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[1] This paper presents a groundwater management model, considering the interaction
between a confined aquifer and an unlooped Water Distribution Network (WDN),
conveying the groundwater into the Water Works distribution mains. The pumps are
controlled by regulating the characteristic curves. The objective of the management is to
minimize the total cost of pump operations over a multistep time horizon, while fulfilling a
set of time-varying management constraints. Optimization in groundwater management and
pressurized WDNs have been widely investigated in the literature. Problem formulations
are often convex, hence global optimality can be attained by a wealth of algorithms. Among
these, the Interior Point methods are extensively employed for practical applications, as
they are capable of efficiently solving large-scale problems. Despite this, management
models explicitly embedding both systems without simplifications are rare, and they usually
involve heuristic techniques. The main limitation with heuristics is that neither optimality
nor suboptimality bounds can be guarantee. This paper extends the proof of convexity to
mixed management models, enabling the use of Interior Point techniques to compute
globally optimal management solutions. If convexity is not achieved, it is shown how
suboptimal solutions can be computed, and how to bind their deviation from the optimality.
Experimental results obtained by testing the methodology in a well field located nearby
Copenhagen (DK), show that management solutions can consistently perform within the
99.9% of the true optimum. Furthermore it is shown how not considering the Water
Distribution Network in optimization is likely to result in unfeasible management solutions.
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1. Introduction
[2] This paper deals with optimization in water resources

management. The steadily increasing overexploitation and
inefficient management of the water resources have led to a
number of water quality and related health problems world-
wide. Optimization in both design and operation is widely
recognized as a key element in water resources planning
and management. In this paper, a groundwater management
problem is considered, where the water is drawn from a
well field and conveyed to the Water Works distribution
mains through a Water Distribution Network (WDN). The
objective is to minimize the cost of pump operations, while
fulfilling several management constraints. There are two

main branches in the literature lying within the scope of
this paper. One looks at groundwater management models;
the other investigates operational efficiency in WDNs.

[3] Groundwater management models are optimization
frameworks where simulation of groundwater systems are
employed. Stresses and the state of the aquifer are in those
problems formalized as objective functions and constraints.
Groundwater management models can be classified as solv-
ing problems involving groundwater flow only or solving
problems involving both flow and transport of contami-
nants [Ahlfeld and Baro-Montes, 2008]. The interested
reader may find comprehensive reviews of the literature
related to the simulation-optimization approach in the fol-
lowing publications: Gorelick [1983]; Yeh [1992]; Ahlfeld
and Heidari [1994]; Mays and Tung [1992]; Mays [1997].
Since the first combination of numerical simulation models
with optimization for groundwater applications [Maddock,
1972], the range of optimization applications of ground-
water problems has grown substantially [Wagner, 1995;
Ahlfeld and Mulligan, 2000]. Many types of optimization
problems have been studied in groundwater resources man-
agement, including pumping cost minimization [Sidiropoulos
and Tolikas, 2004], water quality optimization, seawater
intrusion and nitrate pollution, [Katsifarakis et al., 1999;
Park and Aral, 2004; Katsifarakis and Petala, 2006;
Minciardi et al., 2007]. In many cases, pumping cost is a
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fundamental element in aquifer restoration problems, [Shieh
and Peralta, 2005; Matott et al., 2006; Papadopoulou et al.,
2007]. Over the years, and also due to the improvement in
the capability of commercial computers, researchers have
experimented with the application of a wide range of optimi-
zation techniques to groundwater management models, such
as linear and nonlinear programming [Bear, 1979; Rastogi,
1989; Theodossiou, 2004]; genetic algorithms and other
evolutionary techniques e.g., [Ouazar and Cheng, 2000;
Mantoglou et al., 2004; Kalwij and Peralta, 2008; He et al.,
2008]; the outer approximation method [Spiliotopoulos
et al., 2004]. A comparative study of different optimization
methods applied to groundwater management problems is
presented in papers by Mayer et al. [2002] and Fowler et al.
[2008].

[4] In the field of operational efficiency in WDNs,
pumping energy costs has always been acknowledged as a
fundamental part of the operational cost of water distribu-
tion systems worldwide. Even a small overall increase in
operational efficiency would result in significant cost sav-
ings to industry and municipalities [van Zyl et al., 2004].
Pump operation inefficiencies may be caused by inefficient
pumps, inefficient pump combinations, and inefficient
pump scheduling [Ormsbee et al., 1989]. Various optimiza-
tion techniques have been applied to the operational opti-
mization problem, including linear programming [Jowitt
and Germanopoulos, 1992; Burnell et al., 1993]; nonlinear
programming [Chase and Ormsbee, 1993; Yu et al., 1994];
dynamic programming [Lansey and Awumah, 1994; Niti-
vattananon et al., 1996]; fuzzy logic [Angel et al., 1999];
nonlinear heuristic optimization [Ormsbee and Reddy,
1995; Kansal et al., 2001]; flexible constraint satisfaction
[Likeman, 1993]; and genetic algorithms (see e.g., van Zyl
et al. [2004]).

[5] Even though optimization in groundwater manage-
ment and pressurized WDNs have been extensively investi-
gated, management models that are explicitly based on
their dynamic interaction are still limited. In fact, in WDN
optimization, aquifers are normally treated as underground
reservoirs of given groundwater heads, whereas pressurized
water hydraulics in the pipeline connecting well pumps is
either neglected or simplified in groundwater management
problems [McKinney and Lin, 1994, 1995]. Optimization
of mixed management models is usually solved using heu-
ristics. Tsai et al. [2009] employed Genetic Algorithms to
solve a management model of a large-scale pressurized
water distribution system and a three-dimensional ground-
water model. It is important to note that heuristics do not
guarantee global guarantee optimality.

[6] Nonheuristic optimization techniques are normally
supported by proofs of optimality, however their applic-
ability is subject to restrictive conditions. In groundwater
flow management, problem formulations often involve lin-
ear or at most convex objective functions and convex con-
straints; a comprehensive illustration of this can be found
in the work of Ahlfeld and Mulligan [2000]. For this class
of problems, called ‘‘convex optimization problems,’’ opti-
mality can be achieved by a wealth of algorithms. Among
these, the Interior Point methods (IP) are extensively
employed for practical applications, as they are often capa-
ble of solving problems within a number of operations not
more than polynomial of the problem dimensions. An

extensive review of convex programming and IP methods
can be found in books by Ben-Tal and Nemirovski [2001],
and by Boyd and Vandenberghe [2004].

