Accepted Manuscript

Probabilistic online runoff forecasting for urban catchments using inputs from rain gauges as well as statically and dynamically adjusted weather radar

Roland Löwe, Søren Thorndahl, Peter Steen Mikkelsen, Michael R. Rasmussen, Henrik Madsen

PII:	S0022-1694(14)00212-1
DOI:	http://dx.doi.org/10.1016/j.jhydrol.2014.03.027
Reference:	HYDROL 19485
To appear in:	Journal of Hydrology
Received Date:	29 November 2013
Revised Date:	21 February 2014
Accepted Date:	10 March 2014

Please cite this article as: Löwe, R., Thorndahl, S., Mikkelsen, P.S., Rasmussen, M.R., Madsen, H., Probabilistic online runoff forecasting for urban catchments using inputs from rain gauges as well as statically and dynamically adjusted weather radar, *Journal of Hydrology* (2014), doi: http://dx.doi.org/10.1016/j.jhydrol.2014.03.027

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Probabilistic online runoff forecasting for urban

2 catchments using inputs from rain gauges as well as

3 statically and dynamically adjusted weather radar

4 Roland Löwe^{a,*}, Søren Thorndahl^c, Peter Steen Mikkelsen^b, Michael R. Rasmussen^c,

5 Henrik Madsen^a

6

7 *correspondence to:rolo@dtu.dk, +45-45253399

- 8 ^aDepartment of Applied Mathematics and Computer Science, Technical University of Denmark (DTU
- 9 Compute), Matematiktorvet B322, Kgs. Lyngby, 2800, Denmark, rolo@dtu.dk, hmad@dtu.dk
- 10 ^bDepartment of Environmental Engineering, Technical University of Denmark (DTU Environment),
- 11 Miljøvej B113, Kgs. Lyngby, 2800, Denmark, psmi@env.dtu.dk
- 12 ^cDepartment of Civil Engineering, Aalborg University, Sohngårdsholmsvej 57, Aalborg, 9000,

13 Denmark, st@civil.aau.dk, mr@civil.aau.dk

- 14
- 15 ABSTRACT
- 16

17 We investigate the application of rainfall observations and forecasts from rain gauges

- 18 and weather radar as input to operational urban runoff forecasting models. We apply
- 19 lumped rainfall runoff models implemented in a stochastic grey-box modelling

20 framework. Different model structures are considered that account for the spatial

21 distribution of rainfall in different degrees of detail.

- 23 Considering two urban example catchments, we show that statically adjusted radar
- 24 rainfall input improves the quality of probabilistic runoff forecasts as compared to

25	input based on rain gauge observations, although the characteristics of these radar
26	measurements are rather different from those on the ground. Data driven runoff
27	forecasting models can to some extent adapt to bias of the rainfall input by model
28	parameter calibration and state-updating. More detailed structures in these models
29	provide improved runoff forecasts compared to the structures considering mean areal
30	rainfall only.
31	
32	A time-dynamic adjustment of the radar data to rain gauge data provides improved
33	rainfall forecasts when compared with rainfall observations on the ground. However,
34	dynamic adjustment reduces the potential for creating runoff forecasts and in fact
35	also leads to reduced cross correlation between radar rainfall and runoff
36	measurements. We conclude that evaluating the performance of radar rainfall
37	adjustment against rain gauges may not always be adequate and that adjustment
38	procedure and online runoff forecasting should ideally be considered as one unit.
39	
40	Keywords
41	Stochastic grey-box model, radar rainfall, radar adjustment, probabilistic forecasting,
42	real time control, urban hydrology
43	
44	Received
45	2014/02/21
46	

48 **1 INTRODUCTION**

49

50	Urban catchments are typically of a spatial extent where a homogeneous distribution
51	of rainfall over the catchment cannot be assumed. This is one of the main drivers for
52	developing real time control (RTC) setups for urban drainage systems. The load on
53	the sewer network is higher in some places than in others, which results in an uneven
54	use of the available storage capacities. This suboptimal load distribution can be
55	improved by a dynamic operation of the network. As a result, combined sewer
56	overflows can be reduced, for example.
57	
58	Real time control systems are in operation in a multitude of urban catchments (Fuchs
59	and Beeneken, 2005; Pleau et al., 2005; Sharma et al., 2012, Seggelke et al., 2013).
60	Classically, decision making is done on the basis of offline knowledge about the
61	system, for example in a framework of decision rules. More recent developments
62	incorporate an online optimization of the system that accounts for runoff forecasts
63	(Puig et al., 2009; Vezzaro and Grum, 2012). The control setup suggested in Vezzaro
64	and Grum (2012) makes it possible to account for forecast uncertainties in the
65	optimization and decision making process.
66	
67	In a dynamic optimisation based real time control setup, simplified rainfall runoff
68	models that lump a bigger part of the catchment are typically applied for forecasting

- 69 over short horizons of a few hours as they are fast enough to generate forecasts
- 70 within seconds to minutes (for example Pleau et al., 2001, Puig et al., 2009, Vezzaro
- 71 and Grum (2012)). Using highly simplified models for forecasting is also common in

