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Abstract:
In this paper, we develop and test a Model Predictive Controller (MPC) for overnight
stabilization of blood glucose in people with type 1 diabetes. The controller uses glucose
measurements from a continuous glucose monitor (CGM) and its decisions are implemented by
a continuous subcutaneous insulin infusion (CSII) pump. Based on a priori patient information,
we propose a systematic method for computation of the model parameters in the MPC. Safety
layers improve the controller robustness and reduce the risk of hypoglycemia. The controller is
evaluated in silico on a cohort of 100 randomly generated patients with a representative inter-
subject variability. This cohort is simulated overnight with realistic variations in the insulin
sensitivities and needs. Finally, we provide results for the first tests of this controller in a real
clinic.

1. INTRODUCTION

People with type 1 diabetes need several blood measure-
ments and insulin injections per day to regulate their
blood glucose properly. Too small doses of insulin result in
high blood glucose (hyperglycemia), which has long-term
complications such as nerve diseases, kidney diseases, and
blindness. In contrast, too high doses lead to low blood
glucose (hypoglycemia) with immediate adverse effects
such as seizure, coma or even death.

Closed-loop control of blood glucose, also known as the
artificial pancreas (AP), has been suggested to overcome
the burden and complications associated with manage-
ment of the blood glucose level in people with type 1
diabetes. An AP using subcutaneous (sc) measurements
and subcutaneous delivery consists of a continuous glucose
monitor (CGM), a control algorithm, and a continuous
subcutaneous insulin infusion (CSII) pump. Fig. 1 illus-
trates the principal components of an AP. It has been
a subject of interest for almost 40 years (Albisser et al.
(1974)) and is still an active field of research (Cobelli et al.
(2011), Nicolao et al. (2011)).

Model Predictive Control is a useful control method for
the AP due to its ability to handle constraints and out-of-
zone glucose levels in a systematic and proactive fashion.
Prototypes of AP using MPC have been successfully tested
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Fig. 1. Closed-loop glucose control. Glucose is measured
subcutaneously using a continuous glucose monitor
(CGM). Insulin is dosed by an insulin pump.

both in silico (Magni et al., 2009) and in vivo (Hovorka
et al., 2010).

In this paper we implement an AP using a CGM for
glucose feedback, an insulin pump and a control algorithm
based on MPC. We present a method exploiting a priori
available patient information for computing a personalized
set of model parameters. In the considered setup, the
patient information required by the controller is: The basal
insulin infusion rate, the insulin sensitivity factor (also
called the correction factor), and the insulin action time.
Safety layers limit the occurrence of hypoglycemic events.
The controller is tested in silico on a cohort of 100 patients.
We simulate an overnight clinical trial and induce realistic
variations in insulin needs. We also present glucose and



Table 1. Parameters and distribution for the
simulated cohort.

Parameter Unit Distribution

EGP0 mmol/kg/min EGP0 ∼ N(0.0161, 0.00392)
F01 mmol/kg/min F01 ∼ N(0.0097, 0.00222)
k12 min−1 k12 ∼ N(0.0649, 0.02822)
ka1 min−1 ka1 ∼ N(0.0055, 0.00562)
ka2 min−1 ka2 ∼ N(0.0683, 0.05072)
ka3 min−1 ka3 ∼ N(0.0304, 0.02352)

SfIT min−1/(mU/L) SfIT ∼ N(51.2, 32.092)

SfID min−1/(mU/L) SfID ∼ N(8.2, 7.842)

SfIE L/mU SfIE ∼ N(520, 306.22)
ke min−1 ke ∼ N(0.14, 0.0352)
VI L/kg VI ∼ N(0.12, 0.0122)
VG L/kg exp(VG) ∼ N(ln(0.15), 0.232)

τI min 1
τI

∼ N(0.018, 0.00452)

τG min 1
ln(τG)

∼ N(−3.689, 0.252)

Ag Unitless Ag ∼ U(0.7, 1.2)
BW kg BW ∼ U(65, 95)

insulin profiles from an initial test of the controller in a
real clinic.