[7] A management model that does not take the WDN
into account yields a time series of pumping stresses that
are optimal only under the assumption that nodes heads are
fixed. The more the head loss due to the friction across the
WDN, the more the solution is likely to be suboptimal.
More importantly, the solution may not be even feasible in
the real system, as the management constraints could be
violated. For some systems, this can be overcome using
approximations of the WDN. The most common way is to
consider the additional head loss at each individual well
node, as quadratic function of the pumping stress (see e.g.,
Ahlfeld and Mulligan [2000]). However, with more pump-
ing wells connected to the WDN, further complexity is
added, and considering the actual system over approxima-
tions is preferable. In this paper we discuss the convexity
of optimal management problems, for systems of confined
aquifers and unlooped WDNs. We show that for those
problems, interior points are always applicable, therefore
large-scale problems can be efficiently solved considering
the contribution of the WDN. The contents of this paper is
organized as follows. Section 2 introduces some relevant
concept of convex optimization. Section 3 describes the
problem of performing discrete-time simulations of an aq-
uifer-WDN system. The management problem is defined in
section 4. The conditions under which such a problem is
convex, allowing for the use of IP methods, are identified
and proved. One important condition is that pumps charac-
teristics must be a concave functions of the head difference.
The validity of this condition is discussed in section 5.
When it is not valid, it is shown how IP methods can still
be used to yield quasi-optimal solutions, and bounds on
their deviation from the optimal solution. Section 6
describes the implementation of the methodology in a well
field simulation modeling software package. An example
of real life application is discussed in section 7. Conclu-
sions and future remarks are in section 8. Proofs of the con-
vexity of the management problem are provided in
Appendix A.

2. Notation and Convex Optimization
[8] In what follows, bold letters x; y are column vectors,

and > denotes transposition. Let function c : Rn ! R be
convex; then the points x 2 R

n fulfilling condition
cðxÞ � 0 define a convex set. Let function f : Rn ! R be
convex and twice differentiable. A convex optimization
problem has the form

minimize f ðxÞ
subject to ciðxÞ � 0 i ¼ 1; . . . ;m

;

namely, it is the problem of minimizing a convex objective
function, subject to m convex constraints. Unconstrained
problems, i.e., m ¼ 0, can be reduced to solving a sequence
of quadratic problems using the ‘‘Newton method.’’ Prob-
lems with constraints, i.e., m > 0, can be reduced to solving
a sequence of unconstrained problems using any Interior
Point method (IP), for instance the barrier method, or the
primal-dual method.
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[9] In general, an IP method is an iterative procedure,
where each step requires the calculation of the first and
second-order derivatives of the objective functions and
constraint functions, namely the mþ 1 gradients rf ðxÞ;
rciðxÞ, and the mþ 1 Hessians r2f ðxÞ;r2ciðxÞ. For many
practical applications interior-point methods can solve the
problem in a number of steps or iterations that is almost
always in the range between 10 and 100. Ignoring any
structural peculiarity of the problem (such as sparsity),
each step requires on the order of

maxfn3; n2m;Fg (1)

operations, where F is the cost of evaluating the deriva-
tives. Description of IP methods and descent methods, and
further analysis of their complexity can be found in the
work of Boyd and Vandenberghe [2004].

3. Simulation
[10] We consider a system composed of an aquifer, and

N pumping wells, which are connected to the Water Works
distribution mains through a Water Distribution Network
(WDN). In each well, the groundwater is lifted using an
electric submersible pump, which is controlled by setting
the rotational speed of the impeller. As pump setting, we
consider a variable a varying along the continuous interval
½0; 1�, having a one-to-one relationship with the rotational
speed; i.e., a ¼ 1 is ‘‘maximum speed,’’ and a ¼ 0 is
‘pump switched off’. The WDN has M nodes and one outlet
(M � N ), which are indexed in a way so that node i ¼ 0 is
the outlet, and the nodes from i ¼ 1 to i ¼ N are the ones
connected to the pumping wells. We consider K time steps
of equal duration �t, defining the management time horizon.
A scheduling is a sequence of vectors a1; . . . ; aK , of pump
setting values for the N pumps ak ¼ ða1k ; a2k ; . . . ; aNkÞ> at
each time step k. The pump settings vector ak is constant
throughout the interval ½ðk � 1Þ�t; k�t

�
. The pumping rate

qik of the ith pump at time k, is function of the lifted head

qik ¼ giðaik ; vik � hikÞ (2)

where hik is the hydraulic head in the well, vik is the hydrau-
lic head at the ith network node, and giðÞ the ‘‘pump charac-
teristics’’ curve (or ‘‘head flow curve’’), which is positive,
invertible, and decreasing for fixed setting aik. Those curves
are empirically derived by measuring different combina-
tions of lift head and pump rate values under ‘‘Standard
Conditions.’’ The effect of the pump setting variation is to
modify the pump characteristic curve, and this occurs with
different mechanisms, depending on the pump model. In
general, the effect of increasing aik, with constant head dif-
ference vik � hik , causes an increment of the pumping rate
qik. Here the only assumption that we make is that qik is con-
tinuous and monotonically increasing with aik. An example
of pump characteristics is shown in Figure 1.

[11] The values of hik and vik depend on the groundwater
hydraulics, the WDN hydraulics, and the way they interact.
Let wijk be the flowrate from node i to node j at time k ; we
conventionally consider as positive the flow direction from
the high node index, to the low node index, i.e., wijk > 0 if

i > j and < 0 otherwise. The WDN is subject to the
continuity equations

Xi

j¼0

wjik �
XM

j¼iþ1

wijk ¼
�
XN

n¼1
qnk ; i ¼ 0 ðoutletÞ

qik ; 0 < i � N ðpumpsÞ
0; N < i � M ðnodesÞ

8>><
>>:

