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We present stochastic flow forecasts to be used in a real-time control setup for urban 
drainage systems. The forecasts are generated using greybox models with rain gauge and 
radar rainfall observations as input. Predictions are evaluated as intervals rather than just 
mean values. We obtain satisfactory predictions for the smaller catchment but rather large 
uncertainties for the bigger catchment where the applied storage cascade seems too simple. 
Radar rainfall introduces more uncertainty into the flow forecast model estimation. 
However, the radar rainfall forecasts also result in a slightly improved point prediction of 
flows which we aim to exploit with a modified estimation approach in the future. 
 
INTRODUCTION  
 
Recently, a new real-time control setup has been installed for one of the two major sewer 
catchments in the Copenhagen area ([5]). In this setup, control decisions are based on an 
optimization over predicted inflows to basins. The predictions are generated using lumped 
models for every subcatchment.  

A clear improvement of the control decisions is expected, if forecast uncertainties can 
be described. The predicted inflow to a basin may e.g. just fill up the basin whereas, due to 
the predictive uncertainty, there is a high risk of overflow. Control decisions considering 
and not considering uncertainties may well be complementary in such a case. To quantify 
forecast uncertainties in the control framework, we intend to use greybox models. These are 
based on physical principles but include a stochastic term and are therefore considered 
useful for data driven forecasting including predictions of uncertainties.  

We evaluate flow forecasts generated by greybox models for two sample catchments in 
the Copenhagen area. The models are estimated based on runoff volume forecasts over a 
horizon of 100 min. Rain gauge measurements and radar rainfall are used as input to 
evaluate the quality of the different data sources and the effect of rainfall forecasts 
generated from the radar observations. 

 
DATA 
 
Sample Catchments 
Two catchments in the Copenhagen area are considered in this study. The Ballerup 
catchment has a total area of approx. 1.300 ha. It is mainly laid out as separate sewer 



system but has a small combined part and shows strong influences from rainfall dependent 
infiltration and misconnection of stormwater.  

The Damhusåen catchment is located close to Ballerup but drains to a different 
treatment plant. We consider the northern part of the catchment with a total area of approx. 
3.000 ha. The catchment is laid out as a combined sewer system and consists of several 
subcatchments with a longest flow path of approx. 10 km. 

An overview of the catchments can be seen in Figure 1. Flow measurements in 5 min 
resolution are available at the outlets of both catchments. Predictions are generated for both 
outlets and compared to the observations at 10 min resolution where the measurements 
within an interval are averaged.  
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Figure 1. Ballerup (left) and northern Damhusåen (right) catchments with C-band radar 
pixels (2x2km) colored by subcatchments and location of rain gauges (red – used in radar 
calibration, yellow – used as input to Ballerup model, green – used as input to Damhusåen 
model, black – other gauges) 
 
Rainfall Measurements 
Observations from tipping bucket rain gauges from the Danish SVK network ([8]) are 
available in the considered catchments. Rainfall measurements are available at 1 min 
intervals and averaged to 10 min time steps that are used for forecasting. In the rain gauge 
based forecast models we use 2 and 7 gauges located within or close to the catchment 
borders as input for the Ballerup and Damhusåen catchments, respectively (Figure 1).  

The Danish weather service operates a C-band radar in Stevns approx. 45 km south of 
the considered catchments. Measurements from this radar are available in 10 min 
resolution. Figure 1 shows the location of the catchments within the utilized C-band radar 
pixels. An X-band radar is also located in Hvidovre close to the catchment borders. 



However, data from this radar could not be utilized due to problems in the operation of the 
device. 
 
Calibration period 
We use a period of 2.5 months from 25/06/2010 until 6/09/2010 for estimating the forecast 
models. The period contains several typical rain events that can be considered relevant for 
real time control (Figure 2). Further, the measurements contain no major gaps in this 
period.  
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Figure 2. Areal mean of rain gauge observations and flow measurements for the Ballerup 
catchment in the estimation period 
 
METHODS 
 
Radar rainfall calibration 
C-band radar measurements are provided as reflectivities. A direct conversion to rain 
intensities is commonly considered problematic. A methodology to calibrate the radar 
measurements to gauge observations has therefore been developed at Aalborg University 
and is applied here.  