72 other fields like district heating (Nielsen and Madsen, 2006) or wind power 73 forecasting (Giebel et al., 2011). Apart from being computationally efficient, lumped 74 models make the application of statistical techniques such as state-updating and 75 automated parameter calibration easier. Generating runoff forecasts in such an on-76 line setup is the case we consider here. 77 78 Generating runoff forecasts on-line requires rainfall inputs. For forecast horizons up 79 to two hours, rainfall radars are currently the only means that provide the possibility 80 to generate rainfall forecasts with a spatial and temporal resolution suitable for urban 81 catchments. Examples of radar rainfall forecasting systems applied for quantitative 82 online predictions in urban drainage systems are rare (Einfalt et al., 2004), but can 83 for example be found in Einfalt et al. (1990), Kraemer et al. (2005) and Thorndahl 84 and Rasmussen (2013). 85 Emmanuel et al. (2012a) discourage the direct application of the French operational 86 87 weather radar product for quantitative purposes in urban hydrology. Similarly, other 88 authors propose an adjustment of radar data to rain gauge measurements (Thorndahl 89 et al., 2009; Villarini et al., 2010). Whereas the results of Villarini et al. (2010) 90 suggest a constant bias between radar and rain gauge measurements during an event, 91 other authors propose adjustment of radar measurements to gauge data also in the 92 course of an event (Borup et al., 2009; Brown et al., 2001; Chumchean et al., 2006; 93 Thorndahl et al., 2009, Wang et al., 2013, Wood et al., 2000). Gjertsen et al. (2003) 94 and Goudenhoofdt and Delobbe (2009) give overviews of different methods applied

95 in Europe.

R

96

97	Radar adjustment is quite usually demonstrated to be beneficial by validating
98	adjusted radar observations against rain gauge observations (Goudenhoofdt and
99	Delobbe, 2009, Smith et al., 2007, Thorndahl et al., 2014, Wang et al., 2013) or by
100	generating runoff forecasts from models that were statically calibrated using rain
101	gauge input (Borup et al., 2009, Cole and Moore, 2008, Vieux and Bedient, 2004,
102	Wang et al., 2013). The improvement in runoff forecasting performance may
103	however be less clear for auto-calibrated online models that can dynamically adapt to
104	observations as well as different rainfall inputs. In such cases the skill of different
105	quantitative precipitation estimates to describe runoff should be assessed instead.
106	Gourley and Vieux (2005) follow this thought on a 1200 km^2 catchment to compare
107	results of spatially variable radar adjustments against mean field bias adjustment by
108	evaluating hydrologic simulation results with different rainfall inputs and ensembles
109	of different model parameters. They argue that rain gauge data may not be sufficient
110	for the validation of quantitative precipitation estimates (QPE) as they are often used
111	in the QPE algorithm itself, because rain gauge point measurements are often
112	inaccurate and because there are issues of different scales between rain gauges and
113	remotely sensed rainfall. The value of time varying radar adjustments for urban
114	online runoff forecasting is in our view unclear.

115

A second issue in the generation of online runoff forecasts is the required spatial resolution of the rainfall input. A multitude of studies have been performed in hydrology as to what degree of spatial model resolution is appropriate. The results from the Distributed Model Intercomparison Project (Reed et al., 2004) show in a

120	non-urban context that conceptual models outperformed distributed models in the
121	majority of cases. Das et al. (2008) give an overview of studies and find that
122	generally, a higher spatial resolution does not necessarily lead to improved model
123	performance. The authors conclude that a multitude of factors like scale of the
124	catchment, physiographic characteristics or data availability influence model
125	performance and that a lower, optimal limit of spatial resolution is to be expected
126	because the model "represents spatial average behaviour". This is underlined by
127	results obtained by the authors in predicting river discharge from a 4000 km^2
128	catchment using different degrees of spatial resolution of model input data.
129	
130	In urban hydrology, where catchment response is generally much faster than in
131	natural catchments and data typically available in higher resolutions, Schilling (1984)
132	and Schilling and Fuchs (1986) find that spatial rainfall variability is the key factor
133	for the accuracy of simulations of urban runoff and that rainfall estimation errors are
134	amplified by the rainfall runoff models. The authors suggest the use of high
135	resolution rainfall data and simplified models for on-line operations. Using a
136	hydrodynamic modelling setup for an 1100 ha catchment, Schellart et al. (2011)
137	conclude that spatial resolution of inputs should be high (in their case 1 km ²) in order
138	to obtain a good representation of the observed flows in the sewer network. Finally,
139	Berne et al. (2004) suggest a spatial rainfall resolution of 3 km for a 1000 ha
140	catchment, while Emmanuel et al. (2012b) suggest 2.5 km resolution for a 600 ha
141	catchment and Schilling (1991) suggests 1 km for on-line purposes. Studies in urban
142	hydrology generally point in a direction where improved spatial resolution of rainfall
143	inputs leads to improved model performance, a result which is less clear in modelling

