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Abstract: People with type 1 diabetes need several insulin injections every day to keep
their blood glucose level in the normal range and thereby avoiding the acute and long term
complications of diabetes. One of the recent treatments consists of a pump injecting insulin
into the subcutaneous layer combined with a continuous glucose monitor (CGM) frequently
observing the glucose level. Automatic control of the insulin pump based on CGM observations
would ease the burden of constant diabetes treatment and management. We have developed a
controller designed to keep the blood glucose level in the normal range by adjusting the size
of insulin infusions from the pump based on model predictive control (MPC). A clinical pilot
study to test the performance of the MPC controller overnight was performed. The conclusion
was that the controller relied too much on the local trend of the blood glucose level which is
a problem due to the noise corrupted observations from the CGM. In this paper we present a
method to estimate the optimal Kalman gain in the controller based on stochastic differential
equation modeling. With this model type we could estimate the process noise and observation
noise separately based on data from the first clinical pilot study. In doing so we obtained a more
robust control algorithm which is less sensitive to fluctuations in the CGM observations and
rely more on the global physiological trend of the blood glucose level. Finally, we present the
promising results from the second pilot study testing the improved controller.

Keywords: Stochastic differential equations, Model predictive control, Kalman filters, Artificial
pancreas, Type 1 diabetes.

1. INTRODUCTION

Type 1 diabetes is a chronic disease characterized by
destruction of the insulin producing beta cells of the
pancreas. Insulin is crucial for the regulation of the blood
glucose level and people with type 1 diabetes are therefore
dependent on exogenous insulin supply. The size of the
insulin dose must be determined carefully. Underdosing
can result in a too high blood glucose level (hyperglycemia)
which in the long term can lead to, e.g. kidney failure,
blindness or nerve damage. Too much insulin (in case
of overdosing) can lead to a too low blood glucose level
(hypoglycemia) which can have serious acute effects such
as coma or even death.

? Funding for this research as a part of the DIACON project from
the Danish Council of Strategic Research (NABIIT project 2106-07-
0034) is gratefully acknowledged.

The insulin is most often delivered subcutaneously either
via a pen needle or an insulin pump. The pump delivers a
steady basal rate combined with meal boluses (dosages to
cover meals) to resemble the normal insulin secretion from
a healthy pancreas.

Patients are adviced to check their blood glucose level
with finger prick measurements several times a day to
obtain tight diabetes control [American Diabetes Asso-
ciation (2012)]. The goal is to keep their blood glucose
level as close to normal range (4.00-8.00 mmol/L) as pos-
sible without compromising safety. Instead of finger prick
measurements more and more patients rely on continu-
ous glucose monitors (CGM) to keep track of the blood
glucose level. The CGM uses minimally invasive sensors
capable of reporting the glucose level every five minutes.
The sensor is placed in the subcutaneous layer and thus
the observations are delayed in relation to the discrete
capillary blood glucose observations that normally are
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Fig. 1. An overview of the closed loop system consisting of
a computer with the control algortihm, a CGM and
an insulin pump.

measured from the finger tips. In addition, the sensors
can experience problems with accuracy and precision due
to physical, chemical and biological factors [Keenan et al.
(2011); Hovorka (2006)].

Even though insulin pump therapy and CGMs can lead to
better diabetes control, the treatment still requires con-
stant attention and action from the patient. Furthermore,
many patients with type 1 diabetes live in fear of getting
severe hypoglycemia during sleep, while they are unable
to react.

Several research groups are working on closing the loop
with an automatic control algorithm regulating the insulin
delivery based on feedback from the CGM [Cobelli et al.
(2011); Hovorka (2011)]. The general principle behind this
artificial pancreas is illustrated in Fig. 1.

We have developed a control algorithm based on model
predictive control (MPC) that predicts future blood glu-
cose values on the basis of the current level. If the control
algorithm predicts hyperglycemia, insulin is delivered to
bring the blood glucose level down to normal. If the control
algorithm predicts hypoglycemia it decreases or shuts off
the insulin supply until the blood glucose level increases
again.