(3)

in every node i ¼ 0; 1; . . . ;M , and the energy loss equa-
tions

vik � vjk ¼ fijðwijkÞ (4)

in every pair of nodes i; j ¼ 0; . . . ;M . Functions fi;j depend
on the pipe roughness and geometry, such as length, diame-
ter, etc. If nodes i; j are connected, function fij is positive,
nonlinear and convex (d2fij=dðwijkÞ2 � 0), and invertible. If
nodes i; j are not connected, function fij is equal to zero.
The outlet is a reservoir with constant level v0. The water
heads in the network nodes connected to the wells
vk ¼ ðv1k ; . . . ; vNkÞ> are obtained as function of the stresses
q1k ; . . . ; qNk by solving the nonlinear system of equations
(3), (4), see e.g., Simpson and Elhay [2011]. This is herein
summarized by the expression

vk ¼ VðqkÞ: (5)

[12] The aquifer’s water head response to the pump
stresses is obtained by solving the equations governing the
groundwater flow. We denote with qiðtÞ the continuous-
time pumping stress in well i, and with qðtÞ ¼
ðq1ðtÞ; . . . ; qN ðtÞÞ> the N stresses. The continuous-time aq-
uifer response to qðtÞ at well i is the piezometric water
level hiðtÞ, and the collection of wells responses in continu-
ous time is the vector hðtÞ ¼ ðh1ðtÞ; . . . ; hN ðtÞÞ>. The aqui-
fer’s water head response to the pump stresses is described

Figure 1. Example of characteristic curves for a commer-
cial variable frequency drive pump. Each curve is labeled
with the value of the corresponding pump setting
aik 2 ½0; 1�.
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by the equations governing the groundwater flow (see e.g.,
Ahlfeld and Mulligan [2000]):

Ss
@h

@t
¼ r � ð�rhÞ þ eþ q (6)

where Ss and � are the spatially variable specific storage
coefficient [L�1] and hydraulic conductivity tensor [L T�1],
respectively. The term e accounts for diffuse sources and
sinks such as precipitation, evapotranspiration, and river/
lakes/sea level fluctuations. We consider q(t) constant
throughout each �t interval, and therefore equivalent to a
discrete-time series of stresses q1; . . . ; qk . If both initial con-
ditions and time-varying boundary conditions are known, the
function hðtÞ and the corresponding discrete-time response
h1; . . . ; hk , are obtained by numerical integration of equation
(6). In the case of confined aquifer, this is equivalent of the
explicit linear relationship

hik ¼
XN

j¼1

Xk

k0¼1

qjk0�ij;k�k 0þ1 þ bik (7)

where bk ¼ ðbk1; . . . ; bkN Þ> is the vector of the no-pump-
ing heads. The constants �ij;k�k0þ1, called Impulse Response
Function (IRF), quantify the head response of well i at
time k to a stress j at time k0 � k. The IRF is always non-
positive, i.e.,

�ij;k�k 0þ1 ¼
@hik

@qjk0
� 0 (8)

[13] We make the assumption that the response in draw-
down of well i to stress i is much deeper than the response
to stresses from other wells i 6¼ j

@hik

@qjk0
� @hik

@qik0
:

This means that the Jacobian matrix @hk=@qk is ‘almost’
diagonal and thus negative definite. In real life cases, this
is always a realistic assumption (see e.g., Ahlfeld and
Mulligan [2000]). Formula (7) can be performed effi-
ciently, as the discrete IRF, �ijk can be determined at once
for all i; j; k and then stored into the computer memory.
Such approach is known as the ‘response matrix’ approach
[Gorelick, 1983].

[14] Discrete-time simulations of an aquifer-WDN sys-
tem can be performed in two ways, depending on the input
variable. One way is to determine the system response
v1; . . . ; vK , h1; . . . ; hK , and the pumping stress series
q1; . . . ; qK , as function of a given scheduling a1; . . . ; aK .
The other way is to determine the scheduling and the sys-
tem response, as function of a pumping stresses. Either
ways, the simulation requires the ensemble of equations
(2), (5), and (7) to be fulfilled. Note that the three equations
are implicit in aik, therefore, when the pumping stress is
the input, they must be solved as a whole nonlinear system.
In the case where the input are instead the pumping stress,
the three equations can be solved separately. In fact, the
heads in the WDN are explicit function of the stresses
through equation (5). Similarly, the heads in the aquifer are

explicit function of the stresses through equation (7). Equa-
tion (2) is not necessary to determine the system response,
but it is still needed to verify that the stresses are within
the capacity of the pumps. In other words, the feasibility
condition

0 � qik � gið1; vik � hikÞ 8i; k (9)

must be fulfilled by the input stresses

4. Management Problem
[15] In this section we define a management model for a

confined aquifer, where the well pumps are interconnected
through a WDN that has no loops. This is the typical situa-
tion where the wells are deployed over a vast rural territory,
and an unlooped pipeline is normally the most cost effec-
tive way to connect them to the Water Works mains. An
important property of unlooped WDNs is that the heads are
convex function of the stresses, namely function
vik ¼ ViðqkÞ is convex for all i; k. We provide the proof of
this in Appendix A. The goal of the management is to fulfill
a set of constraints, with minimum operational cost.

[16] We consider as operational cost of pump i at time k,
the amount of energy required to lift the water from the aq-
uifer level hik to the WDN node level vik :

pik ¼
�t�w

�i

qikðvik � hikÞ; (10)

where �w is the density of water [M L�3], and �i is the effi-
ciency of the ith pump [-]. The total operational cost P is
the total amount of energy used in all pumps, during the
entire management period

P ¼
XK

k¼1

XN

i¼1

pik ; (11)

and it depends on the pump rates and the aquifer-WDN sys-
tem response.

[17] Constraints may take the form of any function of the
hydraulic head, stresses and time, (see e.g., Ahlfeld and
Mulligan [2000]). Some examples are: stress bounds (e.g.,
qik � qk) accounting for the pumps maximum capacity or
to meet regulation requirements; bounds on total stress

(e.g.,
XN

i¼1

qik � dk) for water demand fulfillment; head

bound constraints (e.g., hik � hik) for mining and dewater-
ing or subsidence control; head difference constraints (e.g.,
hik � hjk � �k) to control salt water or polluted water
intrusion within the aquifer. All these constraints, in con-
fined aquifers, are linear function of the stresses. Here we
consider the more generic case of a set of Nc constraints in
the form of convex nonlinear functions, denoted as

cjkðq1; . . . ; qkÞ � 0 j ¼ 1; . . . ;Nc: (12)

[18] We refer to a set of inequalities (12) as ‘‘manage-
ment constraints.’’
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[19] The optimal management solution is a scheduling
a1; . . . ; aK , and the equivalent series of stresses
q�1; . . . ; q�K , attaining the minimum total operational cost
P�, while fulfilling the management constraints (12). Simi-
larly as for the simulation problem described in section 3,
also the management problem can be formulated in two dif-
ferent ways, i.e., considering the scheduling or the stresses
as decision variables. Here we want to investigate whether
those two, equivalent, problems are convex, so they can be
solved using IP methods.

