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has earlier been proposed, and the present paper presents the first general implementation of
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examples of application which focus on the ability of the model to estimate unknown inputs
facilitated by the extension to SDEs. The first application is a deconvolution-type estimation of
the insulin secretion rate based on a linear two-compartment model for C-peptide measurements.
In the second application the model is extended to also give an estimate of the time varying
liver extraction based on both C-peptide and insulin measurements.
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INTRODUCTION

The non-linear mixed-effects (NLME) model based on ordinary differential equations (ODEs)
is a widely used method for modelling pharmacokinetic/pharmacodynamic (PK/PD) data [1],
since the model enables the variation to be split into inter- and intra-individual variation. It is,
however, a well known problem that this model class has a too restricted residual error structure,
as it assumes that the residuals are uncorrelated white noise. This assumption applies well to the
expected distribution of assay error, but it is unfortunately a crude simplification to assume that
the assumption also applies to the remaining sources of error [2]. Other important sources of
error may arise from structural model mis-specification or unpredictable random behavior of the
underlying process, which both result in serially correlated residual errors. Previous work with
simulation of more complex error structures has shown that ignoring the serial correlation may
lead to biased estimates of the variance components of the model or all population parameter
estimates depending on the error structure [3].

A powerful way to deal with these problems is to introduce stochastic differential equations
(SDEs) in the model setup. SDEs are an extension to ODEs and facilitate the ability to
split the intra-individual error into two fundamentally different types: (1) serially uncorrelated
measurement error, which is typically mainly caused by assay error and (2) system error, which
may be caused by model mis-specifications, simplifications or true random behavior of the
system.

Apart from providing a statistically more adequate model setup, the SDEs also allow new tools
for the modeller. The SDE approach results in a quantitative estimate of the amount of system
and measurement noise, and it can therefore also be used as a tool for model validation. If no
significant system noise is found to be present, this indicates that the proposed model structure
gives a suitable description of the data. However, if significant system noise is found, it can
be estimated and may be used to identify a possible remaining model structure, since aspects
which are not explicitly modelled will give rise to system noise. It is important to emphasize
that this relation does not hold the other way around, since system noise may also arise from
true unmodellable random behavior of the system, and estimated system noise may thus not
be seen as evidence of an insufficient model structure. A detailed iterative scheme for model
development based on SDEs has been described in [4]. Another important advantage of the
SDE approach is the inherent confidence intervals for system states. This is facilitated by the
estimation of system noise, and thus follows as a natural part of the model specification.

Several programs exist for modelling based on SDEs. The first implementations focused on
single subject modelling, such as CTSM (Continuous Time Stochastic Modelling) [5]. CTSM
is in fact also able to use multiple individuals for estimation of structural parameters, but this
is done using a naive pooled likelihood function where no inter-individual variance components
are estimated. Later research has also made it possible to include SDEs in population modelling
by using an approximation algorithm of the likelihood function with SDEs for the widely used
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non-linear mixed-effects model. This algorithm is described in [6] and is based on the use of
the Extended Kalman Filter to estimate conditional densities of each observation to form the
individual likelihood function. The population likelihood function is then approximated based
on the First-Order Conditional Estimation (FOCE) method. It has been shown in [7] how
this algorithm for estimation of SDEs can be used in NONMEM [8], but this is by no means
a trivial programming task to set up for a given model. It requires a modified data file and
an implementation of the Kalman filter within the NONMEM control stream. Moreover, the
NONMEM implementation cannot be used to form Kalman smoothing estimates, which is an
important feature of the SDE approach, where all data is used to give optimal estimates at each
sampling point.

This paper will present the first prototype implementation of a general software tool for esti-
mation of NLME models based on SDEs. The implementation has been made in Matlab and
it makes experimentation with the new modelling approach readily available. The flexibility
of the modelling approach will be demonstrated by two examples of applications. In the first
example the model is used for stochastic deconvolution to estimate insulin secretion rates in 12
type II diabetic patients and in the second example the model is used to estimate/track the
time variant behavior of the liver extraction rate for the same individuals.

THEORY

This section contains an overview of the theory for population modelling using non-linear mixed-
effects models based on SDEs. It will present the state space model for individual modelling and
how this can be extended to incorporate SDEs. The parameters of the population model are
estimated with a maximum likelihood (ML) approach by first defining an individual likelihood
function, which forms the basis for the population likelihood function. The individual likelihood
function is evaluated on the basis of the Extended Kalman Filter (EKF), and this will also be
outlined. A more detailed description of the estimation algorithm can be found in [6]. To ease
notation, all vectors and matrices are written using a bold font.