To test the performance of the controller we did a clinical
pilot study on a type 1 diabetes subject. The challenge
was to keep the blood glucose level in the normal range
overnight. In Fig. 2 the blood glucose level is shown. At the
time of starting the closed loop (22:00) the local trend was
increasing but the global trend was decreasing after a meal
with a corresponding insulin bolus. The MPC prediction
of the blood glucose level at this time is also seen in
Fig. 2. Due to the local increasing trend this prediction
is unrealistically increasing and the controller suggests a
too large bolus to compensate for this increase. This lead
the subject into hypoglycemia and the clinician had to
administrate I.V. glucose to bring the blood glucose level
up again immediately.

The main conclusion from this pilot study was that the
large amount of noise in the system was preventing the
controller from predicting the blood glucose level and thus
delivering the correct insulin bolus.

In this paper we address this problem by estimating the
process and observation variances separately in the MPC
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Fig. 2. Top: CGM observations (solid line) and blood
glucose prediction at the time of closing the loop
(dashed line) from the first pilot study. As seen,
the controller relies too much on the local trend.
Bottom: Insulin delivered by the pump (solid line)
and predicted insulin supply (dashed line).

controller using stochastic differential equations with data
from the pilot study. This paper describes this novel
procedure and presents the promising results from the
second pilot study testing the improved MPC controller.

2. THE PILOT STUDY SETUP

The data used for tuning the controller came from the
first pilot study performed overnight on a type 1 diabetes
subject. We chose to do the study overnight because the
amount of disturbances to the system, e.g. meals and
exercise are minimal at this time of day. In [Boiroux
et al. (2012)] details about the setup is described. The
subject wore an insulin pump (Medtronic Paradigm Veo,
Minneapolis, USA) and two CGMs (Dexcom Seven Plus,
San Diego, USA) measuring the glucose level every five
minutes. From the two CGMs we had 162 and 158 ob-
servations, respectively and both were used for parameter
estimation. The first 270 minutes of the pilot study were
open loop where the patient was in control of the insulin
supply and the last 540 minutes were closed loop.

3. CONTROLLER DESIGN

3.1 Control algorithm

The control algorithm is based on a single input-single
output model in continuous time. It is a second order
model with the following transfer function:

Hs(s) =
M

(τs+ 1)2
(1)

(2)

The output is the blood glucose level in mmol/L and the
input is the insulin supply from the pump in mU/min,
the standard unit for insulin. τ is the insulin action time
defined as the time in minutes it takes to reach the
minimum blood glucose level after an insulin injection. M
is defined as:

M = −τ exp(1)ISF (3)



ISF is the insulin sensitivity factor defined as the maxi-
mum decrease in blood glucose level per unit of insulin.
M and τ are patient specific and estimated from patient
data. The insulin pump injects a bolus every 15 minutes
based on the decision of the controller and the glucose level
is observed every five minutes with the CGM. The bolus
size is computed on the basis of the current glucose level
and the blood glucose prediction. For more details on the
MPC, see [Boiroux et al. (2012)].

Since the system is influenced by stochastic disturbances
we modeled the system by an ARIMAX description:

A(q−1)y(t) = B(q−1)u(t) +
C(q−1)

1− q−1
ε(t) (4)

q−1 is the backward shift operator, y(t) is the output, u(t)
is the input as previously defined. ε(t) is Niid(0, ζ

2). A and
B are:

A(q−1) = 1 + a1q
−1 + a2q

−2 (5a)

B(q−1) = b1q
−1 + b2q

−2 (5b)

C is defined as:

C(q−1) = 1− αq−1 (6)

α is a tuning parameter. The model in (6) is obtained by
considering the noise term, ε(t) as a sum of white noise
and a drift term. In this way the MPC control will ensure
off set free tracking. In this paper we used α = 0.99. For
more details on the choice of α see [Huusom et al. (2010)].

We can realize (4) as a discrete state-space model on
innovation form:

xk+1 =Axk +Buk +Kεk (7)

yk =Cxk + εk (8)

where xk is the blood glucose level [mmol/L] above basal
level (6 mmol/L), uk is the insulin input in [mU/min]
above a basal rate of 14 mU/min , yk is the observed blood
glucose level above basal level, εk is the innovation noise:

εk = yk − Cxk|k−1 (9)

A, B, C, and K are matrices in canonical form. For the
first pilot study they were defined as:

A =

[ −(a1 − 1) 1 0
−(a2 − a1) 0 1

a2 0 0

]
B =

[
b1

b2 − b1
−b2

]

K =

[
α− (a1 − 1)
−(a2 − a1)

a2

]
C = [1 0 0]