[20] When the scheduling a1; . . . ; aK is given, the total
operational cost is obtained by fulfilling equations (2), (5),
(7), (10), and (11):

P ¼
XK

k¼1

XN

i¼1

�t�w

�i

qikðvik � hikÞ

qik ¼ giðaik ; vi � hiÞ

hik ¼
XN

j¼1

Xk

k 0¼1

qjk0�ij;k�k 0þ1 þ bik

vik ¼ ViðqkÞ

for all i ¼ 1; . . . ;Nc, and for all k ¼ 1; . . . ;K . Besides the
computational burden of having to solve a large system of
nonlinear equations in order to evaluate the objective func-
tion, this implicit relationship often causes P to be noncon-
vex with the decision variable. Clearly this may vary from
case to case, and it may also depends on how the pump
characteristics giðÞ depend on the pump settings aik. In
general, however, the convexity of the objective function
cannot be guarantee. Similarly, also the management con-
straints (12), which are implicit function of the decision
variable, could be not convex. We conclude that IP meth-
ods do not guarantee optimality if the scheduling is the de-
cision variable.

[21] When the pump rates q1; . . . ; qK are the decision
variable, the pump characteristics equations (2) are not
needed to calculate the aquifer-WDN systems response,
hence equations (5), (7), (10), and (11) can be put together
into one explicit expression

P ¼
XK

k¼1

XN

i¼1

�t�w

�i

qikðvik � hikÞ

qik ¼ giðaik ; vi � hiÞ

hik ¼
XN

j¼1

Xk

k 0¼1

qjk0�ij;k�k 0þ1 þ bik

vik ¼ ViðqkÞ

(13)

The convexity of (13) can be proved based on the
convexity of ViðqkÞ, and the fact that the Jacobian ma-
trix @hk=@qk is negative definite. Also this proof is in
Appendix A.

[22] Besides the management constraints ciðÞ, that are
convex with the stresses, the problem definition also
requires the stresses to be within the capacity of the pumps,
hence conditions (9) must be included within the set of con-
straints, and their convexity must be proved.

[23] We reformulate the pumps capacity constraints,
considering that function giðÞ is invertible within the
pump’s range,

0 � vik � hik � g�1
i ð1; qikÞ 8i; k (14)

Expressions (14) and (9) are equivalent, as they both imply
the point ðvik � hik ; qikÞ to have positive coordinates, and
be underneath the pump characteristic curve, as illustrated
on Figure 2. The left-hand side of condition (14)

vik � hik 8i; k

can be ignored, as there is no reason to expect the aqui-
fer’s head hik to exceed or even just to approach the head
levels in the network nodes vik. The right-hand side of
equation (14)

vik � hik � g�1
i ð1; qikÞ � 0 8i; k (15)

defines what we call ‘‘network constraints.’’ As mentioned
at the beginning of this section vi ¼ ViðqkÞ is a convex
function. The aquifer heads in the wells hik are also convex,
as linear function of the stresses, therefore the condition for
the constraint (15) to be convex is that �g�1

i ð1; qikÞ is con-
vex. Conversely giðÞ must be concave.

[24] Although in principle this should reflect the true ge-
ometry of the pump characteristics, in reality those curves
sometimes are not perfectly concave. This concept is clari-
fied in section 5. In this section, perfect concavity of the
pumps characteristic is assumed, hence the resulting prob-
lem formulation

P� ¼ min
q1 ;...;qK

XK

k¼1

XN

i¼1

�t�w

�i

qikðvik � hikÞ (16)

subject to:

vik ¼ ViðqkÞ

hik ¼
XN

j¼1

Xk

k 0¼1
qjk0�ij;k�k0þ1 þ bik

cjkðq1; . . . ; qkÞ � 0 j ¼ 1; . . . ;Nc

vik � g�1
i ð1; qikÞ � hik � 0

(17)

Figure 2. Two equivalent formulations of the pumps
capacity constraints. A point is feasible if it has positive
coordinates ðvik � hik ; qikÞ, and it lies below the line
qik ¼ gið1; vik � hikÞ.
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is a problem of convex optimization having NK decision
variables, and ðNc þ NÞK constraints. The problem can be
solved using IP methods, yielding the optimal stresses
q�1; . . . ; q�K . The corresponding optimal scheduling
a�1; . . . ; a�K is obtained from the characteristics solving
equation

q�ik ¼ gi a�ik ;Viðq�kÞ �
XN

j¼1

Xk

k0¼1

qjk0�ij;k�k 0þ1 � bik

 !
(18)

for all i ¼ 1; . . . ;N and k ¼ 1; . . . ;K . Equation (18) has
one solution, as for given stresses, the head difference
vik � hik is given, thus aik is monotonic with qik.

5. Suboptimality and Bounds
[25] The applicability of IP methods to yield the optimal

solution of the management problem (16) s.t. (17), is sub-
ject to the condition that �g�1

i ð1; qikÞ is convex, or equiva-
lently, that full-speed pump characteristics gið1; vik � hikÞ
are concave.

[26] For a fixed setting aik 2 ½0; 1�, pumps characteristics
giðaik ; vik � hikÞ are curves that typically decrease more
than linearly with vik � hik , meaning that either they are
concave, or they can be well approximated by concave
functions. When the case is the latter, characteristics can be
described as slightly undulating lines following the pattern
of a some concave functions, (Figure 1). More formally, in
this case, characteristics are said to be almost concave
curves, and function �g�1

i ð1; qikÞ are almost convex [Bot
et al., 2007]. We denote with �G�1

i ðqikÞ. The largest con-
vex function not exceeding �g�1

i ð1; qikÞ, or its ‘convex
hull function’. Let �i be the distance

�i ¼ max
q

�
� g�1

i ð1; qÞ þ G�1
i ðqÞ

�

then the almost convex function �g�1
i ð1; qikÞ is bounded

between two convex functions being �i apart

� G�1
i ðqikÞ þ �i � �g�1

i ð1; qikÞ � �G�1
i ðqikÞ

as illustrated in Figure 3. The distance �i is a measure of
the closeness to convexity, if �g�1

i ð1; qikÞ is convex, then
�i ¼ 0, hence �g�1ð1; qikÞ ¼ �G�1

i ðqikÞ.
[27] When the assumption of perfect concavity of the

pumps characteristic is not valid, then the network con-
straints (15) are almost convex, hence the management
problem is not convex. Here we define the alternative con-
vex problem by replacing the network constraints (17) with
the (convex) condition

vik ¼ ViðqkÞ

hik ¼
XN

j¼1

Xk

k0¼1
qjk0�ij;k�k0þ1 þ bik

cjkðq1; . . . ; qkÞ � 0 j ¼ 1; . . . ;Nc

vi � hik � G�1
i ðqikÞ þ �i � 0

(19)

we denote with q1; . . . ; qK the optimal stresses, and with P
the objective function value. We note that the domain of