144	of river flows as the spatial scales considered are much larger and data more scarce.
145	We note that previous studies in urban hydrology focused on simulation, not on the
146	case of on-line runoff forecasting with models that adapt to observations, although
147	similar results may be expected.
148	
149	Despite the above discussed results on model performance considering different
150	spatial resolutions of rainfall inputs, a practitioners approach to building an on-line
151	forecast model for real time control would often be to lump the catchment upstream
152	from a control point. Practical experience suggests that the effect of this lumping on
153	runoff simulation quality is limited (Achleitner et al., 2007; Grum et al., 2011; Wolfs
154	et al., 2013). Similar to previous studies in natural catchments (Das et al., 2008), we
155	therefore consider lumped models of different spatial resolutions for runoff
156	forecasting in urban catchments over short horizons.
157	
158	Finally, runoff forecasts generated by any model are uncertain due to uncertain
159	measurements and forecasts of the rainfall input as well as an incomplete description
160	of the reality by the model. Achleitner et al. (2009) and Thorndahl and Rasmussen
161	(2013) evaluate the quality of urban runoff forecasts using radar rainfall input.
162	Acceptable forecast errors could be obtained for forecast horizons of 90 and 60
163	minutes, respectively. In an online setting, however, predicting also the uncertainty
164	of runoff forecasts is of strong interest. The performance of lumped rainfall-runoff
165	models in a stochastic grey-box layout was evaluated by Breinholt et al. (2011) and
166	Thordarson et al. (2012) but rainfall input was assumed known. We here present an

167	evaluation of probabilistic runoff forecast quality that can be obtained in a realistic
168	on-line setting.
169	
170	Other approaches for modelling uncertainty in conceptual models exist and these
171	apply Bayesian frameworks (Del Giudice et al., 2013, Kuczera et al. 2006, Renard et
172	al., 2010), for example, GLUE (Breinholt et al., 2013, Dotto et al., 2012, Thorndahl
173	et al., 2008) or simple output error methods (Breinholt et al., 2012). The approach
174	presented here distinguishes itself in the explicit focus on forecasting over a
175	multitude of horizons on a short time scale instead of describing simulation
176	uncertainty and thus improving the capability of the model to describe reality. In
177	addition, high computational efficiency is a focus of the presented approach.
178	
179	In the following, the article first gives an introduction to the rainfall data considered
180	as input for runoff forecasting in this study. Rainfall observations and forecasts from
181	rain gauges and two types of C-band radar data are evaluated and compared. The
182	types of weather radar data considered are
183	• temporally and spatially constant adjustment over the whole period (static
184	adjustment)
185	• time-dynamic mean-field bias adjusted to rain gauge measurements in the
186	course of an event, in addition to the static adjustment (dynamic adjustment).
187	The purpose of this evaluation is to demonstrate how the different rainfall
188	measurements relate to each other and that the dynamic adjustment indeed makes the
189	radar observations resemble the ground measurements more closely.
190	

171	Subsequently, the different rainfall measurements and forecasts are considered as
192	inputs for runoff forecasting. A quantification of probabilistic online runoff
193	forecasting skill is provided on a 100 minute horizon. We evaluate if runoff forecasts
194	can be improved by the different types of radar rainfall input and by an increased
195	spatial resolution of the forecast model.
196	
197	The article is structured as follows: section 2 describes the considered catchments,
198	available rainfall measurements, the methodology for generating and evaluating
199	stochastic runoff predictions, and the different model layouts considered. In section 3
200	we compare the available rainfall measurements from gauges and radar in the area,
201	and evaluate the runoff forecast quality obtained with different rainfall inputs and
202	model layouts. Finally, in section 4 we conclude the article.
203	
204	2 MATERIAL AND METHODS
201	- MATERIALAND METHODS
205	2.1 CATCHMENTS
205 206	2.1 CATCHMENTS
205 206 207	2.1 CATCHMENTSTwo catchments in the Copenhagen area are considered in this study. The Ballerup
205 206 207 208	 2.1 CATCHMENTS Two catchments in the Copenhagen area are considered in this study. The Ballerup catchment has a total area of approximately 1,300 ha. It is mainly laid out as a
205 206 207 208 209	 2.1 CATCHMENTS 2.1 CATCHMENTS Two catchments in the Copenhagen area are considered in this study. The Ballerup catchment has a total area of approximately 1,300 ha. It is mainly laid out as a separate sewer system but has a small combined part and shows strong influences
205 206 207 208 209 210	 2.1 CATCHMENTS Two catchments in the Copenhagen area are considered in this study. The Ballerup catchment has a total area of approximately 1,300 ha. It is mainly laid out as a separate sewer system but has a small combined part and shows strong influences from rainfall-dependent infiltration and misconnection of surface runoff to sanitary
 205 206 207 208 209 210 211 	2.1 CATCHMENTS Two catchments in the Copenhagen area are considered in this study. The Ballerup catchment has a total area of approximately 1,300 ha. It is mainly laid out as a separate sewer system but has a small combined part and shows strong influences from rainfall-dependent infiltration and misconnection of surface runoff to sanitary sewers (Breinholt et al., 2013).
205 206 207 208 209 210 211 212	2.1 CATCHMENTS Two catchments in the Copenhagen area are considered in this study. The Ballerup catchment has a total area of approximately 1,300 ha. It is mainly laid out as a separate sewer system but has a small combined part and shows strong influences from rainfall-dependent infiltration and misconnection of surface runoff to sanitary sewers (Breinholt et al., 2013).
 205 206 207 208 209 210 211 212 213 	 2.1 CATCHMENTS 2.1 CATCHMENTS Two catchments in the Copenhagen area are considered in this study. The Ballerup catchment has a total area of approximately 1,300 ha. It is mainly laid out as a separate sewer system but has a small combined part and shows strong influences from rainfall-dependent infiltration and misconnection of surface runoff to sanitary sewers (Breinholt et al., 2013). The Damhusåen catchment is located close to Ballerup but drains to a different
205 206 207 208 209 210 211 212 213 214	 2.1 CATCHMENTS 2.1 CATCHMENTS Two catchments in the Copenhagen area are considered in this study. The Ballerup catchment has a total area of approximately 1,300 ha. It is mainly laid out as a separate sewer system but has a small combined part and shows strong influences from rainfall-dependent infiltration and misconnection of surface runoff to sanitary sewers (Breinholt et al., 2013). The Damhusåen catchment is located close to Ballerup but drains to a different treatment plant. We consider the northern part of the catchment with a total area of

