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Chance-constrained optimization of demand
response to price signals
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Abstract—Household-based demand response is expected tode ne reference signals based on consumption feedback [8],
play an increasing role in supporting the large scale integration the indirect control alternative using one-way commurndzat
of renewable energy generation in existing power systems and 4\ and based on price signals to be sent to households, is
electricity markets. While the direct control of the consumption R - .
level of households is envisaged as a possibility, a credible9aNNY increased |nter_est. Concepts relate_d to contpbwer .
alternative is that of indirect control based on price signals to Systems based on prices have been discussed and studied
be sent to these end-consumers. A methodology is described herdor more than thirty years, as in [9]-[12] among others.
allowing to estimate in advance the potential response of exible |t has been observed that exibility is partly controllable
end-consumers to price variations, subsequently embedded in by price variations as consumers become signi cantly price

an optimal price-signal generator. In contrast to some real-time . . . .
pricing proposals in the literature, here prices are estimated elastic when exposed to varying prices [13], [14]. This iezgl

and broadcast once a day for the following one, for households that the price is ef ciently displayed to nal consumers [15
to optimally schedule their consumption. The price-response is Note that various views and de nition of indirect controligtx

modeled using stochastic Finite Impulse Response (FIR) models.as underlined in [16], while some potential limitations of
Parameters are estimated within a Recursive Least Squares dynamic price signals are also highlighted [17]. Two exanpl

(RLS) framework using data measurable at the grid level, L 2 - .
in an adaptive fashion. Optimal price signals are generated applications of indirect control by price signals may bettha

by embedding the FIR models within a chance-constrained Of (i) a retailer aiming at revenue maximization by optimally
optimization framework. The objective is to keep the price signal trading its exibility [18], and (i) a demand-side aggregator

as unchanged as possible from the reference market p_rice, whilst Wanting its poo] of consumers targeting a reference in order
keeping consumption below a pre-de ned acceptable interval. 5 nrovide services to the grid [19]. Indirect control based
Index Terms—demand forecasting, demand response, price on price signals has the advantage of neither requiring a bi-
signals, chance constrained optimization. directional communication interface, nor knowledge of the
end-user's environment.
The work in the present paper places itself in a framework
different for other proposals in the literature, for a numbe
NTEGRATION of renewable though uctuating energyosf reasons. First of all, it is considered that price signals
generation, such as from wind and solar installations, jse optimized and broadcast once a day for the following
becoming an essential part of the development of futugge for household-type consumers to optimally plan their
power systems and electricity markets. Relying on such egsnsumption. They are therefore not generated in a model
ergy sources with high variability and limited predictéyil pregictive control framework, as in [19] for instance. In
propagates risk and uncertainty to the whole electricityera parallel, the main objective when determining price signal
chain, challenging existing market structures and baf@Cijs neijther to minimize imbalances by explicitly shiftingreo
strategies. The parallel phenomenon of household-typ@af &ymption in time, nor it is to attempt at having consumption
consumers becoming prosumers, both producing locally apfiowing a certain reference signal. It is instead to eesur
envisaging a more proactive usage of electricity, chabsrmur nat consumption will stay as much as possible below a pre-
traditional top-down approach to power system managemegé ned acceptable level, for instance imposed by technical
It will similarly affect the way electricity markets are dgsed gnstraints at the grid level, or simply owing to market sost
and operated [1]. Such challenges in turn create opportNit considerations for the aggregator/retailer providingtieity
in the sense that demand-side management is foreseengtthese households. The importance of respecting gride|
play a crucial role in providing the exibility needed for gperational constraints in demand-side management was re-
load balancing and congestion control in systems with a higlntly exemplied for the case of electric vehicles in low-
penetration of renewable energy generation. A repres".wtatvonage networks [20].
set of recent work in that direction can be found in [2]-[7].  \ith these objectives in mind, our proposal is to use a
Various entities in power systems and electricity markeffata-driven statistical approach to estimate and foretteest
may be interested in optimally utilizing the exibility of gynamics of the consumers' elasticity. This task is perfedm
household-type of electricity consumers. In contrast ®dh sing data measurable at grid level, removing the need to
rect control of households' consumption, where two-way €0njstall sensors and communication devices between eaéh ind
munication is required so that the system operator mayttiirecyigual consumer and the price-generating entity. This psap
_ _ _ contrasts with recent studies, where price response isnesku
The authors are with the Department of Applied Mathematics @aoh-

