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ABSTRACT 19 

Merging of radar rainfall data with rain gauge measurements is a common 20 
approach to overcome problems in deriving rain intensities from radar 21 
measurements. We extend an existing approach for adjustment of C-band radar 22 
data using state-space models and use the resulting rainfall intensities as input for 23 
forecasting outflow from two catchments in the Copenhagen area. Stochastic 24 
greybox models are applied to create the runoff forecasts, providing us with not 25 
only a point forecast but also a quantification of the forecast uncertainty. 26 
Evaluating the results, we can show that using the adjusted radar data improves 27 
runoff forecasts compared to using the original radar data and that rain gauge 28 
measurements as forecast input are also outperformed. Combining the data 29 
merging approach with short term rainfall forecasting algorithms may result in 30 
further improved runoff forecasts that can be used in real time control. 31 
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1 INTRODUCTION 35 

Radar observations are increasingly used for measuring rainfall in urban areas. The good spatial 36 
coverage, however, comes along with problems in determining the rainfall intensity due to problems 37 
such as beam attenuation and the drop size dependency of the relation between reflectivity and rain 38 
intensity. Merging the radar measurements with gauge observations is a practitioners approach to this 39 
problem. 40 
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Classically, radar rainfall measurements are adjusted with mean field bias to reflect ground 1 
measurements as good as possible. Thorndahl et al. (2010) follow this approach in a two-step 2 
adjustment that is used operationally within the real time control framework in the Copenhagen area 3 
(Grum et al. (2011)). Uncertainties of the ground measurements are thereby neglected. Further, 4 
assumptions need to be made on how to apply rain gauge point measurements to the radar rainfall 5 
plane. Integrating gauge and radar rainfall measurements using state space models has been proposed 6 
by several authors in the past. Chumchean et al. (2006) and Costa and Alpuim (2009) use these 7 
techniques for temporal updating of the mean field bias. Brown et al. (2001) integrate spatial 8 
interaction into their model via a vector autoregressive process. Similarly Grum et al. (2002) construct 9 
a simple state space model that implicitly enables spatial interaction between the pixels and allows for 10 
the integration of a multitude of measurement types that can be related to the rainfall process.  11 

We adopt this last approach due to its ability to incorporate spatial interaction and various 12 
measurement types and extend the uncertainty structure. The reconstruction of the rainfall process is 13 
then used to create stochastic runoff forecast from a simple grey-box model. We evaluate the quality 14 
of different forecasts using skill scores. 15 

2 METHODOLOGY 16 

2.1 Data and Catchments 17 

We consider two catchments in the Copenhagen area. The Ballerup catchment has a total area of 18 
approx. 1300 ha. It is mainly laid out as a separate system but has a small combined part. The runoff in 19 
this area is further strongly influenced by rainfall dependent infiltration. 20 

The Damhusåen catchment is located close to Ballerup but drains to a different treatment plant. We 21 
consider the northern part of the catchment with a total area of approx. 3000 ha. The catchment is laid 22 
out as a combined sewer system and a multitude of CSO’s are located in the area. Flow measurements 23 
are available from both catchments in 5 min resolution. 24 

A C-band radar is operated by the Danish Meteorological Institute (DMI) in Stevns approx. 45 km 25 
south of the considered catchments. The spatial resolution of the radar pixels is 2x2 km. The provided 26 
radar data are rain intensities derived using the Marshall Palmer relationship, where the coefficients 27 
have been adjusted such that the average rainfall depth observed by the radar during the considered 28 
period matches selected gauge measurements (Thorndahl et al. (2010)). We denote these data 29 
‘unadjusted radar data’. We consider an area of 9x11 pixels that covers the whole Copenhagen area 30 
(Figure 1). 31 

Within the catchments online rain gauge measurements are available from the Danish SVK network 32 
(Jørgensen et al. (1998)). The gauges marked red in Figure 1 are used to adjust the radar 33 
measurements. Only few of the available gauges are used for this purpose as one objective for using 34 
radar rainfall data is to derive rain intensities from as few ground measurements as possible. To make 35 
results comparable, we use the same gauges that are used for radar adjustment in a real time control 36 
project in the Copenhagen area (Grum et al. (2011)). A reference simulation is performed where flow 37 
forecasts are generated using rain gauge measurements as an input. The gauges for these simulations 38 
were selected with respect to their location to the catchment as marked in Figure 1. 39 