215	approximately 3,000 ha. The catchment is laid out as a combined sewer system and
216	consists of several subcatchments with a longest flow path of approximately 10 km.
217	
218	An overview of the catchments can be seen in Figure 1. Flow measurements
219	averaged over 5 min are available at the outlets of both catchments. Flow predictions
220	are generated for both outlets and compared to the observations at 10 min resolution,
221	where the measurements within an interval are averaged.
222	6
223	
224	FIGURE 1 APPROX. HERE
225	
226	
227	2.2 RAINFALL MEASUREMENTS AND FORECASTS USING GAUGES AND RADAR
228	Observations from tipping bucket rain gauges from the Danish SVK network
229	(Jørgensen et al., 1998) are available in the considered catchments. Rainfall
230	measurements are available at 1 min intervals and averaged to 10 min time steps
231	(equivalent to the temporal resolution of the radar data). In the rain gauge based
232	forecast models we use 2 and 4 gauges as input for the Ballerup and Damhusåen
233	catchments (Figure 1). The gauges are located within or close to the catchment
234	borders.
235	
236	Rainfall forecasts are generated from the gauge measurements using a local linear
237	trend method. A trend line is fitted to the rain gauge intensities in the past 100 min
238	and then extrapolated over the forecast horizon.
239	

240	The Danish weather service operates a C-band radar in Stevns approx. 45 km south
241	of the considered catchments (Gill et al., 2006). Measurements from this radar were
242	made available for this study with a resolution of 10 min and 2x2 km ² . Figure 1
243	shows the location of the catchments within the utilized C-band radar pixels.
244	
245	We apply radar rainfall forecasts with lead times up to 100 min generated by Aalborg
246	University using the CO-TREC algorithm (Thorndahl and Rasmussen, 2013).
247	Corresponding to the available temporal resolution of the radar data, we apply all
248	rainfall input data with a temporal resolution of 10 min. Considering the spatial
249	extent of the catchments and concentration times t_c above 60 min, this resolution can
250	be considered sufficient to capture the rainfall runoff process in the catchments.
251	Schilling (1991) suggests a temporal resolution of the rainfall data which is between
252	$0.2t_{c}$ and $0.33t_{c}$.
253	
254	2.3 RADAR RAINFALL ADJUSTMENT
255	C-band radar measurements are provided as reflectivities. A direct conversion to rain
256	intensities is commonly considered problematic. A methodology to adjust the radar
257	measurements to gauge observations has therefore been developed at Aalborg
258	University and is applied here.
259	
260	In the adjustment, the rain gauges marked in Figure 1 are used (SVK numbers 30252,
261	30309, 30313, 30316, 30319, 30326, 30348 and 30386). The adjustment is

262 performed with only 8 gauges distributed in the Copenhagen area, as one of the main

205	objectives for using radia rannan measurements is to derive rann mensities using a	3
264	small a number of ground measurements as possible.	
265		
266	In a first 'static' adjustment step, the coefficients in the reflectivity (Z) – rain	
267	intensity (R) relationship are adjusted for the whole data period (see Section 2.4).	
268	The rainfall depths from all rain events at all considered rain gauges are plotted	Q-
269	against the rainfall depths derived from the radar observations in the corresponding	
270	pixels. The Z - R coefficients are adjusted, such that the regression line between rada	ır
271	rainfall depths and rain gauge observations has slope 1 (Thorndahl et al., 2010). The	e
272	resulting Z - R relationship is used for deriving rain intensities over the whole data	
273	period.	
	$Z = 50 \cdot R^{1.8}$	(1)
274		

objectives for using radar rainfall measurements is to derive rain intensities using as

263

In a second 'dynamic' adjustment step, the radar rain intensities are again adjusted,
this time at every 10 min time step (Thorndahl et al., 2014). Considering the last 4
observations, a spatially constant adjustment factor is derived, such that the radar
measurements on average match the rain gauge measurements in the considered area.
This is a mean field bias adjustment in the sense of Goudenhoofdt and Delobbe
(2009), however, with an adjustment window of 40 minutes instead of one day.