In a first ‘static’ step, the rain intensities derived from the radar are adjusted such that 
they on average over the calibration period and in the considered area give the same rainfall 
depths as the rain gauge measurements. In a second ‘dynamic’ step the radar rain intensities 
are again adjusted, this time at every time step to match the rain gauge measurements in the 
calibration area. We refer to [2] and [3] for a detailed description of the calibration 
methodology.  

In the calibration we use the rain gauges shown in Figure 1. The calibration is 
performed with only 7 gauges distributed in the Copenhagen area as one of the main 
objectives for using radar rainfall measurements is to derive rain intensities using as small a 
number of ground measurements as possible (Figure 1). 

 
Stochastic Flow Forecasting 
As mentioned before, we use greybox models to generate flow forecasts for the catchments. 
In the basic setup we use a cascade of 2 storages with one rainfall input. This setup has 
been extensively tested for the Ballerup catchment but may be too simple for the 



Damhusåen catchment. As we are mainly interested in investigating the effects of different 
rainfall inputs on the forecasts, we still apply this most simple setup. 
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Eq. 1 is termed system equation where S1, S2 correspond to the storage states, A to the 
sealed catchment area, P to the rain intensity, a0 to the mean dry weather flow and K to the 
travel time constant. The uncertainty of model predictions is captured by the Wiener 
process dωt with incremental variance σ. The variance depends on the current states, so a 
Lamberti transform is applied and the estimation performed with transformed states ([1]).  

States and flow measurements are related in the observations equation (Eq. 2). Q 
corresponds to the observed flow values, D describes the variation of the dry weather flow 
using trigonometric functions and e corresponds to the observation error with standard 
deviation σe.  

We refer to [1] and [9] for a detailed description of the modeling principles which 
involve a minimization of the one-step ahead flow prediction error using the open source 
software CTSM. However, we here estimate the model parameters by minimizing the error 
between a 10 step (100 min) ahead volume prediction and the corresponding observations 
at each time step to improve the models forecasting ability. Forecasts and uncertainties are 
generated by repeated updating in the Kalman Filter setup for the stochastic model making 
assumptions on the rainfall input as described below and using the previous predicted value 
as updated value for the next time step. This setup provides predictions and variances of the 
predicted values and we generate 95 % - prediction intervals from these. 

We use different setups for including the rainfall measurements into the forecast 
models. 
A. Area mean – the rainfall is assumed constant over the whole catchment and inputs from 

gauges or radar pixels are averaged. 
B. Integrated subcatchment – the catchment is divided in subcatchments (Figure 1), a 

sealed area is estimated for every subcatchment, but only one storage cascade is used 
and all inputs are fed into the first storage. 

C. Distributed subcatchments –for the (bigger) Damhusåen catchment we aim to evaluate 
the use of spatial resolution in forecasting with dynamically calibrated radar data. 
Every subcatchment has a cascade of 2 storages of its own and the outflows from the 
northern and eastern subcatchments are inputs to the western subcatchment. 

When generating a flow forecast one needs to make an assumption on the rainfall during 
the forecast horizon. We use different approaches for rain gauge and radar rainfall input: 
 



I. Local linear trend – a trend line is fitted to the rain gauge intensities in the past 100 min 
and then extrapolated over the forecast horizon 

II. CO-TREC – we use rain intensities forecasted from the radar data provided by Aalborg 
University ([2]) 

Evaluation of the forecasts is performed on the basis of predicted runoff volumes over the 
forecast horizon of 100 min, as these are the relevant variable for control of the system. We 
evaluate only forecast values generated during wet weather (predicted volume greater than 
the dry weather peak of approx. 1000 m3/100 min for the Ballerup catchment and 
3300 m3/100 min for the Damhusåen catchment). The following measures are used in the 
evaluation and should be minimized: 
 RMSE – root mean square error between point prediction and observed runoff volumes 
 Reliability (Rel) – percentage of observations not contained in a 95 % prediction 

interval. Ideally, this value corresponds to 5 %, lower values suggest an overfitted 
model, higher values an unreliable model 