D0 	 R
NK fulfilling conditions (19) is entirely included

within the domain D 	 R
NK fulfilling the network con-

straints (17), namely D0 
 D. Considering that the optimal
scheduling q�1; . . . ; q�k 2 D attains the minimum (16) on
both D and D0, if q�1; . . . ; q�k 2 D=D0, then the stresses
q1; . . . ; qK are suboptimal. Consequently q1; . . . ; qK is
certainly feasible for problem (16) s.t. (17), and P is at
most as good as the optimum, i.e., P � P�. We argue that
the shape of �g�1

i ð1; qikÞ for commercial pumps are typi-
cally either convex, or almost convex curves with small �i.
Consequently we would expect the distance between P and
P� to be small. Although we cannot determine this dis-
tance, we can use the same approach to estimate an upper
bound of it, namely an � � 0 such that P � P� �
ð1� �ÞP.

[28] We solve problem (16) subject to the following con-
straints

vik ¼ ViðqkÞ

hik ¼
XN

j¼1

Xk

k0¼1
qjk0�ij;k�k0þ1 þ bik

cjkðq1; . . . ; qkÞ � 0 j ¼ 1; . . . ;Nc

vi � hik � G�1
i ðqikÞ � 0

(20)

Similarly to the previous argument, the domain of
D00 	 R

NK fulfilling conditions (20) entirely contains the
domain D0 	 R

NK fulfilling (19), namely D00 
 D0. Then
the optimal solution of problem (16) s.t. (20) has a total
energy consumption that is at most as great as P, hence it
is equal to ð1� �ÞP, with � � 0. The same domain also
contains D, namely, D00 
 D 
 D0, then ð1� �ÞP is at most
as great as P�, hence ð1� �ÞP � P�. Suboptimal solutions
will be close to optimal if � is small. Clearly, the more
�g�1

i ð1; qikÞ are similar to the convex hull function
�G�1

i ðqikÞ, namely the smaller the values of �i; i ¼
1; . . . ;N , the smaller �.

[29] Suppose the bound is loose, for instance � ¼ :05.
Then in the worst case scenario, the minimum total energy
P� could be up to 5% less than P, and it would be worth

Figure 3. Example of convex hull function (dashed line)
of a generic function (solid line). The distance �i is a mea-
sure of the closeness to convexity.
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trying to improve the solution using some local search
algorithm, i.e., attempting to solve problem (16) s.t. (17),
by starting from q1; . . . ; qK as initial guess. The local
search may be performed by any heuristics, such as Genetic
Algorithms. Here we use a simple gradient descent

repeat
1. �qk :¼ �rPðqkÞ for All k

2. P :¼ min
t
Pðq1 þ t�q1; . . . ; qK þ t�qKÞ

subject to :

vik ¼ Viðqk þ t�qkÞ

hik ¼
XN

j¼1

Xk

k0¼1
ðqjk0 þ t�qjk0 Þ�ij;k�k0þ1 þ bik

cjkðq1 þ t�q1; . . . ; qK þ t�qKÞ � 0; j ¼ 1; . . . ;Nc

vi � hik � g�1
i ð1; qjk0 þ t�qjk0 Þ � 0

3. qk :¼ qk þ t�qk
until t ¼ 0,

where P is optimized along the gradient direction, until the
boundaries of the feasible space defined by constraints (17)
are reached. So in this case the IP methods are used as the
global portion of a local-global search algorithm.

6. Implementation of the Methodology
[30] The described methodology is implemented and

included within the WELLNES software package (A. Falk
and H. Madsen, A well field model based on a dynamic
coupling between a pipe network model and a groundwater
model, submitted to Environmental Modelling Software,
2012). WELLNES contains and coordinates the interac-
tions between a physically based groundwater model
(MIKE-SHE) [Graham and Butts, 2006], and a WDN
model (EPANET, Rossman [2000]). MIKE-SHE simulates
dynamic exchange of water between all major hydrological
components, e.g., surface water, soil water and ground-
water. It solves basic equations governing the major flow
processes within the study area. The spatial and temporal
variation of meteorological, hydrological, geological and
hydrogeological data across the model area is described in
gridded form for the input as well as the output from the
model. EPANET is a computer program that performs
extended period simulation of hydraulic behavior within
pressurized pipe networks. It is released by the United States
Environmental Protection Agency, and it is freely distributed.

[31] In a groundwater model, wells are simulated as sink
terms (equation (6)) in a numerical cell (A. Falk and H.
Madsen, submitted, 2012). This ensures a correct water bal-
ance but does not give a good representation of the water
level in the well.

[32] Close to a well there is a steep gradient in hydraulic
head, which would require a high resolution for the ground-
water model to resolve, increasing accuracy then increases
computational complexity. WELLNES overcomes this
problem, by interposing a well drawdown engine, named
WELL, which is based on the same equations as used by
the drawdown-limited MODFLOWs Multi-Node Well
package [Halford and Hanson, 2002]. A head loss equation
is set up for each cell penetrated by the well. The system of
equations is closed with the condition that the sum of flows
from each cell equals the total extraction from the well.

The equations are the same, but the implementation differs
from that in MODFLOW, as the present implementation
uses the cell head calculated by the groundwater model in the
former time step and the pump flow for the current time step
as forcings. The WELL engine predicts the water drawdown
without requiring a high model resolution around the wells.

