12)
(13)

The matrices A, B, C and K are written in the canonical
form

—a110 bl
A= *a201 B = bg]
az 00 bs (14)
- — ap
K:[ —as 10:[100]
—asg

Fig. 6 shows the glucose and insulin predictions for the
first study. It can be noticed that the prediction is mostly
based on the two previous observations (which show an
increasing blood glucose) rather than on the global trend
(which shows a decreasing blood glucose).
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Fig. 6. Example of blood glucose prediction for the first
study. It can be seen that the controller relies more
on the local trend than on the global trend.

8.8 Observer design for the second study

In this section we consider the general ARMAX model (8)
in which we assume

Clg)=1+c1g ' +c2qg* +c3q? (15)

and
Al =1 -q HA™) (16)
Bl )=(0-q¢ "B (17)

in order to preserve the offset-free control property. There-
fore, the Kalman gain K in equation (14) becomes

C1 — ay
K= [CQ —a2‘|

€3 —as

(18)

(the matrices A, B and C remain unchanged). The design
of observer consists of setting the eigenvalues of A —
KC. Having the eigenvalues close to 0 makes the state
estimation error rapidly vanish, but on the other hand
the observer will be more sensitive to noise. Having the
eigenvalues close to 1 makes the observer less sensitive to
noise (and therefore more relying on the global trend) but
introduces a delay in the predictions. It can be shown that
these eigenvalues are the roots of the polynomial

x(2) =22+ 12 + coz + 3 (19)

X(z) is the characteristic polynomial of A — KC, and the
coefficients ¢;, i = 1,2,3 are the same as the ones in
equations (15) and (18). Let «, 8; and B2 be the roots
of (19). We assume that « € R, and that 8, and Sy are
either real or complex conjugate. Furthermore, these roots
must all lie inside the unit circle.

As for the first study, we fixed @ = 0.99. The choice
of #1 and Py has been made using data from the first
pilot study. For modeling purpose, we considered the
stochastic continuous-time model and measurements at
discrete times, i.e.
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Fig. 7. Example of blood glucose prediction for the first
study with the new observer. The controller is able to

predict more accurately the blood glucose trend.

dx(t) = f(t, z(t),u(t))dt + odw(t) (20a)
Yk = h(tk, z(tr)) + vk (20b)

x(t) are the system states, u(t) are the known inputs (in-
sulin injections, meals and intravenous glucose injections)
and y, are discrete outputs (CGM measurements). The
function f is a continuous-time state-space description of
the transfer function (1).

We used the internally developed software ”Continuous
Time Stochastic Modelling” (CTSM) to estimate the vari-
ances (variance of process noise and measurement noise)
with the maximum likelihood method. We took these
variances to compute the predictive Kalman gain K, and
hence 81 and B3. The computation of 51 and (5 yielded

Br,2 = 0.8078 4 0.1581i (21)

These roots give

c1 = —2.6056 cy=2.2770 c5=—06708  (22)

Fig. 7 illustrates an other example of blood glucose and
insulin prediction. We have generated these prediction
plots by taking the same data sequence in which we
designed the observer. Unlike the previous case in Fig. 6,
the controller is able to predict more accurately the blood
glucose trend.

3.4 Computing the j-steps ahead predictions

If the k-th glucose measurement y; is available, the one-
step ahead prediction of the states and outputs is

jk-ﬁ-l\k = Ai;ﬂk + Buk|k + Key (23a)
Ury1jk = Copyapp (23b)

€k is the innovation term
ek = Yk — Cppp—1 (24)

In the case where the k-th glucose measurement g is not
available, the one-step ahead prediction of the states and
outputs is
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Fig. 8. Example of time-varying reference signal for differ-
ent values of the time constant 7,.

(25a)
(25b)

Tpy1p = Ak + Bugp
Ors1ik = CTppan

Similarly, the j + 1 steps ahead predictions of the states
and the outputs for j = 1,2, ... are

(26a)
(26Db)

Trqjrie = Alrrjin + Bugyjx
Urtjrik = CTpqjpiir

3.5 Time-varying glucose setpoint

The glucose trajectory is exponentially decreasing when
the blood glucose is above the target, which robustifies
the controller with respect to plant-model mismatches.
Consequently, the reference blood glucose is

(27)

r

. N t;
Prtilk(t) = Ur|k xp (-;)

The choice of the tuning parameters 7, has an influence on
the rapidness and the robustness of the controller. Small
values of 7, provide a faster return to the euglycemic range,
while larger values of 7 ensure a more robust control. The
glucose setpoint profiles for different values of the time
constant 7, are shown in Fig. 8.