 Sharpness (Sh) – average width of the 95 % prediction interval 

 Skill score (Sk)      

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where N is the number of wet weather observations and Ui and Li are the distances of 
the i-th observation from the upper / lower prediction interval (over-/ undershoots). Ui 
and Li are 0 if the observation is contained in the prediction band.  

We refer to [6] for a derivation of performance criteria for prediction intervals.  
 
RESULTS 
 
Table 1 shows examples of estimated model parameters for the two catchments using rain 
gauge and statically calibrated radar rainfall data as input. As the estimation aims at 
minimizing the mean error between predicted and observed runoff volumes, the estimated 
uncertainties are not very meaningful, in particular for the models with (the more uncertain) 
radar input.  
 
Table 1. Estimated parameters for mean area rainfall models (type A) with rain gauge and 
statically calibrated radar input (estimated and fixed uncertainties). The state uncertainties 
σZ1 and σZ2 correspond to standard deviations of Lamberti transformed states S1, S2 
 

Model K  
[h] 

a0  
[m3/h] 

A  
[ha] 

σZ2 σZ1 σe 

Ballerup gauge 4.1 306.7 79.0 e-0.66 e-4.14 e-13.4 
Ballerup radar 8.9 303.4 82.1 e0.35 e-2.62 e-13.5 
Ballerup rad. fixed 8.9 297.6 81.3 e-0.66 e-3.56 e-13.5 
Damhusåen gauge 3.3 900.1 652.0 e0.63 e-3.32 e-13.2 
Damhusåen radar 2.9 1059.4 202.4 e0.42 e-4.77 e-13.5 
Damh. rad. fixed  7.8 940.0 368.7 e-0.50 e-3.57 e-13.5 



Table 2. Forecast evaluation for mean area rainfall models (type A) with rain gauge and 
statically calibrated radar input (freely estimated and fixed uncertainties). Values are based 
on predicted runoff volumes in m3 over a prediction horizon of 100 min 
 

Model RMSE Rel Sh Sk 
Ballerup gauge (A I) 103 12 % 682 1804 
Ballerup radar (A II) 98 1 % 3201 3225 
Ballerup rad. fixed (A II) 99 7 % 1134 1824 
Damhusåen gauge (A I) 998 10 % 6843 14306 
Damhusåen radar (A II) 1076 29 % 2438 28306 
Damh. rad. fixed (A II) 999 16 % 4727 22256 

 
An extended Kalman filter is applied in the modeling process, so the storage states can be 
updated to give a better description of the observed flows in the observation equation. The 
extent of the updating depends on the ratio of uncertainties of observation and states (see 
e.g. [4]). In the optimization the standard deviations are then determined in such a way, that 
the storage states are updated as good as possible from the last observation to give a better 
prediction of the mean value. Looking at the prediction intervals, we obtain too big 
predictive variances for the Ballerup catchment (Rel<<5%) and too small variances for the 
Damhusåen catchment (Rel>>5%) resulting in too big, overreliable and too narrow, 
unreliable prediction intervals, respectively (Table 2). This effect is particularly evident for 
the models with radar input. 

In a first approach we fixed the uncertainties for all models with radar input by trial 
and error to give somewhat reliable prediction intervals with reasonable sharpness (Table 1 
– models Bal rad. fixed and Damh. rad. fixed). In future works this problem will be handled 
by using an objective function in the estimation that accounts for the quality of the 
prediction intervals rather than the mean value of the prediction (e.g. skill score shown 
above).  