This paper is structured as follows. In Section 2 we de-
scribe the model and the methods used to simulate a
cohort of patients with type 1 diabetes. Section 3 presents
a procedure for computation of the MPC model param-
eters from prior patient information. Section 4 describes
the controller. In Section 5 we evaluate and discuss the
controller performance on a cohort of 100 patients and
provide in vivo test results. Conclusions are provided in
Section 6.

2. PHYSIOLOGICAL MODELS FOR PEOPLE WITH
TYPE 1 DIABETES

Several physiological models have been developed to sim-
ulate virtual patients with type 1 diabetes (Hovorka et al.
(2004); Bergman et al. (1981); Dalla Man et al. (2007)).
They describe subcutaneous insulin transport, intake of
carbohydrates through meals and include a model of
glucose-insulin dynamics.

In this paper, we use the Hovorka model to simulate
people with type 1 diabetes. Using the parameters and
distribution provided in Hovorka et al. (2002) and Wilinska
et al. (2010), we generate a cohort of 100 patients. These
parameters and their distribution are summarized in Table
1.

In addition, we use a CGM for glucose feedback in our con-
troller setup. For the numerical simulations, we generate
noisy CGM data based on the model and the parameters
determined by Breton and Kovatchev (2008). This model
consists of two parts. The first part describes the glucose
transport from blood to interstitial tissues. The second
part models non-Gaussian sensor noise.

3. PREDICTION OF SUBCUTANEOUS GLUCOSE

In this section, we derive a prediction model for subcuta-
neous glucose, y(t). The model has a deterministic part
describing the effect of sc injected insulin, u(t), and a
stochastic part describing the effect of other unknown fac-
tors. The prediction model is an autoregressive integrated
moving average with exogenous input (ARIMAX) model

A(q−1)y(t) = B(q−1)u(t) +
C(q−1)

1− q−1
ε(t) (1)

The ARIMAX model structure is used do have offset free
control when the filter and predictor of this model are
used in an MPC. A and B are individualized and derived
from known patient information. C is identified from data
for one real patient and this C is used for the cohort
of virtual and real patients. This model identification
technique turns out to give a good compromise between
data requirements, performance and robustness of the
resulting controller for the overnight study described in
this paper.

3.1 Deterministic Model

All the physiological models presented in Section 2 contain
a large number of parameters, and even the minimal
model developed by Bergman et al. (1981) may be difficult
to identify (Pillonetto et al., 2003). To overcome this
issue, we use a low-order linear model to describe the
glucose-insulin dynamics. Similar approaches have been
investigated previously. Kirchsteiger et al. (2011) used a
third order transfer function and Percival et al. (2010)
applied a first order transfer function with a time delay. In
this paper we use a continuous-time second order transfer
function

G(s) =
Y (s)

U(s)
=

Ku

(τs+ 1)2
(2)

to model the effect of sc injected insulin on sc glucose. The
gain, Ku, and the time constant, τ , are computed from
known subject-specific parameters; the insulin action time
and the insulin sensitivity factor (ISF).

The insulin action time and the insulin sensitivity factor
are related to the response of blood glucose to an insulin
bolus. If we assume that blood glucose is approximately
identical to sc glucose, this is the impulse response of (2).
The insulin action time is the time for blood glucose to
reach its minimum. The ISF corresponds to the maximum
decrease in blood glucose per unit of insulin bolus. These
parameters are empirically estimated by the patient and
his/her physician. These parameters may vary from day to
day for a given patient but gives an estimate of the effect
of insulin on blood glucose and sc glucose.

In the temporal domain, the impulse response of (2) is
described by

y(t) = Ku
t

τ2
exp(−t/τ) (3)

The insulin action time corresponds to the time to reach
the minimum blood glucose. Consequently, this insulin
action time is equal to τ . We determine Ku using (3) and
the fact that the insulin sensitivity factor is equal to the
minimal blood glucose (sc glucose), y(τ) = −ISF , such
that

Ku = −τ exp(1)ISF (4)

Using a zero-order-hold insulin profile, the continuous-time
transfer function (2) may be used to determine the A and
B polynomials in the ARIMAX model (1). They are

A(q−1) = 1 + a1q
−1 + a2q

−2 (5a)