puter Science at the Technical University of Denmark (emaildo@dtu.dk, to be determiniStiC{ also not being based on real data, 214. |
ppin@dtu.dk, hmad@dtu.dk) [22]. Here price signals are subsequently generated by em-

I. INTRODUCTION
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bedding the forecasts (and their uncertainty) within a €eanThe vector of coef cients , corresponding to the price input
Constrained (CC) optimization framework. The advantage wériable de nes the impulse response function from price to
the proposed CC optimization approach is to explicitly aecto consumption, characterizing the price-responsg.in
for uncertainty in the price response of consumers, as \gell a At time t, the optimalk-step consumption prediction mini-
for a pre-de ned maximum for allowed consumption levelsmizing squared errors is the conditional expectation [E8}.
within the problem de nition. the FIR model (2), this forecasting is given by

The paper is structured as following. In the rst stage, _ . s )
Section Il describes the mathematical background for the Gorjt = B CordRerije = Revpge (3)
price-response model. This is followed in Section Il byrhe input vector®;. yj; of explanatory variables is noted as
the presentation of the price signal generator in a changeforecast since it may indeed include predictions of certai
constrained optimization framework. The application ddtth variables, e.g., price and temperature at tiek.
methodology to a real-world test is described in Section IV, In order to estimate the coef cients in the FIR model (2),
based on a dataset composed by more than 500 househpddsirsive and adaptive estimation is used based on Reeursiv
in Denmark subject to different price and control schemeiseast Squares (RLS). For an introduction to RLS estimation
It is there shown how our proposal allows smoothing arid FIR models, the reader is referred to Ref. [23]. It cossist
moving consumption peaks. Concluding remarks end the pap@dating the model coef cients at every timevhen new data

in Section V. becomes available, with the following two-step procedure,
Rt = Rt 1+ XtXt>
Il. PRICE-RESPONSEMODEL 4)
AN _ A 1 > A
t= t 1t R ™ Yt X{ Tt 2

The mathematical background of the price-response model
follows that in [19], which extensively described a numbek order to avoid computational issues related to matrieiinv
of models for the dynamics of demand response to priggn, R, should be initialized with suf ciently small values
signals. First, electricity consumption ought to be brodlewn  and not inverted before, say, 100 matrix updates. Similarly
into two additive components, that is, its non-responsivé athe various explanatory variables whose successive values
responsive parts, composex should be normalized. The vectdt of model
coef cients can be initialized with a vector of zeros.

G = f(e 1z + o(pize); (@) Here it is assumed that the dependency between consump-
with tion, price, and the other external variables, can be desdri
- using the general linear model (2). If for some other tesésas
& 1=[C 1;015G ] this assumption was not deemed acceptable, nonlinearities
Bt =[Pres; Pt Les] could be included in different ways. For instance by using
2=[z;::0z 0,1 basis functions in a linear approximation, e.g., with polyn

_ mial and spline bases, or Fourier and exponential series. A
wheren; and n, denote the nite number of lags for pastdiscussion of methods permitting to handle the nonlineaeca

values of consumptioe and external variables in uencing including recursive and adaptive estimation, can be found i
consumption at time. The price responsive component oRef. [19].