A mixed-effects model is used to describe data with the following general structure

yij , i = 1, ...,N, j = 1, ..., ni (1)

where yij is a vector of measurements at time tij for individual i, N is the number of individuals
and ni is the number of measurements for individual i. Note that the number of measurements
for each individual may vary. In a mixed-effects model the variation is split into intra-individual
variation and inter-individual variation, which is modelled by a first and second stage model.
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First stage model

The first stage model for an NLME model with ODEs can be written in the form of a state space
model. A state space model consists of two parts, namely a set of continuous state equations
defining the dynamics of the system and a set of discrete measurement equations, which defines
a functional relationship between the states of the system and the measurements obtained. In
the general form the state space equations are written as

dxt = f(xt,ut, t,φi)dt (2)

yij = h(xij,uij, tij ,φi) + eij (3)

where t is the continuous time variable and the states of the model and the optional inputs
at time t are denoted xt and ut respectively. The input uij is typically frequently sampled
covariates such as body temperature etc. which may affect the system, or a variable indicating
an interaction with the system such as an intravenous infusion. Both the state, measurement
and input can be multi-dimensional, and are in such cases thus represented by a vector at time
tij. The individual model parameters are denoted φi and finally f(·) and h(·) are the two
possibly non-linear functions defining the model. Measurements are assumed observed with an
uncorrelated Gaussian measurement error. The variance of the error may depend on both state,
input, time and individual parameters, that is eij ∈ N(0,Σ(xij ,uij , tij ,φi)).

It is important to draw attention to the concept of states, as this is essential to the understanding
of the model setup. States are generally not directly observable or at best only observable
through measurement noise. The actual relation between measurements and states is defined in
the measurement equation by the function h(·). A state can represent many different aspects of
the system of interest, e.g. concentrations or amounts in compartments, a volume, a parameter
with unknown time varying behavior, or an input to the system that we wish to estimate. The
state space formulation is thus a very flexible form of model specification, and the use of the
state space model will be illustrated with the applications presented later on in this paper.

Extending the first stage model with SDEs

In the ordinary state space model, noise is only allowed to enter through the measurement
equation, see Eq. (3). The result is that error due to model mis-specification or true random
fluctuations of the states is absorbed into the measurement error term and hence may give rise
to correlated residuals. To allow for error to originate from the system specification, a stochastic
term is added to the system equation. This results in a stochastic state space equation defined
as follows
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dxt = f(xt,ut, t,φi)dt + σω(ut, t,φi)dωt (4)

yij = h(xij,uij , tij ,φi) + eij (5)

where ωt is a standard Wiener process defined by ωt2 −ωt1 ∈ N(0, |t2 − t1|I). The entire part
σω(ut, t,φi)dωt is called the diffusion term and describes the stochastic part of the system and
f(xt,ut, t,φi)dt is called the drift term and describes the deterministic part. Together the drift
and diffusion terms define the stochastic dynamics of the system.

By looking at the formulation of the extended first stage model, it is seen that noise is now
allowed to enter in two places, namely as system noise via the diffusion term and as measurement
noise. It is noted that if no system noise is present, the model will reduce into the standard
ODE case, and this also ensures that physiological interpretation of structural parameters is
preserved with the use of an SDE model.

Second stage model

The second stage model for the individual parameters describes the variation of the individual
parameters φi between individuals and can be defined in a number of ways, each with different
properties. In the present work it has been chosen to use

φi = g(θ,Zi) · exp(ηi) (6)

where ηi is the multivariate random effect parameter for the ith individual, which is assumed
Gaussian distributed with mean zero and covariance Ω: ηi ∈ N(0,Ω). The fixed effect param-
eter of the NLME model is θ, which is also sometimes referred to as the structural parameter
or population parameter. The second stage model in Eq. (6) includes an optional covariate Zi.
This can be used to include individually measurable covariates such as height, weight etc. that
could affect φi. The chosen formulation of the 2nd stage model restricts variations in ηi from
changing the sign of g(θ,Zi) which is typically an advantage as φi may be used as parameter
for a variance or other sign-sensitive parameters. Moreover the resulting distribution of the
individual parameters is log-Gaussian, as is often the case when dealing with PK/PD models.
The second stage model in Eq. (6) may easily be replaced if other model structures are needed,
and this can be done without yielding any changes to the final population likelihood function
as long as ηi is still assumed to have a Gaussian distribution.

Maximum likelihood estimation of the NLME model with SDEs

The full set of parameters to be estimated for the final NLME model with SDEs are the matrices
Σ, σω, Ω and the fixed effect parameters in the vector θ. The three matrices are usually fixed
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to some degree so that only the diagonals or other partial structure remains to be estimated.