[33] WELLNES is equipped with a library, called OPTI-
WELL, for solving optimal management problems in con-
fined aquifers, described in section 4. The OPTIWELL
workflow, illustrated in Figure 4, is a framework iterating
through three distinct phases: (1) preprocessing, (2) optimi-
zation, (3) scheduling. Preprocessing: MIKE-SHE com-
putes the impulse response functions �ijk and heads bik by
measuring, using MIKE-SHE simulations, the aquifer
response at wells to impulse pump signals. Procedures to
derive IRFs using a simulation model are described by
Heidari [1982]. In this phase, Assumption of perfect con-
cavity of the pumps characteristic is checked; the convex
hull function �G�1

i ðqikÞ is constructed using the character-
istics of the pumps connecting the WDN, and the closeness
�i of the network constraints to convexity is measured. Opti-
mization: OPTIWELL solves the management problem of
equation (16) s.t. constraints (19). The IP method used is the
barrier method, a comprehensive description of this method
can be found in the book by Boyd and Vandenberghe
[2004]. If the network constraints are not convex, the solu-
tion q1; . . . ; qK coincides with the optimal stresses
q�1; . . . ; q�K , hence the solution of the original problem (16)
s.t. (17). If the network constraints are convex, q1; . . . ; qK is
improved using the local search scheme described in section
5. The assessment of a lower bound ð1� �ÞP � P� is com-
puted using IP methods to solve problem (16) s.t. (20).
Scheduling: OPTIWELL computes the scheduling from the
optimal (or suboptimal) stresses solving equation (18).

[34] Normally, the preprocessing is done only at once, to
set up the case study (see Figure 4). Solving the same prob-
lem for different sets of constraints and/or pumps models
only requires optimization and scheduling. Preprocessing is
only required again when the case study changes. For
instance, to consider different boundary conditions (rain, sur-
face water, barometric pressure, etc.), or to include more
wells, or to move wells to different positions. Section 7
describes the application of WELLNES in a real case study.

7. Søndersø Case Study
[35] The methodology described in this paper is tested in a

part of the well field of Søndersø, located northwest of Co-
penhagen (DK) with an annual discharge of 5.3 � 106 m3 of
water. The system comprises two groups of pumping wells,
connected in series by a WDN. As shown in Figure 5, there
are 9 wells located in the East (labeled starting with ‘Ø’),
and 3 located in the West (V1A,V2A,V3A), for a total of
N ¼ 11 pumping wells. The groundwater model is a local
model nested within a regional model, Kürstein et al. [2009].

[36] The local model covers approximately an area of
4.3 � 3.7 km, and the grid size is 50 m. The model contains
8 geological layers (five different clay layers, a sand layer
and two limestone layers). As it can be seen in Figure 6,
the pumping is mainly done from the chalk layers and
partly from the sand layer; the aquifer is confined.

[37] The simulation period is 8 days from 18 December
2001 00:00 to 26 December 2001 00:00, the initial
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condition is provided by a regional model (December
2001). There are 4 different types of variable frequency
drive; their specifications are in Table 1. For those pumps
setting aik 2 ½0; 1� represents a fraction of maximum
capacity, namely,

qik ¼ giðaik ; vik � hikÞ ¼ aik � giðvik � hikÞ

for all i. The characteristics giðvik � hikÞ are almost con-
cave, hence �g�1

i ðqikÞ are almost convex. The closeness to
convexity can be observed in Figure 7, where all curves are
tightly bounded between the convex hull function
�G�1

i ðqikÞ and the translated �G�1
i ðqikÞ þ �i.

[38] In what follows the management problem is defined
and solved using the scheme in Figure 4, determining the
optimized stresses q1; . . . ; qK , the total energy consump-
tion P, and the optimality lower bound ð1� �ÞP. The bene-
fit of accounting for the WDN in optimization, can be here
assessed by comparison with the results obtained solving

Figure 4. The OPTIWELL workflow for well field optimization.

Figure 5. The Søndersø well field.
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the same problem but without considering the WDN.
Namely, we solve a problem

~q1; . . . ; ~qK ¼ arg mim
q1 ; ... ;qK

XK

k¼1

XN

i¼1

�t�w

�i

qikðvik � hikÞ

subject to:

vik ¼ v0

hik ¼
XN

j¼1

Xk

k 0¼1
qjk0�ij;k�k0þ1 þ bik

cjkðq1; . . . ; qkÞ � 0 j ¼ 1; . . . ;Nc

(21)

where the WDN node heads vik are replaced by the fixed
outlet level v0. The total energy consumption ~P is obtained
by simulating the stresses ~q1; . . . ; ~qK in the aquifer-WDN
system, i.e., ~P ¼ Pð~q1; . . . ; ~qKÞ. We then compare P with
~P, and q1; . . . ; qK with ~q1; . . . ; ~qK . Furthermore, we also
verify whether or not ~q1; . . . ; ~qK fulfills the network con-
straints ViðqkÞ � g�1

i ðqikÞ � hik � 0, as they are not
included within the constraint set (21).

[39] We consider a water supply problem with fixed
water demand d over the management period. There is an
old military airfield, located west of the well field, which is
known to be contaminated, although the extent of the con-
tamination is unknown. The well field abstracts water from
a large area, and thus it is exposed to the risk of pollution
from the airfield. A sustainable management strategy
should take this into account. We do this by imposing head
difference constraints over three monitoring wells num-
bered as 12, 13 and 14, (see Figure 5), respectively. Two
head difference constraints are defined, �h1, between wells
13–12, and �h2, between wells 13–14, respectively.

[40] In summary, for each time step k ¼ 1; . . . ;K, there
are Nc ¼ 3 management constraints, which are linear
inequalities

c1ðqkÞ ¼ d �
XN

i¼1
qik � 0; (22)

c2ðq1; . . . ; qkÞ ¼ �h13;k þ h12;k þ�h1 � 0; (23)

c3ðq1; . . . ; qkÞ ¼ �h13;k þ h14;k þ�h2 � 0: (24)

We solve the problem for different values of demand d,
while imposing the head difference constraints (23) and
(24) to be non negative, hence �h1 ¼ �h2 ¼ 0 meters.
Clearly this is a simplification as in actual practice, one
would use a ‘‘safety factor,’’ and also impose several head
difference constraints, to assure that contamination does
not pose a threat.