the end-user consumption depends on a time window of
L price values, some before and some after the target time |||. GENERATION OFOPTIMAL PRICE SIGNALS
t. The number of future prices in uencing the consumption
is specied by the termS 0. Following intuition, only
the responsive part of the consumption is expected to

controllable with price S|gr.1als.. : ... _.instance be used by a Balance Responsible Party (BRP) as
Even though consumption is split conceptually, it is .St'l tool to evaluate and compare the effects of different price
th.e overall consumption that Is to be. m0d8|ed a‘.‘d pred'Ct‘?};:iriations. Formally, a BRP has the responsibility to iesur
With f(_)cus on thet!mpact gf Iprllce_ varlatlc_mz. _In :L"S fpapear ]Ehthe match between supply and consumption of electric energy
generic consumption mode (1) is specied in the form o its balance area, while being nancially penalized foryan
Finite Impulse Respond€IR), see e.g. [23]. In such a form’deviation that may arise. Effectively here, the price-cese

price and external variables (outdoor temperature foamst) model can be embedded in a price signal optimization siyateg

2r'e:|ger<;0léplleg,rand :]hs pr;(cer respémse Conrferqlljﬁzﬂyrﬁr:lﬁgrose purpose is to optimize prices in view of the BRP's
odetlorc can be expressed as a general finear mo jectives, as well as of the potential exibility of consers.

The price-response model discussed in Section Il allows
redicting and simulating electricity consumption undarl-m
Sle pricing scenarios, along with its uncertainty. It ctom

G=€ o+ B ptEH 2t =X * 1 2) At every timet a sequence oK future price scenarios_
_ _ . _ _pi+i;k=1;:::;K, can be generated, and the corresponding
variance, whereas andx; are de ned as Eg. (2). The consumption values based on the reference

xe =[€ AT

_ >, >, >, X .
=l cipr 217 nario happens to exceed a pre-de ned sequence of maximum
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instance originates from grid constraints at the distidyut predictive controllers e.g. [19]. In a way this approach mren
level (as for the EV charging problem of [20]) or decidedexible, as it allows for any consumption pattern, provided
upon owing to expected prohibitive balancing costs. The BRRat the probability to exceed constraint (5) is lower thiaa t
would then like to incentivize modi cations in consumptiondesired probability .
so as to stay as much as possible below that maximumThis type of CC optimization formulation has been exten-
level, by introducing deviations in prices from its markesively studied in Operations Research. Applications of CC
values. This is done here by setting up anoptimization j@mbl optimization (or CC programming), are rather broad: resierv
imposing a level of condenc&  on the maximum allowed operation [24], ground- ow management [25], portfolio man
consumption level, agement [26], chemical engineering [27], and power system
max ) o studies [28]-[30], among others. For extensive reviews on
PG >Cirk <5k =1;:0K ) the theory and applications of CC optimization problems, th

induced by changes in prices. Note that there is still gion to showing how, under the assumption of linearity and
probability of exceeding the constraief}y. Gaussianity, the CC is equivalent to a deterministic convex
Let F; be the information set available at tinte i.e., programming problem, and to how it can thus be solved
containing the measurements and potentially forecastx-of ef ciently.
planatory variables needed as input to the FIR model (2).Since the price-response model (2) is a linear one, assuming
The optimization objective to be minimized is de ned aghat the random variables are Gaussian and independent,
the deviation between the potential temporal evolution difie objective function (7) has a quadratic form, and the
consumption (which we refer to as trajectory or scenarigpnstraints (5) can be expressed based on quantiles with
over theK lead times if in uenced by price signals, and thenominal proportionl for the predictive distribution of
consumption trajectory that would realize if no price signaonsumption,
was used, . q NOD)
X # ik et Prek pt Zak 2+ Varf g U < (9)

. 2.
min  E Ci+kjt  C+kjt JFt (6) N (0;1)