The estimation of model parameters is based on a first stage likelihood function, which is
formed as a product of probabilities for each measurement. Due to the assumption of correlated
residuals with the inclusion of the Wiener process, it is necessary to condition on the previous
measurements to define the probability density of each measurement. In the approach chosen
here, this is done by assuming that the conditional densities for the states are Gaussian and thus
fully described by the state-prediction and the state prediction variance for each observation.
These can be found using the Extended Kalman filter, which gives the unbiased minimum
variance estimate of the evolution of the model states [9]. This will hold exactly for the linear
case but only as an approximation in the non-linear case. The assumptions for the EKF can be
examined by testing for a Gaussian distribution of the residuals and by testing for correctness
of the estimated stochastic differential equations [10]. The prediction from the EKF is defined
by

ŷi(j|j−1) = E(yij |φi,Σ,σω,ui,Yi(j−1)) (7)

Ri(j|j−1) = V (yij|φi,Σ,σω,ui,Yi(j−1)) (8)

where Yij = [yi1, ...,yij ] and this gives the conditional distribution of the one-step prediction
error

εij = yij − ŷi(j|j−1) ∈ N(0,Ri(j|j−1)) (9)

The first stage likelihood function is calculated as the simultaneous density function for the ith
individual

p1(Yini |φi,Σ,σω,ui) =


 ni∏

j=2

p(yij|Yi(j−1), ·)

 p(yi1|·) (10)

≈
ni∏

j=1

exp
(
−1

2εT
ijR

−1
i(j|j−1)εij

)
√

|2πRi(j|j−1)|
(11)

where conditioning on φi, Σ, σω and ui is denoted “·”.
Based on the first and second stage model density functions, the full non-linear mixed-effects
likelihood function can now be defined. The second stage distribution is simply a multivariate
Gaussian density denoted p2(ηi|Ω), and combining this with the first stage distribution results
in the population likelihood function
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L(θ,Σ,σω,Ω) =
N∏

i=1

∫
p1(Yini |ηi,θ,Σ,σω,ui)p2(ηi|Ω)dηi (12)

=
N∏

i=1

∫
exp(li)dηi (13)

where li is the a posteriori log-likelihood function for the random effects of the ith individual
given by

li = −1
2

ni∑
j=1

(
εT
ijR

−1
i(j|j−1)εij + log |2πRi(j|j−1)|

)
− 1

2
ηT

i Ω−1ηi −
1
2

log |2πΩ| (14)

The population likelihood function in Eq. (13) cannot be evaluated analytically, and therefore
li is approximated by a second-order Taylor expansion, where the expansion is made around the
value η̂i that maximizes li. At this optimum the first derivative ∇li

∣∣
η̂i

= 0 and the population
likelihood function therefore reduces to

L(θ,Σ,σω,Ω) ≈
N∏

i=1

∣∣∣∣−∆li
2π

∣∣∣∣
− 1

2

exp(li)
∣∣∣
η̂i

(15)

as shown in App. A. The approximation of the 2nd derivative ∆li is done using the First-
Order Conditional Estimation (FOCE) method, as it is also normally done in the NLME model
based on ODEs. The objective function for parameter estimation is chosen as the negative
log-likelihood function given as

− log L(θ,Σ,σω,Ω) ≈
N∑

i=1

(
1
2

log
∣∣∣∣−∆li

2π

∣∣∣∣− li

)
(16)

Kalman filtering

The Extended Kalman Filter plays a central role for working with the NLME model with SDEs
as seen from the previous section. Therefore a brief introduction to the EKF will be given here,
as well as to the three new types of state estimates made available. For a detailed description
of the EKF algoritm please refer to [5, 6, 11, 12].

For linear state estimation problems the Kalman Filter will give an unbiased minimum variance
state estimate. The solution can be derived explicitly using simple linear algebra, and hence the
algorithm runs efficiently in a computer implementation. For non-linear problems it is necessary
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to use another method for state estimation like that obtained by the Extended Kalman Filter,
which has been used here. The Extended Kalman Filter is for the main part identical to
the Kalman Filter, except for the state prediction which requires a solution to the non-linear
differential system equations. This solution is obtained by a point-wise first order approximation
and therefore, for non-linear systems, the EKF will only provide an approximate minimum
variance estimate of the states. The EKF also runs slower due to the need for a numerical
algorithm to solve the non-linear differential equations.

The Kalman Filter is a two-part algorithm consisting of prediction and updating, which iterates
through all observations. In the prediction part the current estimated states and covariances
are used to create predictions of the two first moments of the state and observation to a time
point tij given the information at time ti(j−1). These predictions are denoted x̂i(j|j−1), P̂ i(j|j−1),
ŷi(j|j−1) and R̂i(j|j−1) respectively. Updating is performed at measurement time points, where
the states and covariances are updated accordingly.