Table 3 and Table 4 quantify the quality of the forecasts generated for the calibration 
period with different model types. For the reference models with rain gauge input (1a, 1b, 
2a, 2b) we can see that the prediction intervals capture less than the intended 95 % of the 
observations (Rel>5%). During parameter estimation the future rainfall inputs are assumed 
known and introduce a too small uncertainty as compared to the forecast setting with 
unknown rainfall input. This problem may be solved by using unknown rainfall inputs 
during parameter estimation, however at the cost of more uncertain model parameters. 

For model 1b we can again see the result of the objective function, minimizing the 
average error rather than optimizing the prediction interval. We obtain a low RMSE and as 
a result a narrow prediction interval which is too narrow to match the observations. 
Looking at the forecast results using radar data, we can first see that there seems to be no 
major improvement in the forecast quality when using dynamically calibrated radar data 
instead of statically calibrated data (comparing models 1c vs. 1d and 2c vs. 2d). This 
contradicts the results obtained previously for X-band radar data ([7]). A reason for this 



may be that the spatially distributed hydrodynamic model applied in [7] is more sensitive to 
the quality of rainfall inputs than the lumped model for flow predictions. 
 
Table 3. Forecast evaluation for the Ballerup catchment. Uncertainties for the radar inputs 
were fixed. Values are based on predicted runoff volumes in m3 over 100 min. 
 

Model RMSE Rel Sh Sk 
1a Gauge mean area rainfall (A I) 103 12 % 682 1804 
1b Gauge integrated subcatchment (B I) 97 48 % 232 3562 
1c Radar stat. mean area rainfall (A II) 99 7 % 1134 1824 
1d Radar dyn. mean area rainfall (A II) 96 7 % 1149 1792 
1e Radar dyn. integr. subcatchment (B II) 97 7 % 1176 1793 

 
Table 4. Forecast evaluation for the Damhusåen catchment. Uncertainties for the radar 
inputs were fixed. Values are based on predicted runoff volumes in m3 over 100 min. 
 

Model RMSE Rel Sh Sk 
2a Gauge mean area rainfall (A I) 998 10 % 6843 14306 
2b Gauge integrated subcatchment (B I) 1061 12 % 5688 15031 
2c Radar stat. mean area rainfall (A II) 999 16 % 4727 22256 
2d Radar dyn. mean area rainfall (A II) 988 16 % 4593 21822 
2e Radar dyn. integr. subcatchment (B II) 989 16 % 4617 21925 
2f Radar dyn. distrib. subcatchment (C II) 1038 17 % 4709 23534 

 
The effect of radar rainfall forecasts on the flow forecasts is visible in the somewhat 

reduced RMSE values for the models with radar input and should also lead to better 
prediction intervals when estimating the models with an improved objective function. 
Spatial resolution does in none of the cases introduce significant forecast improvements 
over the models assuming mean area rainfall. Again, distributed models may yield different 
results than the lumped models applied here. 

We have evaluated the ratio of sharpness and predicted volume value for the models 
with mean area rain gauge input. In the Ballerup catchment we obtain values between 30 
and 100 % and an average of 37 % during wet weather. In the Damhusåen catchment, 
values vary between 50 and 250 % with an average of 82 % during wet weather, indicating 
that the model structure may be too simple for this catchment. 
 
CONCLUSIONS 
 
It is clear from the modeling results that the predictive quality depends strongly on the 
suitability of the model for the catchment. For the smaller Ballerup catchment a simple 
storage cascade provides reasonable predictions with a level of uncertainty that is most 
likely useful for control purposes. In the Damhusåen catchment, the storage cascade is too 
much of a simplification and other effects such as overflows need to be taken into account. 



There is no big improvement from using dynamically calibrated radar rainfall data over 
statically calibrated data in the considered cases. The same holds true for spatial resolution 
in the model. Radar rainfall forecasts appear to improve the mean value of the prediction to 
some extent. We will likely be able to exploit this effect also for the prediction intervals 
when optimizing the models with respect to interval instead of mean values. This is going 
to be the next step of work before applying the models for forecasting in several other 
catchments to support real time control.  
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