When generating forecasts, the time-dynamic adjustment factor is, over a period of 120 minutes, linearly changed to 1 with increasing lead time. The linear transition towards zero-bias is performed because unrealistic and biased rainfall forecasts have

285	been observed on the longer lead times when forecasting with a time-dynamic
286	adjustment factor based on only the past 40 minutes.
287	
288	2.4 DATA PERIOD
289	We use a summer period of 2.5 months from 25/06/2010 until 6/09/2010 for
290	generating probabilistic runoff forecasts. Figure 2 shows rain gauge and flow
291	observations from the Ballerup catchment for this period. We can clearly identify the
292	diurnal dry weather variations and a number of rain events that can be considered
293	relevant for real time control purposes. The measurements contain no major gaps in
294	this period.
295	
296	FIGURE 2 APPROX. HERE
297 298	
299	2.5 STOCHASTIC FLOW FORECASTING
200	251 Country Meddlewert
300	2.5.1 General Model Layout
301	As mentioned before, we use stochastic grey-box models to generate flow forecasts
302	for the catchments. In the basic setup we use a linear reservoir cascade of 2 storages
303	with one rainfall input, implemented as stochastic differential equations in a state-
304	space model layout (Breinholt et al., 2011). The model is at every time step updated
305	to current flow observations using an extended Kalman filter (Kristensen et al.,
306	2004).
307	

308 This setup has been extensively tested for the Ballerup catchment but not for the

309 Damhusåen catchment. The model is obviously too simple, especially for the

310 (bigger) Damhusåen catchment. As we are mainly interested in investigating the

311 effects of different rainfall inputs on the forecasts, we still apply this most simple

312 setup. With respect to the magnitude of runoff forecast uncertainties, this could be

313 considered a 'worst case scenario'.

314

$$d\begin{bmatrix} S_{1,t} \\ S_{2,t} \end{bmatrix} = \begin{bmatrix} A \cdot P + a_0 - \frac{1}{K} S_{1,t} \\ \frac{1}{K} S_{1,t} - \frac{1}{K} S_{2,t} \end{bmatrix} dt + \begin{bmatrix} \sigma_1 \cdot S_{1,t}^{\gamma_1} \\ \sigma_2 \cdot S_{2,t}^{\gamma_2} \end{bmatrix} d\omega_t$$
$$Q_k = \frac{1}{K} S_{2,k} + D_k + e_k$$

$$Q_k = \frac{1}{K}S_{2,k} + D_k + e_k$$

(2)

(3)

315

316 (2) is called the system equation, where S_1 , S_2 correspond to the storage states, A to 317 the impervious catchment area, P to the rain intensity, a_0 to the mean dry weather 318 flow and K to the travel time constant. The uncertainty of model predictions is 319 described in the so-called diffusion term by a Wiener process ω_t . The increments $d\omega_t$ 320 of this process are independent and normally distributed with a standard deviation corresponding to the considered time interval dt. 321 322

323 The variance of the diffusion is here scaled dynamically depending on the current 324 model states S and a scaling factor σ . Such a scaling can be problematic for the 325 extended Kalman filtering. A Lamperti transform is therefore applied that removes

326 the state-dependency from the diffusion term and leads to a set of transformed drift