The updating is based on a compromise between the observation and current model state. In a
situation where the model is good but the observations are dominated by measurement error,
the state estimate should rely more on the model as opposed to fitting the observations. On
the other hand, if the model is incomplete the states should rely more on the observations than
the model. This trust in model versus observations is balanced by the Kalman gain, which is
dependent on the magnitude of system noise σω and observation noise Σ.

The initial conditions of the state and state covariance (x̂i(1|0) and P̂ i(1|0)) need to be specified
for the Kalman filtering algorithm. The initial state can either be fixed or included in the
likelihood function, whereas P̂ i(1|0) for this implementation has been chosen to be estimated
as the integral of the Wiener process and system dynamics over the first sample interval in
accordance with the method used in [11].

A key feature of the SDE approach to population modelling is the ability to give improved
estimates of the system states given the individual parameters and also to provide confidence
bands for the states. Confidence bands at a timepoint t are directly given by the estimated
state covariance matrix P̂ i(t|...) from the EKF, where t can be both at or between measurements.
There are four types of state and state covariance estimates available when using the EKF, each
of which differs in the way data is used. The four types are:

• Simulation estimate: x̂i(j|0), P̂ i(j|0)
Provides an estimate of the state evolution for a repeated experiment, without updating
based on measurements. This is an ODE-like estimate, but it also yields a confidence
band for the state evolution.

• Prediction estimate: x̂i(j|j−1), P̂ i(j|j−1)

The prediction is used here to give the conditional density for the next observation at
time tij given the observations up to ti(j|j−1).

8



• Filtering estimate: x̂i(j|j), P̂ i(j|j)
Best estimate at time tij given the observations up to time tij.

• Smoothing estimate: x̂i(j|N), P̂ i(j|N)

Optimal estimate at time tij utilizing all observations both prior to and after time tij.

For a conventional ODE model the state is found by the simulation estimate, which is entirely
given by the (possibly ML-estimated) initial state of the system. The covariance matrix for the
states is 0 since no system noise is estimated. In other words the ODE model assumes that a
new experiment will yield an identical outcome of the underlying system apart from observed
measurement noise. By moving to SDEs, system noise is separated from measurement noise,
thereby enabling the model to provide confidence bands for the realization of the states in a new
experiment. By improving the model, the confidence bands for the states will become narrower
and theoretically be zero if the true model is used and no random fluctuations in system states
are present.

With SDEs three new types of estimates, apart from the simulation estimate, also become
available. In the present setup the prediction estimate is used to give conditional Gaussian
densities to form the likelihood function. The filter estimate is the best obtainable state estimate
during the experiment, where the subsequent observations are not present. The third type of
state estimate is the smoothed estimate. This provides the optimal state and state covariance
estimate (x̂i(j|N) and P̂ i(j|N)) based on all obtained observations, both prior and subsequent to
the time of interest. The smoothed estimate is therefore often the natural estimate of choice
when studying the behavior of the system in post hoc analysis.

SOFTWARE IMPLEMENTATION

The estimation algorithm outlined in the previous section has been implemented in a Matlab
framework called PSM (Population Stochastic Modelling). It is intended that this should work
as a software prototype, in order to make further experimentation with the model setup easily
available. The program may be obtained by addressing an email to the corresponding author.

Features

The implementation is designed to handle any non-linear mixed effects models using SDEs based
on the general model definition in the previous section. The model specification is achieved
through a set of Matlab functions written in m-files. A complete model specification consists
of state dynamics f and diffusion term magnitude σω, output function h and uncertainty Σ,
derivatives of state df/dt and output dh/dt, initial state x0, second stage model g and finally a
variance function Ω for the random effects. Each function is prepared to use all input arguments
as specified by the model definition.
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The implementation has been made in two versions. The first is able to handle the general non-
linear case, and is thus based on the use of an algorithm for solving the differential equations
in the EKF. It has been chosen to use ode15s, which is a Matlab built-in ODE solver. The
second version is only able to solve linear systems, which will run significantly faster since it is
based on an explicit solution of the differential equations.

The population parameters are estimated by maximizing of the population likelihood function
given in Eq. (15). Maximization is performed using a publicly available Matlab implementation
ucminf of a gradient search BFGS method with soft-line search and trust-region type monitoring
of step length [13]. For additional performance it is possible to guide the optimization by
providing an initial guess and boundaries for the parameters. The implementation is also able
to assess parameter variance and correlation based on a numerical approximation of the Hessian
of the likelihood functions [14].