We have selected a 3-month period of measurements from 25/06/2010 until 29/09/2010 for this study. 40 
The period contains several summer storms that should be relevant for control applications in urban 41 
drainage systems. From 25/08/2010 until 14/09/2010 several extensive gaps can be observed in the 42 
radar data also during some smaller rain events.  43 
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A modelling time step of 10 min is adopted corresponding to the resolution of the provided radar 1 
measurements. The flow and rain gauge data are averaged to match this time step.  2 
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Figure 1. Considered area with C-band radar pixels, Ballerup (left) and Damhusåen (right) catchments, 4 
rain gauges in the area (small dots), gauges used for radar adjustment (grey circles), gauges used as 5 
input for reference simulations with gauges for Ballerup (white rectangles) and Damhusåen (black 6 
triangles) catchments 7 

2.2 Radar Adjustment 8 

We investigate a state-space approach that has first been described in Grum et al. (2002). We only 9 
give a brief summary here and describe parts that differ from the previous publication. The general 10 
setup is as follows: 11 

 Create a model to predict rainfall at the next time step for every pixel (system or state 12 
equation) 13 

 Relate model prediction and observed rainfall values from different sources in a set of 14 
observation equations 15 

 Determine the adjusted rainfall values by weighting between model and observation 16 
uncertainties using a Kalman filter 17 

In the state equations as well as in the variance matrices for model predictions and observations 18 
parameters need to be defined. These are estimated using a maximum likelihood routine, maximizing 19 
the probability of obtaining all the measured values included in the observation equations. 20 

2.2.1 Model Setup 21 

The adjusted rainfall depth in each radar pixel in the considered area is considered a state. The rain 22 
intensity of the current time step is predicted as a weighted average of the rain intensities in the 3x3 23 
neighbourhood of the pixel at the previous time step. 24 



 4 


 

 
1

1

,,

1

1

1,,,,,

k

tji

l

tljkilktji eXX   (1) 1 

Xi,j,t refers to the adjusted rainfall value at pixel (i,j) in the radar matrix at time step t, ei,j,t to the 2 
corresponding gaussian prediction error with variance σx and αk,l to the weighting factors. We define 3 
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i.e. the sum of the weighting factors is 1 and all non-central pixels in the 3x3 neighbourhood receive 5 
the same weighting. In matrix notation we have 6 

ttt eXAX  1  (3) 7 

where X is a vector containing 99 rainfall state values corresponding to 9x11 pixels, A is a weighting 8 
matrix according to (1) and e is a vector of model errors with covariance matrix Σ1 with constant 9 
variance σx for all states on the diagonal and 0 on all off-diagonal elements, i.e. no correlation between 10 
the states. States and measurements are related in the observation equation (4): 11 

ttt sXCY   (4) 12 

The observation vector Yt contains 99 non-adjusted measurements from all radar pixels and 8 rain 13 
gauge measurements. The matrix C relates states and observations (see Grum et al. (2002)) and s is a 14 
vector of observation errors with covariance matrix Σ2. 15 

2.2.2 Observation Error Covariance Structures 16 

We investigate different structures of the observation error covariance matrix Σ2. Model 1 (Eq. 5) 17 
includes constant variances σR and σG for radar and rain gauge observations, respectively. Spatial 18 
correlation between observations is not considered. 19 
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Model 2 extends the above setup by considering correlation ρR only between neighbouring radar pixel 21 
observations. The correlation is found in the parameter estimation procedure. 22 

Model 3 considers correlation for each radar pixel observation with all other pixels. The correlation is 23 
assumed to decay as a power function of distance between the pixels according to Eq. 6, where the 24 
distance D between pixels is defined in no. of pixels and parameters ρa and ρb are estimated from the 25 
variogram of the radar observations and fixed during the maximum likelihood estimation of the whole 26 
model. No correlation is considered for the rain gauge measurements. 27 

b
a D     (6) 28 

Model 4 is equivalent to model 1. However, we do in addition introduce an error marker. If a radar or 29 
rain gauge observation is missing, the corresponding variance is set to a large value and the correlation 30 
values are set to 0.  31 
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2.3 Stochastic Runoff Forecasting 1 

The estimation of rainfall forecast models does not permit a direct evaluation of the quality of the 2 
adjusted radar data. We therefore generate runoff forecasts with different rainfall inputs and evaluate 3 
the forecast quality. We use stochastic greybox models for generating the forecasts with focus on wet 4 
weather periods as these are most relevant for real time control.  5 