327	equations that equivalently describe the dynamics of the system, but have constant
328	diffusion (Breinholt et al., 2011).
329	
330	States and flow measurements are related in the observation equation (3). Q_k
331	corresponds to the observed flow values at times <i>k</i> , <i>D</i> describes the variation of the
332	dry weather flow using trigonometric functions and <i>e</i> corresponds to the observation
333	error with standard deviation σ_e .
334	6
335	We refer to Kristensen et al. (2004) and Breinholt et al. (2011, 2012) for a detailed
336	description of the modelling principles. We use the open-source software framework
337	CTSM for the modelling process (Kristensen and Madsen, 2003).
338	
220	2.5.2 Stochastic Model Levent and Brinfall Innuts
339	2.5.2 Stochastic Model Layout and Rainfan Inputs
339 340	To investigate the influence of spatial resolution of rainfall inputs on the ability to
339340341	To investigate the influence of spatial resolution of rainfall inputs on the ability to create stochastic runoff forecasts, we consider the following model layouts:
339340341342	 2.5.2 Stochastic Model Layout and Rainfall inputs To investigate the influence of spatial resolution of rainfall inputs on the ability to create stochastic runoff forecasts, we consider the following model layouts: Area mean – the rainfall is assumed constant over the whole catchment and
 339 340 341 342 343 	 2.5.2 Stochastic Model Layout and Rainfall inputs To investigate the influence of spatial resolution of rainfall inputs on the ability to create stochastic runoff forecasts, we consider the following model layouts: Area mean – the rainfall is assumed constant over the whole catchment and inputs from gauges or radar pixels are averaged (as shown in equation (2)).
 339 340 341 342 343 344 	 2.5.2 Stochastic Model Layout and Ramfall inputs To investigate the influence of spatial resolution of rainfall inputs on the ability to create stochastic runoff forecasts, we consider the following model layouts: Area mean – the rainfall is assumed constant over the whole catchment and inputs from gauges or radar pixels are averaged (as shown in equation (2)). Integrated subcatchment – for radar inputs, the catchment is divided into
 339 340 341 342 343 344 345 	 2.5.2 Stochastic Model Layout and Kannah Inputs To investigate the influence of spatial resolution of rainfall inputs on the ability to create stochastic runoff forecasts, we consider the following model layouts: Area mean – the rainfall is assumed constant over the whole catchment and inputs from gauges or radar pixels are averaged (as shown in equation (2)). Integrated subcatchment – for radar inputs, the catchment is divided into subcatchments (Figure 1), an impervious area is estimated for every
 339 340 341 342 343 344 345 346 	 2.5.2 Stochastic Wodel Layout and Kamian inputs To investigate the influence of spatial resolution of rainfall inputs on the ability to create stochastic runoff forecasts, we consider the following model layouts: Area mean – the rainfall is assumed constant over the whole catchment and inputs from gauges or radar pixels are averaged (as shown in equation (2)). Integrated subcatchment – for radar inputs, the catchment is divided into subcatchments (Figure 1), an impervious area is estimated for every subcatchment, but only one storage cascade is used and all inputs are fed into
 339 340 341 342 343 344 345 346 347 	 2.5.2 Stochastic Model Layout and Raman inputs To investigate the influence of spatial resolution of rainfall inputs on the ability to create stochastic runoff forecasts, we consider the following model layouts: Area mean – the rainfall is assumed constant over the whole catchment and inputs from gauges or radar pixels are averaged (as shown in equation (2)). Integrated subcatchment – for radar inputs, the catchment is divided into subcatchments (Figure 1), an impervious area is estimated for every subcatchment, but only one storage cascade is used and all inputs are fed into the first storage. The same approach is applied for rain gauge input, but we
 339 340 341 342 343 344 345 346 347 348 	 2.5.2 Stochastic Model Layout and Kamian inputs To investigate the influence of spatial resolution of rainfall inputs on the ability to create stochastic runoff forecasts, we consider the following model layouts: Area mean – the rainfall is assumed constant over the whole catchment and inputs from gauges or radar pixels are averaged (as shown in equation (2)). Integrated subcatchment – for radar inputs, the catchment is divided into subcatchments (Figure 1), an impervious area is estimated for every subcatchment, but only one storage cascade is used and all inputs are fed into the first storage. The same approach is applied for rain gauge input, but we estimate an effective area for every rain gauge and perform no assignment to
 339 340 341 342 343 344 345 346 347 348 349 	 2.3.2 Stochastic Model Layout and Raman inputs To investigate the influence of spatial resolution of rainfall inputs on the ability to create stochastic runoff forecasts, we consider the following model layouts: Area mean – the rainfall is assumed constant over the whole catchment and inputs from gauges or radar pixels are averaged (as shown in equation (2)). Integrated subcatchment – for radar inputs, the catchment is divided into subcatchments (Figure 1), an impervious area is estimated for every subcatchment, but only one storage cascade is used and all inputs are fed into the first storage. The same approach is applied for rain gauge input, but we estimate an effective area for every rain gauge and perform no assignment to subcatchments. This approach is applied for the (smaller and less complex)

351	• Distributed subcatchments – every subcatchment has a cascade of 2 storages
352	of its own and the outflows from the northern and eastern subcatchments are
353	inputs to the western subcatchment. This approach is applied for the (bigger
354	and more complex) Damhusåen catchment. In the simulation run with rain
355	gauges, these are assigned to the closest subcatchment.
356	
357	As a variety of rainfall inputs and model layouts are considered, in the following we
358	denote the different simulation runs with a 3-letter identifier in accordance with
359	Figure 3.
360	
361	FIGURE 3 APPROX. HERE
362	
363	
364	2.6 PARAMETER ESTIMATION
365	Parameters for the proposed stochastic rainfall runoff models are estimated in an
366	automated optimization routine. Most commonly this is done by maximizing the
367	likelihood of one-step-ahead model predictions (Breinholt et al., 2011). In an online
368	setup, however, the models are intended to provide multistep predictions. The model
369	identified by minimizing the error of one-step-ahead predictions may not be the best
370	model in terms of forecasting with longer lead times.
371	
372	Further, if there is strong noise on the flow observations, the model may not be
373	identifiable. The model setup includes a Kalman filtering procedure, which means
374	that the model states are updated to follow the observations at each time step. If the

375	model is estimated on the basis of one-step-ahead predictions, there is a risk that the
376	estimated model parameters simply optimize this state-updating and do not describe
377	the physical behaviour of the system.
378	
379	We therefore here apply a parameter estimation method that minimizes the error of
380	the probabilistic multistep flow predictions (Löwe et al., 2014). The according
381	criterion is the continuous ranked probability score (CRPS). At every time step, this
382	score measures the squared difference between the cumulative distribution function
383	(CDF) of the forecast and the CDF of the observation, where the latter is considered
384	as a unit step at the observed value (Gneiting et al., 2005; Gneiting, 2007).
385	
386	The dry weather parameters a_0 and D of the model are assumed fixed and are
387	estimated deterministically in a dry weather period of one week at the beginning of
388	the considered time series. We apply a heuristic optimization algorithm described by
389	Tolson and Shoemaker (2007) for automated parameter estimation.
390	
391	2.7 On-Line Runoff Forecast Generation and Evaluation
392	We evaluate the quality of probabilistic forecasts of runoff volume obtained from the
393	different models. Runoff volumes are the relevant decision variable in a real time
394	control setup for urban drainage systems as described e.g. by Vezzaro and Grum
395	(2012). To obtain probabilistic predictions of runoff volume, we do at every time
396	step generate 1000 realizations of multistep flow predictions from the model
397	equations (2) using an Euler Maruyama scheme (Kloeden and Platen, 1999). We
398	consider forecast horizons up to 10 steps or 100 min.