Pret 3P t+ K k=1 where g is the quantile with nominal proportiot
. . . . _of a standard Gaussian variatlg(0; 1). The quantile in (9)
ui)érg:ili:gglbngc:ir\]/ee :‘Il:]r?;:o:)rtrg bo; r(r?i)nilrrr]]tige(de), we obtain Benters a linear inequality directly in uenced by the deaisi
q I ' variables. The resulting CC problem formulation has quécra
2 objective function and linear inequality constraints. dincbe
H > . . .
min Bk p Piok p s (7)  written in a compact manner as

also being a direct function of the price signals

2
>
Pis1 i1l P+k, Which are the decision variables of the pi bk Pk » Plek b

k=1
optimization problem. st > g + 7
Prices are also assumed to be non-negative, hence a furthér e‘*é ¢ Pk pt Fek oz
constraint is imposed +  Varf t+kgqu\l O o) =1::0K
p+k 0 k=1;::5;K: (8) Pk 0 k=1;:::;K
The optimal solution is the price signg], ,;k = 1;:::;K  where thep. 's are theK decision variables, and whereis
and corresponding consumption ,;k = 1;:::;K, attaining an input parameter de ning the probability that the openadil
the minimum of (7) whilst ful lling the constraint in (5). constraint is not respected.

As a result of the above optimization problem, prices are The reader can easily verify the convexity of the quadratic
issued so that operational constraints are fullled with éorm of (6), hence yielding a convex optimization problem.
minimum impact over the reference household consumptiofhhe optimal solution can be obtained by a straightforward
namely the consumption that would have occurred if disrepplication of Interior Point (IP) methods, already extesly
garding operational constraints. Note that the potentigles employed for a number of practical applications [33], and
variations are here neither bounded nor directly penalizeavailable as part of off-the-shelf optimization solvers.
though they could be, for instance in line with the recent In general an IP method is an iterative procedure, where
proposal in Ref. [18] where the allowed range for price vareach step requires the calculation of the rst and secondrord
ations is seen as de ned through retailer-consumer castraderivatives of the objective functions and constraint fiorts.
or through regulation. Such aspects could be accounted For many practical applications interior-point methods ca
in the above optimization problem by adding a penalizatisolve the problem in a number of steps or iterations that is
of prices and their variations in the objective function,byr almost always in the range between 10 and 100. Ignoring any
introducing additional constraints re ecting an agreedc@r structural peculiarity of the problem (such as sparsitgghe
range. It is also important to notice how the proposed C&ep requires on the order ofax n3;n?m;F operations,
approach does not attempt to impose a speci ¢ time patternweren is the number of decision variables, is the number
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of constraints, andr is the cost of evaluating the derivatives. All households in the experiment eventually received elec-
Description of IP methods and descent methods, as well tasity priced as 'spot price with nancing', which in praice
further analysis of their complexity, can be found in [34]. is the market price plus an overhead of 1-2 gre (hundreds of
Danish Crown). Data was collected over a period between
IV. APPLICATION TO PRICERESPONSIVE HEATING April 2007 and March 2009. The data points are hourly
SYSTEMS measurements of electricity consumption, but not for the

A case study is presented in the following, showing hov{pdividual households, rather as mean values for everygyrou

using the above methodological proposal, household heat-
ing can be used to bring exibility into the power system.
Household heating systems can be seen as exible devices,
hence endowed with inertia due to the time constants indolve
in their heat dynamics. Other exible devices that could be
considered include cooling systems, hot tap water heating,
space heating, air conditioning systems, etc. Flexibldécgsv
have the property such that they can be turned off (or more
generally, pushed away from their reference functioninigtpo
during a short period of time with no or very little conseqoen

on the comfort of household occupants. Such feature can be
exploited to provide services to the power system in a market
environment.

The experimental data was collected in the frame of the
DEVI experiment, within the FlexPower project [14], as rst
described below. Subsequently, the way the FIR models were
tted is presented, followed by a visualization of the comg
tion response to prices identi ed from the experimentaladat

Finally, the chance-constrained optimization used forceri
generation is illustrated. Fig. 1. Deviation in consumption between the control groug #re price-
responsive groups.