B(q−1) = b1q
−1 + b2q

−2 (5b)
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Fig. 2. Impulse responses for a second order model and
the nonlinear Hovorka model. The bolus size is 0.1U
and the parameters for the second order model are:
τ=4 hours and ISF = 0.4 mmol/L/0.1 U = 4.0
mmol/L/U.

with the coefficients a1, a2, b1 and b2 computed as

a1 = −2 exp(−Ts/τ) (6a)

a2 = exp(−2Ts/τ) (6b)

b1 = Ku(1− exp(−Ts/τ)(1 + Ts/τ)) (6c)

b2 = Ku exp(−Ts/τ)(−1 + exp(−Ts/τ) + Ts/τ) (6d)

Ts is the sample time.

Fig 2 depicts the impulse response for a virtual patient
with type 1 diabetes and its second order approximation
(2). This patient is simulated using the model developed
by Hovorka et al. (2004). The figure demonstrates that a
second order model provides an acceptable approximation
of a patient with type 1 diabetes.

3.2 Stochastic Model

The stochastic part, C(q−1), of the ARIMAX model (1) is
assumed to be a third order polynomial of the form

C(q−1) = 1 + c1q
−1 + c2q

−2 + c3q
−3

= (1− αq−1)(1− β1q−1)(1− β2q−1)
(7)

α = 0.99 is a fixed parameter. It has been determined
based on performance studies of the resulting MPC. β1 and
β2 are determined from clinical data for one real patient
(Boiroux et al., 2012).

We compute β1 and β2 by estimating the process and mea-
surement noise characteristics, σ and r, in the following
continuous-discrete stochastic linear model

dx(t) = (Acx(t) +Bcu(t))dt+ σdω(t) (8a)

yk = h(tk, x(tk)) + vk (8b)

Ac and Bc are realizations of (2). ω(t) is a standard Wiener
process. The matrix σ is time-invariant and the measure-
ment noise vk is normally distributed, i.e. vk ∼ Niid(0, r2).
We estimate, σ and r, using a maximum likelihood criteria
for the one-step prediction error (Kristensen et al., 2004;
Jørgensen and Jørgensen, 2007). By zero-order hold (zoh)
discretization, Kalman filter design, and z-transformation,
(8) may be represented as

yk = G(q−1)uk +H(q−1)εk (9)

with

G(q−1) = B(q−1)/A(q−1) (10a)

H(q−1) = C̃(q−1)/A(q−1) (10b)

The parameters, β1 and β2, in

C̃(q−1) = (1− β1q−1)(1− β2q−1) (11)

are extracted from H(q−1). The coefficients β1 and β2
computed in this way are β1,2 = 0.81± 0.16i.

The difference equation (9) corresponding to the SDE (8)
is related to the ARIMAX model (1) by

εk =
1− αq−1

1− q−1
εk (12)

This specification introduces a model-plant mismatch. εk
is white noise in (9) while (12) models εk as filtered
integrated white noise. This model-plant mismatch is nec-
essary to have offset free control in the resulting predictive
control system. (12) implies that

C(q−1) = (1− αq−1)C̃(q−1) (13)

such that c1 = −2.61, c2 = 2.28 and c3 = −0.67.

3.3 Realization and Predictions with ARIMAX Models

The ARIMAX model (1) with A, B and C given by (5)
and (7) may be represented as a discrete-time state space
model in innovation form

xk+1 = Axk +Buk +Kεk (14a)

yk = Cxk + εk (14b)

with the observer canonical realization

A =

[
1− a1 1 0
a1 − a2 0 1
a2 0 0

]
B =

[
b1

b2 − b1
−b2

]
K =

[
c1 + 1− a1
c2 + a1 − a2
c3 + a2

]
C = [1 0 0]

The innovation of (14) is

ek = yk − Cx̂k|k−1 (15)

and the corresponding predictions are (Jørgensen et al.,
2011)

x̂k+1|k = Ax̂k|k−1 +Bûk|k +Kek (16a)

x̂k+1+j|k = Ax̂k+j|k +Bûk+j|k, j = 1, . . . , N − 1 (16b)

ŷk+j|k = Cx̂k+j|k, j = 1, . . . , N (16c)

The innovation (15) and the predictions (16) constitute
the feedback and the predictions in the model predictive
controller.