399	
400	In this approach, forecast uncertainties are in the on-line setting only determined by
401	the state uncertainties, not the observation uncertainties. This is reasonable as in a
402	real time control scheme we are not interested in the observation uncertainty. The
403	estimated observation uncertainties are furthermore small compared to the
404	uncertainties of the model predictions (c.f. section 3.3).
405	
406	Each of the 1000 multistep flow prediction scenarios can be integrated into a runoff
407	volume prediction. We can then analyse the distribution of these values to obtain an
408	empirical description of the predictive distribution of runoff volumes for each
409	horizon. We evaluate the quality of the 10-step probabilistic runoff volume
410	predictions as compared to the observed runoff volumes for this horizon. We
411	consider the following criteria:
412	• Reliability (<i>Rel</i>) – percentage of observations included in a 90% prediction
413	interval. Ideally, this value corresponds to 90%, higher values suggest an
414	overfitted model, lower values an unreliable model.
415	• Average Interval Length (ARIL) – average width of the 90% prediction
416	interval relative to the observations (Jin et al., 2010).
417	• Continuous ranked probability score (<i>CRPS</i>) – mean squared error of the
418	predictive runoff volume distribution for a 10-step horizon. The best forecast
419	minimizes this value (Gneiting, 2007).
420	• Root mean squared error (<i>RMSE</i>) between the 50% quantile of probabilistic
421	runoff volume predictions and the corresponding observation.
422	

423	3 RESULTS AND DISCUSSION
424	3.1 COMPARING RADAR AND RAIN GAUGE OBSERVATIONS AND FORECASTS
425	In a first step, the different rainfall observations are compared. The considered data
426	period is split into rain events. Based on the spatially averaged rain gauge
427	observations, it is assumed that a new event starts after 10 hours of dry weather.
428	Rainfall intensities below 0.2mm/10min are considered dry weather and we only
429	consider events with a total rainfall sum of at least 5 mm.
430	5
431	Based on the above considerations, 10 rain events are identified from the averaged
432	rain gauge observations in the Ballerup catchment and used for comparison. Figure 4
433	shows the total rainfall depth and the maximum intensity together with the duration
434	of the events.
435	
436	FIGURE 4 APPROX. HERE
437	
438	The effect of the dynamic radar adjustment clearly varies from event to event. Yet,
439	on average, the root mean squared error (RMSE) between the total areal rainfall sums
440	measured by radar and rain gauges is reduced from 9.8 mm with the static
441	adjustment, to 7.3 mm for the dynamic adjustment. In the Damhusåen catchment (not
442	shown) similar results are obtained with a reduction of the RMSE from 11.0 mm for
443	the static adjustment to 6.7 mm for the dynamic adjustment.
444	
445	Figure 5 supports the indications from the analysis of total rainfall sums. The
446	dynamically adjusted radar observations seem to better capture the rainfall dynamics

447	observed on the ground. However, in both cases, the radar rainfall forecasts fail to
448	predict the intense rainfall peak towards the end of the event. A delay is observed for
449	the rainfall forecasts derived from the gauge measurements. This is induced by the
450	forecast method which is based on extrapolating the observations of the last 100 min.
451	
452	FIGURE 5 APPROX. HERE
453	
454	Figure 6 shows the total rainfall sum for the different events derived from forecast
455	values for a 2-step (20 min) and a 10-step (100 min) horizon. The simplistic forecast
456	applied for the rain gauge data leads to a systematic overestimation of the total
457	rainfall. The forecasts generated from the dynamically adjusted radar data are close
458	to the rain gauge observations for the shorter horizon and approach the value for the
459	statically adjusted data on the longer horizon. This is in accordance with the radar
460	adjustment and forecasting methodology described in section 2.3.
461	
462	FIGURE 6 APPROX. HERE
463	
464	In Figure 4 one rain event can be identified (event 2) which is only present in the
465	gauge measurements but not in the radar measurements for the Ballerup catchment.
466	This deviation is a result of the gauges being located outside the catchment.
467	
468	3.2 CORRELATION BETWEEN RAINFALL AND RUNOFF OBSERVATIONS
470	Figure 7 shows the estimated cross correlation between catchment averaged rainfall
471	observations and the measured runoff in the Ballerup catchment. For all rainfall