[41] Table 2 shows the results of the management problem
with K ¼ 31 decision time steps with duration �t ¼ 6 h, for

Figure 6. Cross sections along the lines AB and DC of Figure 5. Wells positions and filter depth are
shown.

Table 1. Pump Specification in Søndersø Well Field

Wells Type Capacity [m3 d�1] � � [m]

1, 2, 4, 5, 8, 9, 11 SP77-4 2449 0.79 0.57
3, 6 SP30-4 2421 0.78 1.14
7 SP46-5 941 0.7 0.33
10 SP60-4 2419 0.7 1.60

Figure 7. Solid lines are �g�1
i ðqikÞ curves of the four

pump models installed in Søndersø. Dashed curves are the
convex hull functions �G�1

i ðqikÞ. Dash-dotted curves are
upper convex bounds �G�1

i ðqikÞ þ �i.
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a total time horizon of K ��t ¼ 7:75 days. The problem
has NK ¼ 11� 31 ¼ 341 decision variables, and ðNc þ NÞ
K ¼ ð3þ 11Þ � 31 ¼ 434 constraints. We notice that, due
to the nonlinearity of the objective function P with the
stresses, the energy cost per unit of water volume grows with
the total pump rate. Also the WDN overhead, calculated as
the difference between P and the energy that would be
ideally required to lift the groundwater from hik to the outlet
level v0, grows with the demand. When the demand exceeds
the 0.15 m3 s �1, the network overhead impacts for more
than 25% of the entire energy use, hence the WDN has a
very significant impact the management cost. Even though
assumption of perfect concavity of the pumps characteristic
is not valid and thus the suboptimal procedure described in
section 5 was employed, the obtained solutions are always
within a fraction of a percentage point of the optimal solution
(� < 0:00025).

[42] The effect of not considering the WDN in optimiza-
tion, results in a deterioration of the performance, as ~P is
consistently larger than P. Although such difference is
modest, (less than 1%), the difference in shape of the
pumping stresses pattern patterns shown in Figure 8 is sig-
nificant. This suggests that the optimal solution is sensitive
to the WDN topology, and even though in terms of total
energy use the difference is negligible, for a larger case
study we would expect to see this difference spreading.
More importantly, Table 2 shows that ~q1; . . . ; ~qK violates
the network constraints, as d increases. In fact, as the
pumps’ working regime approach the maximum capacity,
the trajectories ðqik ; vik � hikÞ tend to exceed the network
constraint boundaries. This can be observed in Figure 9,
showing a case when the WDN is excluded from the opti-
mization, causing the network constraints to be violated at
each time step for wells 3, 6, 7, and 10. We conclude that
not considering the WDN within the optimization may
yield management solutions that are not realistic, as they
may not be feasible for the WDN.

[43] Some consideration regarding computational
aspects of the proposed methodology can be done by
observing the experimental data in Table 3. The IP method
used, the barrier method, required a number of Newton step
iterations which turned out to be weakly dependent on the
number of decision variables and constraints. In fact, with
increasing length of the management time horizon K, and
varying values of water demand d, the number of required
iterations is always around 70–100. Clearly for problems
with larger number of wells and management time steps,

we would eventually expect the number of iterations to
increase. For a medium size problem, such as the presented
case study, the time taken for optimization was mainly influ-
enced by the time F to compute the objective function, the
constraints functions and their first and second-order deriva-
tives (see section 2). The measurement reported in Table 3
refer to a personal computer with an Intel Core 2 Duo CPU
2.40 GHz 790 MHz, 2.99 GB RAM. For the larges case ana-
lyzed, K ¼ 31 optimization took less than 25 s.

8. Discussion and Conclusions
[44] A methodology for multiperiod optimal manage-

ment of systems of confined aquifers interacting with an
unlooped pressurized Water Distribution Network (WDN),
has been presented and discussed. Discrete-time simula-
tions of an aquifer-WDN system require the WDN continu-
ity and the energy equations to be solved altogether with
the groundflow equation, and with the pumps characteristic
equations. The type of pumps here considered are ‘‘Vari-
able Speed,’’ also called ‘‘Variable Frequency Drive
Pumps.’’ The shape of the characteristic curves of those
pumps can be modified by operating the pumps settings.
The system can be either controlled in terms of pumps set-
tings, regulating the characteristic curves, or in terms of
pumping stresses. As described in section 3, if one wants to
simulate an input series of pump settings (scheduling), the
three sets of equations must be solved as a whole system of
nonlinear equations. If the input is a series of pumping
stresses, then the WDN and the groundflow equation can be
solved separately, and the pump characteristics are not
needed to determine the system response. However they
are still necessary to verify the feasibility of the input
pumping stresses, which must be within the capacity of the
pumps.

[45] In section 4, the groundwater management problem
was formulated as a minimum operational cost, subject to
constraints, for a system of a confined aquifer, connected to
WDN which has no loops. The applicability of IP methods
was assessed by investigating the conditions, under which
the problem is convex. The conditions identified are: the
decision variable must be the stresses, and not the settings;
the management constraints must be convex function of the
stresses ; and the pump characteristic curves must be con-
cave function of the head difference. This latter condition
was discussed in section 5, arguing that even when the
characteristics curves of commercial pumps are not

Table 2. Results of Management Optimization in Søndersø With K ¼ 31 Time Stepsa

d [m3 s�1]

Considering the WDN Neglecting the WDN

P [kWh m�3] WDN Overhead [%] � [%] ~P [kWh m�3] Violated Constraints [%]

0.05 0.127 18.12 0 0.127 (þ0.09%) 0
0.08 0.157 21.41 0 0.157 (þ0.22%) 0
0.1 0.177 23.26 0.024 0.177 (þ0.21%) 8.2
0.12 0.197 24.65 0.016 0.198 (þ0.51%) 8.5
0.15 0.228 26.09 0.02 0.231 (þ0.94%) 17.3
0.16 0.239 26.41 0.025 0.241 (þ0.92%) 26.7
0.17 0.249 26.69 0.025 0.251 (þ0.88%) 27.3
0.18 0.259 26.93 0.025 0.261 (þ0.76%) 31.7

aNumbers in brackets are the percentage difference between ~P and P. The violated constraints are the percentage of the NK ¼ 341 network constraints.
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concave, normally they are almost concave. So even when
the problem is not convex, it is almost convex, and subopti-
mal solutions and bounds on their deviation from the opti-
mal solution can be obtained, again by using IP methods.