Implementation details

In the evaluation of the population likelihood function it is necessary to evaluate the individual
a posteriori log-likelihood function for each individual at its optimum, since a Taylor expansion
is made around this point. Hence for one evaluation of the population likelihood function an op-
timization must be performed on each individual likelihood function. These optimizations only
share the given population parameters and are therefore evaluated independently. This obser-
vation can be used to employ the use of parallel computing, where the individual optimizations
are distributed to a number of CPUs.

Matlab does not have the option for parallel computing by default1, but this can be made
possible using external software. MatlabMPI2 is a package developed at MIT and it enables
parallel computing in Matlab by creating a set of scripts that is executed in separate processes.
MatlabMPI uses message passing but it was found faster to pass all data and parameters through
files. The individual calculation extracts its unique part of data by using its identifier number.
The individual log-likelihood result is passed back into the leader thread by proper message
passing to avoid deadlocks or race conditions. A shared memory environment is beneficial as
message passing is implemented through shared files.

In order to illustrate the effect of parallel computation for population modelling, a model was
setup and estimated on the basis of simulated data for 20 subjects. The resulting computation
time is found in Table I and it can be seen that the computation time is reduced to a little less
than one-fifth of the original using five CPUs. For this example overhead begins to dominate
when using more than five CPUs, however for more computationally intensive models, the
benefit of adding more CPUs is expected to be less affected by overhead.

For non-linear models a significant part of the computation time is spent in the prediction part
1A distributed toolbox for Matlab is under development by The MathWorks.
2J. Kepner, Parallel Programming with MatlabMPI, http://www.ll.mit.edu/MatlabMPI/, 2006.
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of the Extended Kalman Filter when solving the differential system equations. The prediction
includes both state and state covariance, and these differential equations are coupled and must
therefore be solved simultaneously. To account for this coupling, the two prediction equations
have been collected into one system with a combined input vector Z which stores both the
states and the covariance matrix. The symmetry in the covariance matrix is exploited so only
the upper part is transferred, i.e.

Z =

(
Z1

Z2

)
=

(
x̂t|k

U(P t|k)

)
(17)

where U() is a column vector containing the upper matrix. Conversion to the vector Z is then
used in conjunction with ode15s and the output is converted back into a state vector and
covariance matrix. The use of a single vector Z complies with the Matlab standard conventions
for ODE solving algorithms, and the chosen algorithm ode15s may thus easily be substituted
to suit the dynamic properties of a given model.

Validation of implementation

The implementation of PSM has been validated with CTSM and NONMEM. The comparison
with CTSM has been used to verify correct implementation of the Kalman Filter and Extended
Kalman Filter by comparison with CTSM’s individual likelihood function. The comparison was
based on a model using SDEs and showed identical outcomes from the two programs.

The comparison with NONMEM was done with a model based on ODEs in order to verify the
population likelihood function. The comparison showed that PSM produces identical population
parameter estimates and also identical estimates of the individual random effects parameters
for four simulated data sets containing 2, 4, 10 and 20 subjects.

A final validation with NONMEM was done on the objective function value. The NONMEM
objective function (lNM ) is advertised as −2 log L but in fact it lacks a constant equal to the
likelihood of the data. The PSM objective function (lPSM ) is − log L as seen in Eq. (16) and
the relation thereby becomes lNM = 2 · lPSM − log(2π) ·∑ni. This relation between the two
objective functions was found to hold for all the estimated models on the four simulated data
sets, and this demonstrates that the formulations of the objective functions are equivalent.

APPLICATIONS

The general approach of including SDEs in the NLME model as implemented in PSM has a po-
tential of improving model development and performance for a wide range of PK/PD modelling
situations, as has been discussed previously. The applications to illustrate the functionality of
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PSM in the present paper have been chosen to focus on a feature inherent to the new approach.
The SDEs enable a simple way to estimate unknown inputs and time-varying parameters by
modelling these as a random walk. The technique works for both linear and non-linear prob-
lems, and this will be illustrated in the following by two models to estimate the insulin secretion
rate and liver extraction rate.

Data

The data originates from a double-blind, placebo-controlled, randomized crossover study with
a duration of 24 hours starting at 8 a.m. in the morning. Thirteen patients (5 women and 8
men) with type II diabetes were examined. Their age given as mean ± 1 standard deviation
was 56.4 ± 9.2 years, BMI was 31.2 ± 3.6 kg/m2 and the duration of diabetes was 3.0 ± 2.6
years (range 5 months to 8 years) [15].