(10)

As seen in Fig. 2 and stated in the section 1 this controller
design was too sensitive to noise which resulted in a
unrealistic prediction by the controller. For this reason we
reformulated the model into a third order model in which

Input Insulin-blood glucose 
system

MPC Controller

Observation
noise

Process
noise

Fig. 3. An illustration of the closed loop system including
process and observation noise.

the C polynomial in (6) was changed into a third order
polynomial:

C(q−1) = 1 + c1q
−1 + c2q

−2 + c3q
−3 (11)

This change resulted in the following Kalman gain, K, in
(10):

K =

[
c1 − (a1 − 1)
c2 − (a2 − a1)

c3 + a2

]
(12)

(the matrices A, B, and C remained unchanged). The
coefficients in (11) correspond to the coefficients in:

χ(z) = z3 + c1z
2 + c2z + c3 (13)

which is the characteristic polynomial of (A − KC). By
choosing the optimal eigenvalues of (A−KC) i.e. optimal
roots of (13) we obtain the best balance between a low
sensitivity to noise and a fast decay of the estimation
error. If the eigenvalues are close to 1 the controller is less
sensitive to noise (and relying more on the global trend)
but results in a slow decay of the estimation error. If the
eigenvalues are close to 0 the decay of the estimation error
is fast but on the other hand the controller is very sensitive
to noise and thereby rely too much on the local trend as
we saw in the first pilot study.

The optimal placement of the eigenvalues inside the unit
circle depends on the amount of noise present in the
system. Therefore we decided to use the data from the
first pilot study to determine the optimal eigenvalues of
(A − KC). We kept α = 0.99 as one of the eigenvalues
and estimated the remaining two eigenvalues from an
stochastic differential model as described in the following
section.

3.2 Stochastic differential equations model

Earlier work with stochastic differential equations has
mainly dealt with modeling of dynamical systems [Kris-
tensen et al. (2005); Overgaard et al. (2007); Tornøe et al.
(2004)]. In this paper we introduce a novel approach
for parameter estimation in control algorithms based on
stochastic differential equations.



Within the field of biomedical control, stochastic differ-
ential equations are highly relevant. Dealing with these
often very complex systems, as in this case the insulin-
blood glucose system, we have to take into account all the
uncertainties not explained by the model in the controller.
Especially, when we want to use a very simple model as the
one in (1). Uncertainties can be present in the input to the
system or occur due to other factors interfering with the
system e.g. release of stress hormones or physical exercise.

In a stochastic differential model noise is entering the
system in two separate entrances: a process noise and a
observation noise as seen in Fig. 3. Using this method
we could estimate the process and observation variances
separately and thereby obtain a more realistic noise model.
From here we could find the optimal roots of the charac-
teristic polynomial in (13).

To estimate the process and observation variances we
used CTSM (Continuous Time Stochastic Modelling), a
freeware program available on the web. See [DTU Infor-
matics, Technical University of Denmark (2012)] for more
information. The control algorithm was first transformed
from the continuous time transfer function in (1) into an
ordinary differential equation by inverse Laplace:

y + 2τ
dy

dt
+ τ2 d

2y

dt2
= Mu(t) (14)

and from here to the stochastic state space model which
in the general linear case can be written as:

dxt = (A(θ)xt +B(θ)ut)dt+ σ(θ)dωt (15)

yk = C(θ)xk + ek (16)

xt is the state vector, xk is the discrete state vector, ut
is the input vector, yk is the output vector in discrete
time, θ is a vector of parameters, A(·), B(·), σ(·), and
C(·) are nonlinear functions, {ωt} is a standard Wiener
process representing the process noise and ek is a white
noise process representing the observation noise for which
we assume that ek ∈ N(0, S).

In this case, (15) is:[
dx1t

dx2t

]
= (

 0 1

−1

τ2

−2

τ

[x1t

x2t

]
+

 0
1

τG
M

τ2
0

[u1t

u2t

]
)dt

+

[
σ 0
0 σ

]
dωt

(17)

and the discrete observation equation is:

yk = [1 0]

[
x1k

x2k

]
+ ek (18)

x1t is the glucose level [mmol/L] above basal level, x2t

is the derivative of the glucose level [mmol/L/min], u1t

is the insulin input from the pump above the basal rate,
u2t is the intravenously glucose input administered by the
clinician in case of severe hypoglycemia [mmol/L]. The
parameters are τ , M , τG, σ, and S. We decided to fix all
parameters except from σ and S because all of them are
subject specific and known by the subjects themselves or

the clinician. The fixed parameter values used for variance
estimation were τ = 300 min, M = -4.077 min·mmol/L/U
and τG = 1 min. See [Boiroux et al. (2012)] for more details
about the choice of these values.