4. MODEL PREDICTIVE CONTROL

Control algorithms for glucose regulation in people with
type 1 diabetes must be able to handle intra- and inter-
patient variability. In addition, the controller must ad-
ministrate insulin in a safe way to minimize the risk of
hypoglycemia. Due to the nonlinearity in the glucose-
insulin interaction the risk of hypoglycemic episodes as
consequence of too much insulin is particularly prominent.

In this section we describe an MPC formulation with soft
output constraints and hard input constraints. This formu-
lation is based on the individualized prediction model for
glucose computed in Section 3. Along with other features



we introduce a modified time-varying reference signal to
robustify the controller and mitigate the effect of glucose-
insulin nonlinearities and model-plant mismatch in the
controller action.

The MPC algorithm computes the insulin dose by solution
of an open-loop optimal control problem. Only the control
action corresponding to the first sample interval is imple-
mented and the process is repeated at the next sample
interval. This is called a moving horizon implementation.
The innovation (15) provides feedback from the CGM, yk,
and the open-loop optimal control problem solved in each
sample interval is the convex quadratic program

min
{ûk+j|k,v̂k+j+1|k}N−1

j=0

φ (17a)

s.t. (16) (17b)

umin ≤ ûk+j|k ≤ umax (17c)

ŷk+j+1|k ≥ ymin − v̂k+j+1|k (17d)

v̂k+j+1|k ≥ 0 (17e)

with the objective function φ defined as

φ =
1

2

N−1∑
j=0

‖ŷk+j+1|k − r̂k+j+1|k‖22

+ λ‖∆ûk+j|k‖22 + κ‖v̂k+j+1|k‖22

(18)

N is the control and prediction horizon. We choose a
prediction horizon equivalent to 10 hours, such that the
insulin profile of the finite horizon optimal control prob-
lem (17) is similar to the insulin profile of the infinite
horizon optimal control problem, (17) with N → ∞.
‖ŷk+j+1|k − r̂k+j+1|k‖22 penalizes glucose deviation from
the time-varying glucose setpoint and aims to drive the
glucose concentration to 6 mmol/L. λ‖∆uk+j|k‖22 is a
regularization term that prevents the insulin infusion rate
from varying too aggressively. For the simulations and the
in vivo clinical studies we set λ = 100/u2ss. The soft output
constraint (17d) penalizes glucose values below 4 mmol/L.
Since hypoglycemia is highly undesirable, we choose the
weight on the soft output constraint to be rather high i.e.
κ = 100.

To guard against model-plant mismatch we modify the
maximal allowable insulin injection, umax, and let it de-
pend on the current glucose concentration. If the glucose
concentration is low (below the target of 6 mmol/L) we
prevent the controller from taking future hyperglycemia
into account by restricting the maximal insulin injection.
If the glucose concentration is high (4 mmol/L above the
target) we increase the maximal allowable insulin injection
rate. In the range 0 - 4 mmol/L above target we allow the
controller to double the basal insulin injection rate. These
considerations lead to

umax =


1.5uss 4 ≤ yk ≤ ∞
uss 0 ≤ yk ≤ 4

0.5uss −∞ ≤ yk ≤ 0

(19)

in which uss is the basal insulin infusion rate. Due to pump
restrictions, the minimum insulin injection rate, umin, is a
low value but not exactly zero.

Garcia-Gabin et al. (2008) and Eren-Oruklu et al. (2009)
use a time-varying glucose reference signal to robustify the
controller and reduce the risk of hypoglycemic events. In
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Fig. 3. Time-varying reference signals for glucose above
(blue curve) and below (green curve) the target of 6
mmol/L.

this paper, we use an asymmetric time-varying glucose
reference signal. The idea of the asymmetric reference
signal is to induce safe insulin injections in hyperglycemic
periods and fast recovery in hypoglycemic and below
target periods. The asymmetric time-varying setpoint is
given by

r̂k+j|k(t) =

{
yk exp

(
−tj/τ+r

)
yk ≥ 0

yk exp
(
−tj/τ−r

)
yk < 0

(20)

Since we want to avoid hypoglycemia, we make the con-
troller react more aggressively if the blood glucose level is
below 6 mmol/L, so we choose τ−r = 15 min and τ+r = 90
min. Fig 3 provides an illustration of the time-varying
reference signal.