A lumped model consisting of a cascade of two reservoirs is applied for both catchments. The model 6 
setup and development is described in Breinholt et al. (2011) using the (smaller) Ballerup catchment 7 
as an example. For the (bigger) Damhusåen catchment better forecasts could most likely be obtained 8 
by applying a more elaborated model. However, here we are mainly interested in the effect of different 9 
rainfall inputs on the forecast quality, not the best forecasting model. We consider the following 10 
lumped model structure: 11 
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Similarly to the rainfall model described above, the model is laid out as a state-space model where 14 
Eq. 7 is termed system or state equation and Eq. 8 observation equation. S1 and S2 correspond to the 15 
storage states, A to the impervious catchment area, P to the rain intensity, a0 to the mean dry weather 16 
flow and K to the travel time constant. The uncertainty of model predictions is captured by the Wiener 17 
process dωt with incremental variance σ2. The variance depends on the current state values, so a 18 
Lamberti transform is applied and the estimation performed with transformed states (Breinholt et al. 19 
(2011)). In Eq. 8 Q corresponds to the observed flow values, D describes the variation of the dry 20 
weather flow using trigonometric functions and e corresponds to the observation error with standard 21 
deviation σe. 22 

Differently from Breinholt et al. (2011) we do not estimate the model parameters based on one-step 23 
ahead flow forecasts. The runoff forecasts are intended to be used in a real time control setup (Grum et 24 
al. (2011)). The relevant decision variable in the setup is expected runoff volume over the prediction 25 
horizon. We therefore compute the expected flow values for the next 10 time steps (step length 26 
Δt=10min) starting from time step k and integrate them to a predicted runoff volume (Eq. 9).  27 
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The extended Kalman filter used in the modelling procedure also provides a variance for each 29 
predicted flow value. Assuming normal distribution, we derive a 95% prediction interval on the flow 30 
predictions for each horizon. Equivalent to Eq.9, we integrate the upper and lower bounds for the 31 
different horizons to derive upper and lower prediction bounds for the expected runoff volume over 32 
the whole prediction horizon.  33 
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In Eq. 10 and 11 indices up and low mark the upper and lower prediction bounds, respectively, n0.975 1 
the 97.5% quantile of the standard normal distribution and σQk+i the standard deviation of the flow 2 
prediction i steps into the future starting from time step k. 3 

Comparing the above stochastic volume forecast to the observed runoff volume, we find the optimal 4 
model parameters by minimizing the skill score (Sk) described in the next section. As wet weather 5 
periods are the main focus of real time control, only the model parameters relevant to runoff (A, K, 6 
uncertainty parameters) are estimated and dry weather periods are excluded from the evaluation of the 7 
skill score function. The dry weather parameters (a0, D) for the two catchments are estimated 8 
deterministically from a 14 day dry weather period at the beginning of the considered period and then 9 
fixed during estimation of the other model parameters. 10 

2.4 Forecast Evaluation 11 

When evaluating stochastic flow forecasts, we need to consider the quality of prediction intervals 12 
rather than just a mean error between prediction and observation. Criteria for forecast evaluation were 13 
proposed by Jin et al. (2010) and Thordarson et al. (in press): 14 

 Reliability (Rel) – percentage of observations not contained in a 95 % prediction interval 15 

 ARIL - average width of the 95 % prediction interval (=Sharpness Sh) relative to observation 16 

 Skill score (Sk)    



i

ii LU
N

ShSk
05.0

2
 17 

where N is the number of wet weather observations, Sh is the average width of the 95 % 18 
prediction interval and Ui and Li are the distances of the i-th observation from the upper / 19 
lower prediction interval (over-/ undershoots). Ui and Li are 0 if the observation is contained in 20 
the prediction band. 21 

We compute these criteria for a runoff volume prediction interval as described above. Only wet 22 
weather periods are considered in the computation of the evaluation criteria.  23 

3 RESULTS 24 

Table 1 shows the parameters derived for the radar adjustment models 1-4. The small weighting factor 25 
a of the central pixel indicates that the model predictions include information from the whole 3x3 26 
neighbourhood, rather than just the central pixel. The variance of the model predictions σx is generally 27 
estimated smaller than that of the observations σR and σG. When computing the adjusted rainfall values, 28 
the Kalman filter will therefore show a tendency to smoothen the observed values. 29 

We further observe that including spatial correlation between the radar observations into the model 30 
(Models 2-3) decreases the ratio between the variances of radar and rain gauge observation errors. The 31 
correlation term reduces the weight of the single radar observation and allows for retrieving 32 
information from the gauges also if they are considered more uncertain. Similarly, the variance of the 33 
model prediction errors σx can be increased in this case as less weight is put on the observations. 34 

Generally, the estimation of the state-space radar adjustment models using the described Maximum 35 
Likelihood approach has turned out problematic in application. Similar likelihood values may be 36 
obtained for rather different sets of parameters making identifiability of the models difficult. The 37 
improved flow forecasts obtained with adjusted radar input as compared to e.g. rain gauge input 38 
(Table 2) indicate that we were able to identify reasonable parameter sets. Improved estimates can 39 
most likely be obtained if an objective function based on flow measurements is also used to find the 40 
parameters of the rainfall adjustment models.  41 
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Table 1. Parameter values for state-space radar adjustment models 1 
Model a σx σR σG ρR ρa ρb 