3.3 Estimation of variance parameters

Parameter estimation was based on the Maximum likeli-
hood criteria, see [Kristensen and Madsen (2003); Kris-
tensen et al. (2004)]. Since the subject wore two CGMs
we had two stochastically independent data sets. The
likelihood function is the joint probability density of all
the observations assuming that the parameters are known:

L(θ;Y ) = p(Y |θ) (19)

where Y =
[
γ1
N1
, γ2
N2

]
. θ is now the parameter vector only

including the parameters we wish to estimate.

We assume that the densities are Gaussian and implicitly
described by the mean and variance. Thus the likelihood
function can be expressed as:

L(θ;Y ) =

L∏
i=1

 Ni∏
k=1

exp
(
− 1

2 (ε
i
k)T (Rik|k−1)−1εik

)
√

detRik|k−1)(
√

2π)


·p(yi0|θ)

(20)

L is the number of datasets, in this case two, y0 are initial
values of Y and:

ŷk|k−1 = E{yk|γk−1, θ} (21)

Rk|k−1 = V ar{yk|γk−1, θ} (22)

are the one-step ahead prediction and variance, respec-
tively. The one-step prediction error is:

εk = yk − ŷk|k−1 (23)

The exact solution is computationally infeasible so an ap-
proximative method is used. For a given set of parameters
and initial states, x0, the one-step ahead prediction error
and variance are estimated from a continuous-discrete
Kalman filter. The output prediction equations are com-
puted as:

ŷk|k−1 = Cx̂k|k−1 (24)

Rk|k−1 = CPk|k−1C
T + S (25)

Pk|k−1 is the predicted state covariance. The innovation
equation is defined as the prediction error in (23). And
the Kalman gain is determined by:

Kk = Pk|k−1C
TR−1

k|k−1 (26)

From here we can update the state and state covariance
equations:



  

T [min] CGM level [mmol/L]

0 5.71

5 5.88

10 5.99

15 5.82

20 5.99

25 6.04

30 6.04

35 5.99

40 5.82

45 5.82

50 5.93

55 6.27

... ...

T [min] CGM level [mmol/L]

0 NA

5 NA

10 5.99

15 NA

20 NA

25 6.04

30 NA

35 NA

40 5.82

45 NA

50 NA

55 6.27

... ...

T [min] CGM level [mmol/L]

0 NA

5 5.88

10 NA

15 NA

20 5.99

25 NA

30 NA

35 5.99

40 NA

45 NA

50 5.93

55 NA

... ...

T [min] CGM level [mmol/L]

0 5.71

5 NA

10 NA

15 5.82

20 NA

25 NA

30 6.04

35 NA

40 NA

45 5.82

50 NA

55 NA

... ...

Original dataset

New 
datasets

Fig. 4. The original data sets were separated into three
different data sets with missing observations (NA)
replacing those observations present in the other two
new data sets.

x̂k|k = x̂k|k−1 +Kkεk (27)

Pk|k = Pk|k−1 −KkRk|k−1K
T
k (28)

And finally, we can predict the state and covariance by
solving the differential equations:

dxt|k

dt
= Ax̂t|k +But, t ∈ [tk, tk+1 [ (29)

dPt|k

dt
= APt|k + Pt|kA

T + σσT , t ∈ [tk, tk+1 [ (30)

Once the approximative likelihood function has been com-
puted, the optimal parameter estimates are found by min-
imizing the log-likelihood function:

θ̂ = arg min
θ∈Θ

{−ln(L(θ;Y |y0))} (31)

This parameter estimation is per default based on the
one-step ahead prediction as seen above. In our case the
step size is 5 minutes corresponding to the time between
two CGM observations. Since the controller regulates the
insulin infusion every 15 minutes, we found it beneficial
to base the parameter estimation on the three-step ahead
prediction instead.