5. NUMERICAL RESULTS AND DISCUSSION

In this section we discuss the performance of the MPC
for a randomly generated cohort of 100 patients. The 100
patients are generated from the probability distribution
presented in Section 2. We compare the performance of
the controller with simulated conventional insulin therapy
in which the basal insulin infusion rate remains constant
during the night. Variations in metabolism and insulin
need is simulated by a sudden change in the insulin
sensitivity parameters of the Hovorka model.

The clinical protocol for the 100 in silico patients is:

• The patient arrives at the clinic at 17:00.
• The patient gets a 75 g CHO dinner and an insulin

bolus at 18:00.
• The closed loop starts at 22:00.
• The insulin sensitivity is modified by ±30% at 01:00.
• The patient gets a 60 g CHO breakfast and an insulin

bolus at 08:00. The controller is switched off.

The MPC is individualized using the insulin basal rate
(uss), the insulin sensitivity factor (ISF), and the insulin
action time for each individual patient. In the virtual clinic
these numbers are computed from an impulse response
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Fig. 4. CVGA (Magni et al. (2008)) plot of the 100 in silico
patients. White: Without MPC. Black: With MPC.

starting at a steady state. The meal boluses are determined
using a bolus calculator similar to the one presented in
Boiroux et al. (2011). The glucose is provided to the
controller every 5 minutes by a noise-corrupted CGM. The
pump insulin infusion rate is changed every 5 minutes.

Fig. 4 shows the control variability grid analysis (CVGA)
of the period between 22:00 and 08:00 for the case with-
out MPC (white circles) and the case with MPC (black
circles). In Fig. 4(a) we depict the case where the insulin
sensitivity is increased by 30%, and in Fig. 4(b) we depict
the case where the insulin sensitivity is decreased by 30%.
These figures show that our control algorithm reduces the
risk of nocturnal hypoglycemia. Although the improve-
ment is less significant, they also show that it can slightly
reduce the risk of nocturnal hyperglycemia. Fig. 5 depicts
the mean, standard deviation and minimum/maximum
blood glucose and insulin profiles for the closed-loop simu-
lations. In the case where insulin sensitivity is increased by
30% (Fig. 4(a) and 5(a)), mild hypoglycemic events occur
for some of the patients. However, no severe hypoglycemia
(i.e. blood glucose concentrations below 50 mg/dL) is
observed, and the choice of the tuning parameters in the
controller allows for a fast recovery. In the case where
insulin sensitivity is decreased by 30% (Fig. 4(b) and 5(b)),
all the patients are well controlled during the study period.
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Fig. 5. Glucose and insulin profiles envelopes. Closed-loop
control takes place between the 2 vertical black lines.
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Fig. 6. Glucose and insulin profiles for an in vivo clinical
study. Glucose input is provided by a CGM (blue
curve). Closed-loop control takes place between the
2 vertical black lines.

Fig. 6 illustrates the glucose and insulin profiles for a real
clinical test of the MPC. The glucose input is provided by
a CGM (blue curve). Actual blood glucose measurements
are provided by a glucose analyzer of blood samples
(YSI). Although a mild hyperglycemic event occurred at
approximately 23:00 and a few CGM values are below



4 mmol/L at approximately 03:00 and 04:00, this study
shows the capability of the controller to stabilize blood
glucose during the study night. Currently, the controller is
being tested in a real clinical study.

6. CONCLUSION

This paper presents a subject-specific MPC controller
designed for overnight stabilization of blood glucose in
people with type 1 diabetes. The model parameters in the
MPC are personalized based on easily available patient
information. The main advantage of this method is its
ease of implementation in real clinical studies due to the
moderate model parameter requirement. The design of the
controller allows for both a conservative control strategy in
case of high glucose values, and a more aggressive control
strategy in case of low glucose values. The controller is
tested in silico on a cohort of 100 patients with temporal
insulin sensitivity variations. A single test study from a
real clinic is also presented. The proposed MPC is able to
stabilize blood glucose overnight and reduces the risk of
nocturnal hypoglycemia and hyperglycemia.
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