[46] The optimal management is performed according to
the OPTIWELL framework, consisting of three phases:
preprocessing, optimization and scheduling. The methodol-
ogy is tested on the real case study of Søndersø, in Den-
mark. Results show that even when sufficient conditions for
the convexity of the problem are not met, suboptimal solutions
can still be obtained with an energy consumption less than
� ¼ 0:01% off of the of the optimal solution. The advantage
of considering the WDN within the management problem of

an aquifer system, was also assessed. The presence of the
WDN causes a significant overhead (up to 25%) in energy
consumption.

[47] It was also shown that even if the difference between
taking and not taking into account the WDN in optimization
may results in a slight increase of energy consumption (<
1%), the time pattern of the optimal pumping stresses may
be a significantly different. More importantly, the main
drawback of not taking the WDN into account in optimiza-
tion, is that the optimized stresses may be not feasible for
the WDN, as the management constraints may be violated.

[48] The IP method used, the barrier method, required a
number of Newton step iterations which turned out to be

Figure 8. Optimized management solutions when the water demand d is equal to 0.16 m3 s�1. The left
chart shows the solution obtained accounting for the effect of the WDN. The right chart shows the solu-
tion obtained neglecting the WDN.
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weakly dependent on the number of decision variables and
constraints. Clearly this is expected not to be true for prob-
lems with larger number of wells, time steps and con-
straints; but it also suggests high capability of IP methods

to deal with large-scale problems. The resulting computing
time was then mainly influenced by the time taken to com-
pute the objective function, the constraints functions and
their first and second-order derivatives.

Figure 9. Network constraint fulfillment of optimized management solutions for a problem with
K ¼ 6 decision time steps, water demand d ¼ 0.18 m3 s�1. Numbers refer to well ids; trajectories
labeled with framed numbers are obtained without considering the WDN in the optimization.

Table 3. Number of N Steps and Time F for Computing the Objective Functions, Constraint Functions, and All Their First- and
Second-Order Derivativesa

K Decision Variables Constraints

N Steps

Evaluation Time F [s]d ¼.08 d ¼.12 d ¼.18

6 66 84 74 77 72 0.0205
10 110 140 80 79 78 0.0362
15 165 210 72 88 74 0.0746
20 220 280 75 88 73 0.1324
26 286 364 78 101 74 0.2007
31 341 434 68 81 63 0.3120

aWater demand d is in m3 s�1.
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Appendix A: Derivations
[49] In what follows symbols A;B; ::: denote matrices.

We show that the Hessian of both Vi and P are referable to
a particular type of matrix, constructed as follows

M ¼
XN

r¼1

zrOr; (A1)

where zr are nonnegative scalars and the i; j element of ma-
trix Or is

Oijr ¼
1 i � r or j � r

0 otherwise

(
(A2)

for example, for N ¼ 4,

O3 ¼

0 0 1 1

0 0 1 1

1 1 1 1

1 1 1 1

2
66664

3
77775 :

We refer to a matrix like M as a ‘matrix of type O’. These
matrices are diagonal and their elements Oijr are non
decreasing as i and/or j increase:

Oi;j;k ¼
Xminfi;jg

r¼1

zr: (A3)

The O matrices are positive definite, as for any vector
x 2 R

N , the quadratic form x>Mx is always positive, i.e.,

x>Mx ¼ z1

XN

i¼1

xi

 !2

þ z2

XN

i¼2

xi

 !2

þ � � � þ zN x2
N � 0:

[50] The total energy consumption P ¼
XK

k¼1

XN

i¼1
pik ,

is function of the stresses q1; . . . ; qK . Since the aquifer is

confined, then hik ¼
XN

j¼1

Xk

k0¼1
qjk0�ij;k�k0þ1 þ bik , and

the Hessian can be put in the form of a K-by-K lower trian-
gular block matrix, whose kth diagonal block Bk;k is a
N � N matrix, whose i; j element is

Bijkk ¼
@2P

@qik@qjk
¼

¼ 1

�j

@vjk

@qik
þ 1

�i

@vik

@qjk
� �
�j

@hjk

@qik
þ
XN

r¼1

qrk

�r

@2vr

@qik@qjk

: (A4)

where � is equal to 2 is i ¼ j and 1 otherwise. The total
energy consumption P is a convex function of the stresses
if Bk;k is positive definite, for all k ¼ 1; . . . ;K. Since equa-
tion A4 is independent of k, all blocks are the same, so we
refer to them using B instead of Bk . Without loss of gener-
ality, each branch of an unlooped WDN can be considered
as N wells connected in series, so we have that

ViðqÞ ¼ fi;i�1ðqi þ qiþ1 þ � � � þ qN Þþ
þ fi�1;i�2ðqi�1 þ � � � þ qN Þ þ � � � þ f1;0ðq1 þ � � � þ qN Þ þ v0:

(A5)

Based on equation (A5), we derive the first-order partial
derivative

@vj

@qi
¼ @vi

@qj
¼
Xminfi;jg

r¼1

dfr;r�1

dwr;r�1
; (A6)

and then we derive the second-order partial derivative

@2vr

@qi@qj
¼

Xminfi;j;rg

r0¼1

d2fr0;r0�1

dw2
r0;r0�1

: (A7)

As discussed in section 3, functions fij are convex and mon-
otonic, hence dfij=dwij � 0, and d2fij=dw2

ij � 0. Based on
this and on equations (A3), (A7), follows that the Hessian
@2Vr=@q2 is a O matrix, hence positive definite for all
r ¼ 1; . . . ;N , thus proving point (1). By combining equa-
tions (A5), (A6), and (A7) into equation (A4), the elements
B ij take the form

Bij ¼
@2P

@qi@qj
¼
�i þ �j

�j�i

Xminfi;jg

r¼1

dfr;r�1

dwr;r�1
þ � � �

� � � � �
�j

@hj

@qi
þ
XN

r¼1

Xminfi;j;rg

r0¼1

d2fr0;r0�1

dw2
r0 ;r0�1

XN

r00¼r0

qr00

�r00

hence, matrix B is the sum of three matrices

B ¼ V�HþW;

which are positive definite, as �H has the same properties
as the Jacobian matrix �@hk=@qk , and matrices V and W
are O matrices (equation (A3)). This proves point (2), as the
sum of positive definite matrices is again positive definite.
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