. The price-responsive behavior can be qualitatively oleskry
A. The DEVI experiment by conl?ronting 'E)he consumption of the gifferently Br/egudate
The experiment was conducted in South Jutland (Denmaggbups against that of the control group. Fig. 1 shows that
to identify and measure the response from more than 5@fhsumption patterns are similar during the summer period.
households Subject to different kinds of schemes for I'Q.[ylga During the winter instead, when a Signi cant overhead is
their electricity consumption. brought in by heating costs, the consumption of the various

All households in this experiment have a high consumptigagulated groups tends to be lower than for the control group
of electricity for heating (more than 15000 kWh/year). In the

winter period, in fact, the electricity consumption is ab8lb o ]
times more than in the summer period. Different regulatidd- Estimation of the price response
methods have been used: The generic model structure presented in Section Il is
- Electronic housekeepef20 households) - An installed here adapted to case of the DEVI dataset. In line with the
electronic system that shows the price signals, to whigxperimental setup, consumption time series are considere
the users can manually respond to by turning the heating aggregated level, not for individual households.
up and down; The control group serves as a reference to monitor the
- Email (114 households) - The users receive a daily mdiehavior of consumers not being responsive to price variati
containing the prices for the next day, inducing a potentidlhe hypothesis is made that for all other groups, if they were
manual response; not price-responsive, they would follow the same consuompti
- SMS(35 households) - The users receive a daily SM@attern as for the control group. The approach therefore con
containing the prices for the next day, inducing a potentialsts in modeling the control group consumption, and then th
manual response; deviation of each price-responsive groups from this refeze
- DEVI (16 households) - An installed system that collectgattern. Furthermore, price responsiveness is assumegdaonl
the prices and automatically regulates the heating so tliegating, as winter electricity consumption weights morenth
more electricity is used when prices are low and les¥% of total annual consumption.
is used when prices are high. The individual householdsThe data available, as envisaged in an indirect control
have a certain degree of control over the equipment aframework, does not make distinction between heating and no
can e.g. decide how high and low the inside temperatuneating (seen a base consumption) usage of electricitg Thi
is allowed to be; is somehow handled by the models based on the previously
- Control group (355 households) - No speci ¢ installedformulated assumption that it is the heating part of the
system, while not receiving any price information. consumption that is responsive to prices.
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The comfort needs of the electricity consumers vary during The choice of the categories is done by combining
the day, mostly depending on whether or not they are at honaiferent types of classi cation, such as hour of the dayy da
thus the base consumption is a time-dependent variable Hef the week, month, season, working day, holiday, etc. It is
a simple look-up table representation is adopted, where tingortant to keep in mind that the number of categories can
time variable is classi ed in categories. We denotelbyhe grow very fast. Large number of categories increases model
set of conditions, and with(i; t) a Boolean function returning complexity, and affects its generalization ability. On titeer
1 if conditioni 2 | is true at timet, and zero otherwise. For hand, different classi cations may be equivalently dgstive
eacht there is one and only onie2 | such thath(i;t) = 1. even though leading to signi cantly different number of pa-
Henceb(j;t) =0 forall j 6 i. rameters. For instance, Fig. 2 shows howtihee of the

The only external variable considered is a function of thday = working-day/holiday classi cation, having 14
external temperature, denoted Bybeing the signed deviation categories only, can be used insteadiofe of the day
of actual temperature from a reference of €7 This deviation day of the week , yielding 168 categories. Both rep-
is calculated based on a weighted average of the actoa$entations, in fact, show that the daily base consumption
temperature observations over the previous 72 hours. If thas two peaks, one in the morning and one in the evening
temperature is above 9@, thenT is set to 0.T can then be around 19:00. The peak in the morning is around 7:00 during
seen as a variable directly inducing needs for electricilhgat the working days, and around 10:00 during the non working

The control group consumptioct® is described with the days.
linear model The selected model has parameterizafion= 3, M =1,

jl'j = 14, with a resulting coef cient of determination of 94%.