8.6 Model Predictive Control with Soft Constraints

At the time t, the open loop convex quadratic program
solved online is

N—-1
min _, ¢=3 > kssarge = Prjaela+
{uk+J7Uj}j:0 j=
N[ Aug i3 + wllvk]13 (28a)
s.t. i'k-i-l\k = Aj:k\k—l + Buy, + Key (28b)
Utk = O (28c)
i‘kJerrl‘k = Ai‘kJrj“C + BUk (28(1)
Uktjt+ilk = CCijriik (28e)
Umin S uk+j S Umax (28f)
Grmin — Yk+1 < Vktj (28g)
v; >0 (28h)
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in which ;1 and e, = y, — CZy p—1 are given. upyin and
Umax are the minimum and the maximum insulin infusion
rates allowed by the pump. Aupi; = Uptj — Uptj—1 IS
the variation in the insulin infusion rate. G, depicts
the lower bound on blood glucose. The reference signal
Tr4j+1|k 1S time-varying and its computation is given in
section 3.5.

The slack variables v; are introduced to penalize hypo-
glycemia. The hard input constraints (28f) limit the insulin
infusion rate. The penalty term k||lvg4;||5 is used to avoid
hypoglycemia and the penalty term A||Auy;||3 prevents
the insulin infusion rate from varying too aggressively.

For the study we choose N = 120, i.e. a 10 hour prediction
horizon, and

Umin = —Uss + 0.025,  Umaz = Uss,
10

A=, k=100 (29)
u

SSs

We remind here that the input variables are deviation
variables from the steady state uss. Consequently, the
choice of Uy, = —uss + 0.025 allows the controller to
deliver the minimum basal rate (0.025U /hr), and ey =
ugs prevents the pump from overdosing the insulin. The
high value of x makes hypoglycemia undesirable.

4. STUDIES RESULTS

In this section we discuss the two studies conducted at
Hvidovre Hospital on the same patient. The patient has
an insulin sensitivity factor equal to 5 mmol/L/U and an
insulin action time equal to 5 hours. Her basal insulin is
uss = 0.85 U/hr.

4.1 Pilot studies results

Fig. 9 depicts the blood glucose and insulin profiles for
the first pilot study. The study started at 17:30. A meal
has been consumed at 18:00. An insulin overdosing led to
severe hypoglycemia and an intravenous glucose injection
at approximately 00:00. A microbolus decision has been
overruled at 01:30.

Fig. 10 depicts the blood glucose and insulin profiles for the
second pilot study. Intravenous glucose has been admin-
istrated at 10:00 and 12:00 to compensate for a too high
insulin sensitivity. The sensor has to be calibrated at 12:15
and 14:45. In despite of these disturbances, the controller
was able to keep the blood glucose within the range 4.0-
8.0 mmol/L after the second glucose administration. In
addition, the intravenous glucose is not included in the
model, and therefore can be considered as an unknown
disturbance. However, it can be noticed that insulin is still
slightly overdosed.

5. CONCLUSION

This contribution presents a closed-loop controller for
people with type 1 diabetes. We described a practical
way of computing the glucose-insulin dynamics model. The
controller has been tested two times on the same patient.
The most noticeable difference between the two studies
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was the observer design. The trial results illustrated the
importance of observer design in state space models in
innovation form, and how modelling based on prior data
can be used to design the observer. Improvements are
being implemented on the controller in order to ensure
a more robust control of blood glucose and avoid the
observed insulin overdosing during the second pilot study.
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Fig. 9. Blood glucose and insulin profiles for the first pilot study. The insulin infusion rates are computed based on the
right CGM (green curve).
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Fig. 10. Blood glucose and insulin profiles for the second pilot study. The insulin infusion rates are computed based on
the left CGM (blue curve).
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