Model 1 0.20 1.23·10-4 8.12·10-4 9.12·10-4 - - - 

Model 2 0.20 1.58·10-4 4.90·10-4 3.39·10-1 0.22 - - 

Model 3 0.20 1.51·10-4 8.12·10-4 3.80·10-1 - 0.614 0.384 

Model 4 0.20 1.23·10-4 8.12·10-4 9.12·10-4 - - - 
 2 

Table 2. Forecast quality criteria for the two catchments with different rainfall inputs. Measures are 3 
given in m3 per 100 min and values are evaluated in wet weather periods only 4 
Model Input Ballerup catchment Damhusåen catchment 

Rel ARIL Sk Rel ARIL Sk 

Rain gauge 5% 65% 1466 4% 116% 11777 

Radar no adjustment 5% 56% 1378 6% 95% 12283 

Radar Model 1 5% 56% 1342 6% 90% 10975 

Radar Model 2 5% 57% 1345 5% 92% 10721 

Radar Model 3 5% 64% 1403 6% 93% 11265 

Radar Model 4 5% 59% 1339 5% 94% 10479 
 5 

Table 2 shows the results of the stochastic runoff volume forecasts generated using the different 6 
rainfall inputs. The prediction intervals in the Damhusåen catchment are generally wider than in the 7 
Ballerup catchment, indicating a too simple model structure for this catchment. Still, the simple model 8 
allows us to judge on the quality of different rainfall inputs for flow forecasting. Comparing the 9 
volume forecast quality obtained with pure rain gauge and pure radar rainfall input to that obtained 10 
with adjusted radar rainfall input, we notice skill scores improved by 3-15%. The prediction intervals 11 
are generally narrower when using radar rainfall input compared to rain gauge input.  12 

Including correlation into the covariance structure of the radar observations (Models 2 and 3) does not 13 
give clear improvements of the runoff forecasts. At this stage it is not possible to conclude if 14 
consideration of this effect actually has no significant effect on flow predictions. A better estimation 15 
method for the radar adjustment models may be able to exploit this effect better. 16 

Figure 2 illustrates the effect of using an error marker in the adjustment of the radar data. The radar 17 
observations are missing for the small events between time steps 11500 and 11800. Using the error 18 
marker in model 4, we are able to reconstruct rainfall values from the gauges.  19 

 20 
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Figure 2. Mean area rain intensities for the Ballerup catchment from gauge measurements (top), non-2 
adjusted radar measurements (centre) and adjusted radar measurements (bottom) without (Model 1, 3 
full thin line) and with (Model 4, dotted bold) error marker 4 

4 CONCLUSIONS 5 

We have evaluated the possibility of adjusting radar rainfall measurements with rain gauge 6 
measurements using state space models and evaluated the effect of the adjustment on runoff forecasts 7 
for two catchments generated from stochastic greybox models. With the adjusted radar data as input 8 
we obtain improved runoff forecasts as compared to using rain gauge or non-adjusted radar data as 9 
model input. Using an error marker allows to reconstruct adjusted rainfall values also if radar or some 10 
of the gauge observations are missing.  11 

Despite the improved flow forecasts obtained with the adjusted radar data, we see several possibilities 12 
for improvements of the presented approach. Estimating parameters for the radar rainfall adjustment 13 
based on rainfall observations only has proven difficult. Better results can most likely be obtained by 14 
including a runoff prediction into the rainfall adjustment model and comparing predicted and observed 15 
runoff. 16 

Further, we have considered an area of 9x11 C-band radar pixels in this study. This area is sufficient to 17 
cover the whole of Copenhagen. However, it is too small to generate short term rainfall forecasts from 18 
the radar. Preferably, the whole radar matrix of 240x240 pixels should be considered for this purpose 19 
corresponding to 57600 observations. Operating on variance matrices with 57600x57600 entries in the 20 
Kalman filtering procedure is impossible. A modified procedure that directly estimates the Kalman 21 
gain may be a possible solution to this problem.  22 

With respect to the runoff forecasting models, improved forecasts for the bigger catchment can very 23 
likely be obtained by applying a more elaborated model structure that accounts e.g. for effects such as 24 
overflows. Further, improvements could be obtained by distinguishing between dry and wet weather 25 
situations in the physical and stochastic model parts and by modelling prediction uncertainties 26 
depending on rainfall characteristics. These characteristics should aim at identifying convective events 27 
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as these imply the highest forecast uncertainties. Using these methods we aim at providing forecasts 1 
that clearly improve decision making in real time control of sewer networks. 2 
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