C-peptide and insulin measurements will be used for analysis in this paper, and only the placebo
data is used. This is done to focus the presented analysis on two types of application of the
NLME model which are only possible by extending it with SDEs, namely stochastic deconvo-
lution of an unknown input and continuous tracking of the behavior of a parameter.

One of the patients was discarded since the measurement times were delayed compared to the
rest. The data used thus consists of 24-hour C-peptide and insulin profiles for 12 individuals,
see Figure 1.
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Figure 1: Individual profiles for C-peptide and Insulin.

The subjects were sampled 35 times during the 24 hours at varying time intervals, mainly
concentrated after meal times. A total of 3 standard meals were given at 8 a.m., noon and 6
p.m., each to be finished within 20 minutes. These times correspond to 0, 240 and 600 minutes
after the study was initiated, see Figure 2.

Deconvolution

The first example of application will illustrate how the model setup can be used for deconvolution
of the insulin secretion rate (ISR) based on a standard two-compartment linear model for C-
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Figure 2: Meal times during 24H study period.

peptide measurements [16]. It is known that C-peptide and insulin are secreted in equi-molar
amounts, and this fact is used to construct the model. The basic idea is to model the secretion
rate into the central compartment as a pure random walk (Wiener process) and then estimate
ISR as the realization of this random walk using the EKF to provide a smoothed estimate.

The modelling of the ISR as a random walk actually means that no model is given for the
ISR, and therefore it is instead estimated entirely based on the data. For a linear system this
technique resembles a deconvolution, but it will provide a more smooth estimate compared to
an ordinary deconvolution. This is because the EKF separates system noise from measurement
noise, where the system noise for this model is assumed to be the ISR of interest. The extent of
smoothing is determined by the maximum likelihood estimated σISR, the magnitude parameter
for the random walk for ISR, which influences the Kalman gain on increments of the random
walk. A larger magnitude leads to a more fluctuating random walk with larger increments and
vice versa for a smaller magnitude. The resulting estimate of the random walk and thereby the
ISR is thus optimal in a likelihood sense, since the EKF as mentioned earlier has been shown
to yield the minimum variance state estimate for a linear system.

The deconvolution setup requires three states, namely a central compartment state C1 modelling
the measured C-peptide concentration, a peripheral compartment state C2, and a state ISR

for the random walk. This gives the state vector x = [ C1 C2 ISR ]T . The C-peptide kinetic
parameters k1, k2, ke are set equal to the Van Cauter estimates found in [17].

ISR

C1 C2

k1

k2ke

Figure 3: Two-compartment model used for estimation of ISR.

The C-peptide measurement error is assumed to be additive Gaussian white noise with variance
Σ. The model states are constrained to steady state at t = 0 given an initial individually
estimated concentration Ci in C1, that is x0 =

[
Ci

k1
k2Ci keCi

]T
and Ci = C0

1 exp η, η ∈
N(0,ΩC1). The state equation for the model is shown in Eq. (18)
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dx =




−(k1 + ke) k2 1
k1 −k2 0
0 0 0


x dt + diag




0
0

σISR


 dω (18)

and the measurement equation is simply y = C1 + ε, where ε ∈ N(0,Σ). The ML estimated
population parameters are C0

1 , Σ, σISR and ΩC0
1

and based on these an optimal estimate of ISR
can be found by using the Kalman smoothing algorithm.

Figure 4 shows the smoothed estimate of ISR for the first two individuals together with a ±1
standard deviation band. The assumption of steady state in the beginning defines the initial
level of ISR based on C0

1 and this appears appropriate.
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Figure 4: Smoothed estimate of ISR for individual 1 and 2.

State-Estimation

The second example of application goes to illustrate how the model setup may be used for
state-estimation in non-linear systems. The method is also sometimes referred to as parameter
tracking, when the state represents a parameter, which is suspected of having some time-varying
behavior. Although non-linear state-estimation is fundamentally different from deconvolution,
which only applies to linear systems, it can be performed with SDEs in basically the same way
as the approach for deconvolution presented in the first example of application.

The aim is to estimate the dynamic liver extraction rate, which represents the fraction of insulin
that is absorbed by the liver. This fraction is often modelled as a constant to simplify statistical
models, although it is known to be time-varying. As previously done the insulin secretion rate
is estimated based on the information in the C-peptide measurements and then used as input
into a one-compartment insulin model. The state I models the measured insulin concentration
in the compartment and the insulin elimination is set to ke,I = 0.355 min−1. This value has
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been reported for a similar study, also on type II diabetic patients [18]. By having a fixed
elimination rate and ISR given from the C-peptide part of the data, the information in the
insulin measurement can be used to estimate the liver extraction. The fraction which passes
through the liver is modelled by a state F , and the input into the insulin compartment is thus
F · ISR making the model non-linear in the states. The final layout of the model is shown in
Figure 5. The layout is identical to the layout first proposed in [19], where it is shown that by
assuming a constant liver extraction rate it is possible to estimate the kinetic parameters and
a piecewise constant ISR.