6 = o S8, + The reduced number of past temperature teknshould not
b i+1 .. . . .

i=1 be surprising, as the variable is time aggregated and thus

X it represents a cumulative indicator of the energy needs for
+ i Tt e + b (i t) + "CC; heating.

i=1 i21 The model, whose parameters are estimated adaptively
where"£€ is a centered Gaussian noise with nite variancgsmﬁ afp rggttinlg fa ctor = 0:?]95, aII_ows.for stablehextendhgdh
CG . The model complexity is chosen such that an increagléoc astic simulations, as shown in Fig. 3. Perhaps, higher

in the number of lags does not signi cantly improve perforperformance could be obtained by selectinguith a proper

) . cross-validation exercise, like illustrated in [23]. Hoxee
mance, measured by a coef cient of determinat®f . R .
even with the actual parameterization, both the whiteneds a

the Gaussianity (Fig. 4) of the residual prediction errpf
could be con rmed.

Fig. 3. Stochastic simulation of the control group consunmpti®olid line
are measured data, dashed lines are the 95% predictionahtegrey lines
are consumption scenarios obtained by Monte Carlo simulation

The response of consumers to prices for ittth group is
modeled as the deviation from the control group,

cG x cG
Gy G = cij Gt j Gy *
j=1
10
Re (10)
+ piii Pt j+s * eij & j "t
j=1 =1

Fig. 2. Two equivalent categorization for the base consumpti
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(a) Elect Housekeepers (b) Email

Fig. 4. Gaussian quantile-quantile plot for the controlugranodel residuals
€G collected up to 4 Nov. 2008.

(c) SMS (d) DEVI
with " a centred Gaussian noise of nite variance, and where
the termse, are the past prediction errors, thus yielding &ig. 6. Gaussian quantile-quantile plots for the model reslil | for the
moving average component. The deviations in consumptit#{ious regulated groups, collected up to 4 Nov. 2008.
with respect to the control group is based on a certain number
S of future prices. C. Visualization of the price response

The optimal parameterization of the selected models WaSri EIR models tted previously may then be used to visu-

O'Zta'”eo' after maX|m|zat|.on 9f the coef cient of deterrtioa lize the nature and dynamics of the response to price signal
R*. The same parameterization was chosen for all models. Tz!seidenti ed based on the experimental data. In practics, th

pr_u;]e rlespli)nie tgrr_n co(\Jlgrf 2a4t|rr]ne wm_I(_jr(])wLot _36 hours, is done by isolating the change in electricity consumption
with a look ahead time 0% = ours. "€ Moving average;,;cqq by a unit step change in price—for instance, and

countsRe = 24 past prediction errors, whereas only one autqﬁ rease of 1 Danish Crown at a given tité-or that purpose,
r%gresg\;e terrﬁe - lfwas qeedfed. Parilrr:)e.tgegs wgr?dgst|mat exploit the superposition principle, which is valid fardar
adaptively using a forgetting factor = 0:995 yielding a systems [23]. It translates to calculating the differenoe i

. L o ;
coef cient of determination of 77% for the electronic house onsumption between two simulations, one being the reéeren

Iéeep.tlar group, |§'2%5for: the DEVI grOlIJp' ;36% for_ SM% a,nézﬁnario with constant electricity prices, and the othee on
mail groups. Fig. 5 shows an example of scenarios obtal ing the same characteristics except for a change of one

.by Monte Carlo simulation, along with e;timated .preQictio:anit in the price at a given time Both simulations have the

mtervals,'for the DEVI group. The Gaussu'an quantile-gikant same duration and initial conditions, while they ought to be

plots_of Fig. 6 |I_Iustrate that the mo_del re5|duals_ are vdoge long enough to ensure convergence so that the whole price

to being Gaussian, maybe except in the very tails for the DEﬁsponse pattern is observed. In the present case, thesresul

group. obtained for the various groups and their associated tt#l F
models are gathered in Fig. 7. In this gure, the step change
in price occurs at the “0” time index.