To handle this, we did a reconstruction of the original data
file used for the parameter estimation in CTSM. From
each original data set we constructed three new data sets
starting in t0, t1, and t2, respectively. As illustrated in
Fig. 4, we replaced the two following observations with
missing observations and repeated this pattern throughout
the new data sets.

In the Kalman filter a missing observation is handled by
setting the Kalman gain, Kk, to zero and thus the state
predictions are computed from the state equations only
until a new observation is available.
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Fig. 5. Top: CGM observations (solid line) and blood
glucose prediction (dashed line) from the first pilot
study if the tuned Kalman gain had been used in the
MPC controller. The normal range is indicated as the
green area. Bottom: Insulin delivered by the pump
(solid line) and suggested insulin supply (dashed line).

3.4 Tuning of control algorithm

The variance parameters, i.e. the process noise, σ, and the
observation noise, S, were estimated to 0.0037 ± 0.00043
and 0.30± 0.030 respectively. We used the estimated pro-
cess and observation variances to compute the Kalman
gain, K, by a pole placement method as mentioned in sec-
tion 3.1. First the continuous state space model in (15) was
discretized and from here the two remaining eigenvalues
could be computed by solving a Riccati equation. Together
with α we computed the roots and thereby the coefficients
in the characteristic polynomial in (13) and finally K in
(12). The estimated values of the coefficients and K are:

c1 = −2.61 c2 = 2.28 c3 = −0.67 (32)

K = [0.36 − 0.66 0.30] (33)

4. RESULTS

We simulated the first pilot study again, this time with
the improved Kalman gain, K, in the MPC algorithm. As
seen in Fig. 2 the controller originally overestimated the
blood glucose prediction at the time of closing the loop. In
Fig. 5 the same situation is shown, this time with the new
K estimated on the basis of observed data. The controller
now relies more on the global trend and the predictions
are more realistic. The suggested bolus is likewise smaller
and would not cause a hypoglycemic event as the bolus
given in the first pilot study.

A second pilot study was performed on the same subject
to validate the new algorithm before initiating a larger
clinical study. This time the study was performed during
day time but without any normal day time disturbances
(e.g. meals and exercise) to mimic night time. The result is
shown in Fig. 6. The subject had a very low blood glucose
level from the beginning of the pilot study. Intravenously
glucose was administrated at 10:00 and 12:00 to compen-
sate.
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Fig. 6. Top: Results of the second pilot study after the
controller had been tuned. The loop is closed at
11:00. The left CGM (solid blue curve) serves as
input to the controller. The blood glucose prediction
(dashed line) at 12:10 is also shown. YSI observations
are blood glucose observations considered as gold
standard. Bottom: Insulin delivered by the pump
(solid line) and predicted insulin supply (dashed line).

Note that the insulin delivery is updated every 15 minutes
as new CGM measurements are available. Thus the insulin
delivery profile differs from the predicted profile.

The blood glucose prediction from the improved control
algorithm at 12:10 is also seen in Fig. 6. At this point in
time the CGM measurements are rapidly increasing due to
the glucose administrated intravenously at 12:00. As seen,
the controller predicts a slower and more realistic increase
in blood glucose due to the improved performance. The
rapid increase is an artificial situation and does not occur
in daily life. The controller is thereby acting as expected
and characterizes the local increase as noise.

Even though tuning has improved the prediction perfor-
mance, the left CGM measurements decrease below the
normal range after 14:00. This could indicate that despite
the improvements, the intravenously glucose administra-
tion still causes the controller to overestimate the needed
bolus size.

In general, the second pilot showed that the controller is
able to keep the blood glucose level in the normal range
after 12:00 despite the prior disturbances. However, since
the second pilot study further improvements have been
implemented to increase the robustness.

5. CONCLUSION

This work illustrates how MPC can benefit from stochastic
differential equations modeling. By estimating the process
and observation noise in two separate terms the Kalman
gain was calibrated to the actual system with a rather
simple and effective method using stochastic differential
equations. Additionally, we based the parameter estima-
tion on the three-step ahead prediction instead of the one-
step ahead prediction which was in accordance with the
time between controller inputs. It is important to note
that this method is not only restricted to this specific
application but can be used within many areas dealing
with control of complex and stochastic systems.

Currently, a clinical study testing our artificial pancreas
controller is ongoing including several subjects and differ-
ent scenarios.
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