Pancreas

ISR

Liver

F · ISR

I C1 C2

ke ke,I

k1

k2

Figure 5: Dynamics of the combined model for estimation of insulin secretion rate and liver
extraction rate.

In an initial model F was modelled directly as a random walk in the same way as ISR. The
estimation of the model returned a very low estimate of the insulin measurement standard
deviation at only 0.01pmol/L. This is an unrealistically small value and indicates a problem
with separation of noise components, since virtually all the variation in the insulin measurements
thereby is assumed to originate from the fluctuations of the liver extraction.

This problem can be solved by imposing further smoothing to the state-estimation by choosing
to model the derivative of F as a random walk instead of directly F as before. This is achieved
by introducing a new state named X as shown in Eq. (19) and (20)

dF

dt
= X (19)

dX = σXdω (20)

where ω is a Wiener process. The change in the model for F causes the increments of the
derivative of F to be penalized by the Wiener noise gain σ instead of the increments of F

directly. The result is a less flexible model for F where fluctuations are further constrained, and
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the modification is easily implemented using the flexibility made available by the stochastic state
space approach. In total the model contains six states, namely x = [C1 C2 I ISR F X]T , which
are all estimated simultaneously by the Extended Kalman Filter using the two-dimensional
measurements with C-peptide and insulin. The system equations are shown in Eq. (21).

dx =




−(k1 + ke)C1 + k2C2 + ISR

k1C1 − k2C2

−ke,II + F · ISR

0
X

0




dt + diag




0
0
0

σISR

0
σX




dω (21)

The estimation of the population parameters in the new model with a constrained model for F

results in a better separation of noise. The standard deviation for the insulin secretion rate is
estimated at a satisfactory level of 19.8pmol/L.

As could be expected, the model finds an ISR which is almost identical to the one found using
just a C-peptide deconvolution model, since the information in the added insulin measurements
is used to estimate the liver extraction. The smoothed estimate of the fraction of insulin passing
the liver F is shown in Figure 6 for individual 1 and 2. The plots illustrate that the proportion
sent through the liver, F , is below one for the entire time interval as it naturally should be.
This also holds for 8 out of the remaining 10 individuals. For the two last individuals F varies
between 0.5 and 1.8. This is however not of great concern, because F and ke,I are correlated
and it is thus probably just indicating that ke,I for this particular individual is set too high.
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Figure 6: Smoothed fraction of insulin passing the liver ±1SD for individual 1 and 2.
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DISCUSSION

By the presented software implementation PSM (Population Stochastic Modelling), we have
shown that it is possible to develop a general purpose PK/PD population modelling tool that
is able to handle the extra functionality made available by using SDEs in NLME models. The
implementation opens up for the possibility to easily make further experiments with the model
setup to allow for accumulation of more knowledge about the modelling approach.

It is important to emphasize that the software implementation is to be considered a prototype,
which should only be used on research level. A necessary step to make it more widely usable
is to move to another programming language. This implementation has been done in Matlab,
which is ideal for numerical implementations, but it lacks in speed and parallel computing
options. The standard within scientific programming today is Fortran, and this is also an
obvious choice here due to its efficient handling of numerical computations and linear algebra
calculations. Another advantage of Fortran is the accessibility of modules already available,
such as algorithms for numerical optimization and ODE solvers.

The optimal platform for a future implementation is a shared memory system. Shared memory
parallelism can be implemented easily in Fortran using the OpenMP3 application program
interface. OpenMP supports multi-platform shared-memory parallel programming in Fortran
on all architectures, including Unix and Windows platforms. OpenMP is a scalable model that
gives a flexible interface for developing a parallel application for platforms ranging from the
desktop to the supercomputer and it supports parallelism through meta tags that will make
portability to single CPU, multi-core CPU, and shared-memory multiprocessor (SMP) units
simple. Some compilers are also able to create parallel calculations by automatically analyzing
the code, but the largest improvements are achieved using manual parallelization.

The present paper has illustrated how parallelization introduced at the individual minimizations
of the population likelihood function has a strong potential of reducing the estimation time for a
future final software program when dealing with data containing a large number of individuals.
It can also be argued to introduce parallelism at an even higher level in the gradient calculation
of the population likelihood function. This would generally be advantageous for models where
the number of population parameters exceeds the number of individuals in data.