Fig. 5. Stochastic simulation of the DEVI group consumptione Bolid line

is for the measured data, dashed lines are for the 95% pratioterval, while

the grey lines are the scenarios obtained by Monte Carlo atioul
Fig. 7. Response of consumption to a step change of 1 DanislnCiro
price, as described by the FIR models tted to the experimeatdsd.



IEEE TRANSACTIONS ON SMART GRID, SUBMITTED, OCT 2012 7

All groups respond by increasing the consumption before
the price increment, and by decreasing the consumption afte
the price increment. As expected, pre-heating takes place
during periods of low prices in anticipation for future hagh
prices. Normally, price uctuations take place during a gho
period of time, whereas it takes a certain time for the house-
hold temperature to reach its reference. Therefore, imduci
changes in household electricity consumption by sendiiog pr
signals barely reduced their comfort. If the price remaiigé h
the consumer groups reduce consumption, hence they reduce
the temperature in the house and the corresponding comfort
level. The only exception is for the electronic housekeeper
group. The pre-heating in this case is signi cantly higheart
the other groups, but eventually, if the price stays higle, th
consumption remain unchanged.

Besides the noise caused by the limited sample size of the
regulated households (i.e., the number of participanthén t
regulated experiments), the rather harsh shape of the step-
response function in Fig. 7 may be also interpreted as a céif- 8 ~Example of a scenario where pre-de ned maximum consumpti
sequence of very nature of the demand response mechanlg\llﬁl.ctk is likely to be exceeded by the participants in the DEVI group
Indeed, electricity consumers are not bounded to any speci

responsive mechanism (since manual), hence their individu_Market prices handfelectrlcny c'ol.nsgmptlork\‘. are mutually
response can be fairly diverse. dependent, as they form an equilibrium. This can be ob-

served in the critical scenario of Fig. 8, where the price
peak corresponds to a higher consumption level. The CC
D. Control by price using chance constrained optimization optimization framework is conceived in order to alter thie@r

The FIR model for the DEVI dataset, described in geg&onsumption equilibrium as little as possible. The impéct o
tion IV-B, is here embedded within the CC approach tdhe opt'imization on the original price signal can be pbsérve
the determination of optimal price signals, in turn desadib from Figs. 9, 10, and 11, where the CC problem is solved
in Section Ill. As an illustrative example, we consider &7 increasing levels of condenca . In all cases, the
situation where the price signal is unique, and we test tQBtimized price tends to anticipate the price peak, trigaer
CC optimization assuming that the price-response mecimani@ Smoother and distributed consumption response. The impac
is represented by the DEVI group. In fact, among the fof the optimization on the original price signal grows wittet
groups considered, DEVI is the only one equipped Witﬁesqed level of con dencd _ assigned to the pre-de ned
fully automatic responding devices, hence re ecting theaid Maximum allowed consumption level.
population of exible electricity consumers.

We address the situation where, at tiljeax possible issue
with consumption reaching a level above the capacity lisnit i
foreseen over the range of the lead times. Such situation is
depicted in Fig. 8, where the system capacity ligfif*; k =

is assessed by the BRP, using the FIR model to simulate the
end-user price response, based on the temperature forecast
and on market prices. Consequently, the BRP iterates on
potential price signals through the CC optimization apphoa
then eventually sending an optimized prize signal back ¢o th
households.

determined by imposing a level of con dende of not

exceeding the pre-de ned maximum allowed consumption for

the group, as in (5). Since the DEVI model described ifg 9. DEVI group consumption response to CC optimized prigaals,
Section IV-B is linear, the system capacity constraintsSh (when the con dence level i& ~ =80%.

take the linear form of (9), while the objective function (i) It is important to notice how peaks and uctuations in
the CC optimization is quadratic. The optimal solution isrid both the optimized price signgd, and related successive

using IP methods and the optimized set of price sigpalss consumption values,, ;k = 1;:::;K are similar to the
sent to the households. For each value pthe optimization reference scenarip.x ;k =1;:::;K, andc;k=1;:::;K.
took less than a tenth of a second, using a standard quadritare speci cally, whenl = 95% (the most constraining

programming solver coded in MATLAB. case), there is a maximum deviation of 41% in price, and
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deemed suf ciently accurate for describing the dynamics of
consumption as induced by external weather variables and
price variations, it may be that more advanced modelling
approaches could be used in the future, potentially allgvian
more accurate and skillful forecasts of consumption dyeami
This would come at a cost though, since embedding nonlinear
models and resulting forecasts in a price generator woukt mo
certainly result in more complex optimization problems.