The first example of application in this paper demonstrated how the NLME model can be used
for deconvolution of ISR by introducing SDEs. Although the estimation of ISR using stochastic
differential equations is loosely denoted deconvolution, it is in fact not strictly speaking de-
convolution but instead a probabilistic description of an unknown input, which is modelled as
the realization of a stochastic process. Pure deterministic deconvolution using ODEs for the
model shown in Figure 3 will estimate ISR at each measurement to be equal to the rate giving
the ’missing’ amount in the central C-peptide compartment C1. With the SDE approach the
measurement noise on C-peptide is taken into account by the Kalman filter, which yields a

3Further details may be found at www.openmp.org.
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minimal variance estimate of the states resulting in a more smooth estimate of ISR where the
effect of noise is reduced.

Deconvolution based on noisy data is generally an ill-posed problem, meaning that even small
perturbations in data lead to significant changes in the estimated solution [20]. The problem
has been addressed by existing software by applying various kinds of regularization techniques
to constrain the solution. An example is WinNonlin [21], which is a standard PK/PD software
solution that can also be used for deconvolution. The program addresses the problem of decon-
volution by introducing a smoothness factor and as a consequence it is simply left up to personal
choice and preference of the user to specify the level of smoothing. An improved solution can
be found using WinStoDec presented by [22], which is based on stochastic deconvolution and
can be used for linear time-invariant systems [23]. It has been shown by [24] that the stochastic
deconvolution approach is equivalent to the SDE approach presented here, which is furthermore
by nature also able to handle non-linear time-varying systems, as has been demonstrated with
the state-estimation approach in the second example of application presented here.

In conclusion, a fully functional prototype tool named PSM (Population Stochastic Modelling)
for estimation of non-linear mixed-effects models based on SDEs has been implemented in Mat-
lab and validated. The use of parallelization in the implementation has demonstrated a strong
potential of reducing computation times in future implementations in a faster programming
language. Finally two examples of application concerning insulin modelling demonstrated the
possibility for deconvolution and non-linear parameter tracking facilitated by the extension of
the NLME model to use SDEs.
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A Approximation of population likelihood function

The population likelihood function for the NLME model with SDE’s is defined in Eq. (13) as

L(θ,Σ,σω,Ω) =
N∏

i=1

∫
exp(li)dηi (22)

where li is the individual a posteriori log-likelihood function. In most cases the integral cannot
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be evaluated analytically. For a general evaluation the individual a posteriori likelihood function
can be approximated by a second order Taylor series expansion of li around the value η̂i of the
individual random effects parameter which maximizes li. It follows that

li ≈ li + ∇T li(ηi − η̂i) +
1
2
(ηi − η̂i)

T∆li(ηi − η̂i) (23)

≈ li +
1
2
(ηi − η̂i)

T∆li(ηi − η̂i) (24)

since ∇li = 0 at η̂i. Based on the approximation in Eq. (24) the integral in Eq. (22) can
now be evaluated by moving constants such that the integral is over a multi-variate Gaussian
density with mean η̂i and variance (−∆li)−1. This integral is equal to one and the result is

∫
Lidηi ≈

∫
Li · exp

(
−1

2
(ηi − η̂i)

T (−∆li)(ηi − η̂i)
)

dηi (25)

≈ Li

∣∣∣∣ 2π
−∆li

∣∣∣∣
1
2
∫ ∣∣∣∣ 2π

−∆li

∣∣∣∣
− 1

2

exp
(
−1

2
(ηi − η̂i)

T (−∆li)(ηi − η̂i)
)

dηi (26)

≈ Li

∣∣∣∣ 2π
−∆li

∣∣∣∣
1
2

· 1 (27)

≈ Li

∣∣∣∣−∆li
2π

∣∣∣∣
− 1

2

(28)

where Li = exp(li). The step in Eq. (28) is done to avoid a matrix inversion of the Hes-
sian. By combining Eq. (22) and Eq. (28) the population log-likelihood function can now be
approximated by

L(θ,Σ,σω,Ω) ≈
N∏

i=1

∣∣∣∣−∆li
2π

∣∣∣∣
− 1

2

exp(li)
∣∣∣
η̂i

. (29)
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Reduced CPU-time per Overhead
CPUs Time (sec) to (%) individual (sec) per CPU (%)

1 serial 241.8 100.0 12.1 -
1 242.4 100.2 12.1 0.2
2 128.3 53.0 12.8 5.8
3 101.7 42.0 15.3 20.7
4 72.0 29.7 14.4 16.0
5 66.0 27.3 16.5 26.7
10 50.0 20.6 25.0 51.6

Table I: Computation times using parallel computing.
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