The price signal was optimized by embedding the FIR
model within a CC optimization framework. The CC opti-
mization problem may be de ned by the BRP, setting a time
sequence of maximum admissible loads over a set of lead
times. Those maximum acceptable values may be motivated
by technical constraints at the grid level, or simply owing

Fig. 10. DEVI group consumption response to CC optimized psigaals, to market costs considerations for the aggregator/retpii@

when the level of condence i§  =90%. viding electricity to these households. The BRP can set the
level of con dence for the maximum consumption limits, and
the CC optimization yields an optimal price signal ful Iin
the constraints with a minimum deviation from the original
consumption pattern. The optimization criterion is based o
the consideration that market prices and consumption devel
are mutually dependent. The linearity of the price-respons
models is exploited so that the CC problem is quadratic and
convex. Optimal price signals can then be readily obtained
using IP methods.

The methodology was applied to the real-world test case
of the DEVI experiment in order to show its practical ap-
plicability. The way peaks in consumption may be smoothed
in time by anticipating price peaks was illustrated. Foilogv
intuition, the higher the level of con dence for maximum éba

Fig. 11. DEVI group consumption response to CC optimized psigaals, constraints is, the more the optimized price deviated frben t
when the level of condence i4  =95%. market price.

This proposal methodology comprises an alternative to

16.5% in Consumption. Meanwhile, this translate to an iasee existing proposa|s in a model predicti\/e control framework
of total costs for the consumer of only 1.2% with an overajence considering real-time dynamic pricing. Optimal dete
consumption decrease of 0.22%. This suggests that, bothnifhation and broadcast of prices a fair amount of time in
terms of total costs and consumption, the price signal hagvance permits to plan consumption in a way that may not
signi cant short-term impact, and close to negligible impa pe possible with real-time pricing. In practice, it is bebd
on overall consumption and costs for the consumers. It alggyt the two approaches ought to be combined: similarly to
shows that realistic price signals can be generated evéoutit current market organization today, demand-side managemen
imposing tight price constraints, and without attempting thased on price signals should consist of two stages, ie., th
force the consumption through a speci c time pattern. In thgay-ahead optimization of consumption patterns in view of
presented CC formulation, in fact, the only price constraiglynamic operational constraints, and a real-time balancin
is non-negativity (Eq. (8)), whereas the consumption carehastage based on real-time pricing. The respective advasmtage
any pattern not exceeding the pre-de ned maximum constraignd drawbacks of these complementary approaches, both in
terms of economics and power system aspects, should be the
V. CONCLUDING REMARKS focus of future work.

The price-responsive consumption of household-type of
electricity consumers was modeled using stochastic FIR-mod
els, hence also accounting for uncertainties in their con-
sumption pattern and response to price variations. ModelsThe work presented was partly supported by the Danish
parameters were adaptively estimated in a RLS framewofRublic Service Obligation (PSO) Fund, under the FlexPower
permitting to track smooth changes in consumer's respamseptroject (contract no. 2010-1-0486), as well as by the iPower
price variations, which may naturally change with time anplatform project, supported by DSF (Det Strategiske Forskn
seasons in the case of electric heating. Recursivity aoditi ingsiad) and RTI (Rdet for Teknologi og Innovation), which
ally allows decreasing computational costs - a nice featuaee hereby acknowledged. The authors additionally acknowl
when aiming to embed predictions and scenarios in a reatlge the four reviewers and the editor for their comments and
world optimization problem. Even though FIR models wersuggestions.
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