472	inputs, the highest cross correlation is identified for a lag of 16 time steps or 160
473	minutes. The highest correlation between rainfall and runoff measurements is
474	identified for statically adjusted radar measurements, and it is noticeably smaller for
475	dynamically adjusted radar measurements. The same result is obtained in the
476	Damhusåen catchment (not shown). It indicates that the type of time varying radar
477	adjustment as described in section 2 may actually reduce the information about the
478	runoff process that is contained in the radar rainfall time series. This is in spite of the
479	fact that the time varying adjustment makes the radar data resemble the rainfall
480	measurements on the ground more closely as described above.
481	
482	FIGURE 7 APPROX. HERE
483	
484	3.3 PROBABILISTIC RUNOFF FORECASTING WITH DIFFERENT RAINFALL
485	INPUTS
486	We consider the quality of probabilistic runoff forecasts obtained using mean areal
487	rainfall input derived from rain gauges and weather radar (model type a). Table 1
488	shows the effective catchment area and the time constant estimated for the different
489	models. We observe a tendency to estimate higher effective area values for the
490	models with statically adjusted radar rainfall input. This is likely to be a result of the
491	lower rain intensities in this type of input data (Figure 5).
492	
493	Table 1. Estimated travel time constant (K) and impervious catchment area (A) for
494	mean areal rainfall models (type a) with rain gauge (1) and statically (2) and

495 dynamically (3) adjusted radar input for Ballerup (B) and Damhusåen (D)

496 catchments.

Model	K [h]	A [ha]	
B1a	4.62	70.6	
B2a	4.50	74.4	
B3a	3.79	61.4	
D1a	2.01	278.3	
D2a	4.45	392.1	
D3a	4.66	253.4	5
			S
mmarize the ru	unoff forecast sk	till of the dif	ferent models

497

498

499	Table 2 and Table 3 summarize the runoff forecast skill of the different models
500	averaged over all 10 events. We see that all models seem to be rather unreliable, with
501	only 51% to 72% of the observations included in a 90% prediction interval during
502	rain periods. Considering the whole data period, including dry weather periods, 84 to
503	92 % of the observations are included in a 90 % prediction interval (not shown).
504	During dry weather periods, the flows in the sewer system are low and follow the
505	well-defined diurnal cycle. The forecast error made by the runoff forecasting model
506	is thus much smaller than during rain events. The uncertainty description in the
507	model, however, accounts for dry and wet weather uncertainty in only one parameter.
508	Uncertainties during rain events are hence forecasted too small. A solution to this
509	problem could be to include a separate parameter for dry weather uncertainty in the
510	diffusion term of equation (2).
511	
512	We further identify an insufficient quantification of forecast uncertainties, in

513 particular at the start of rain events (Figure 8). The reason is the state dependent

514	uncertainty description in the model, which only leads to high forecast uncertainties
515	for high forecast values. Ideally, the forecast uncertainty should increase already at
516	the start of the event. This may be achieved by conditioning the forecast uncertainty
517	on the rainfall input instead of the state values, but it is not further investigated here.
518	
519	The models with statically adjusted radar rainfall input (input type 2) perform best in
520	both catchments and all model variations in matters of RMSE, whereas the models
521	with dynamically adjusted radar rainfall input result in higher RMSE values (
522	Table 2 and Table 3). The forecast uncertainties for the radar based models are in
523	most cases estimated smaller. During rain periods, this leads to a more pronounced
524	underestimation of forecast uncertainties, resulting in some cases in a lower
525	probabilistic forecasting skill expressed as CRPS.
526	
527	The better quality of runoff forecasts obtained with statically adjusted radar rainfall
528	input as compared to dynamically adjusted radar rainfall input seems to somewhat
529	contradict the results obtained by Borup et al. (2009). The authors showed that a
530	dynamic calibration of X-band radar rainfall measurements results in better
531	simulations of water levels at an overflow weir than a static calibration. Apart from
532	using a different type of radar rainfall measurements in this work, we see the main
533	reason for the differing results in the applied type of rainfall-runoff model and the
534	way radar forecasts are generated. A distributed simulation model was applied in the
535	work of Borup et al. (2009). These models are typically statically calibrated to reflect
536	observations in the sewer system based on rain gauge input. The model parameters
537	modified during the calibration (for example impervious area, surface roughness

538	values, pipe roughness values) do then also reflect the characteristics of rain gauge
539	input (for example higher intensities as compared to radar rainfall measurements).
540	Radar rainfall observations will consequently give better results the better they
541	reflect the rainfall measurements on the ground, but different results may be obtained
542	if the model is calibrated using radar rainfall input.
543	
544	The rainfall runoff models applied in this work are data driven and fitted to the
545	supplied input data. The rainfall input for this type of model may well be biased as
546	compared to the "ground truth", as the bias can be compensated for by different
547	parameter estimates (for example the impervious catchment area) and by the state
548	updating. The best runoff forecast will with this type of model be obtained with the
549	rainfall input that has the highest 'information content' with respect to the runoff
550	observations. This is the statically adjusted radar input in our case which is
551	underlined by the fact that this type of rainfall measurement shows the highest cross
552	correlation with the runoff time series.
553	
554	More generally, it is interesting that the dynamically adjusted radar data appear to
555	provide less information about the runoff time series than both, the rain gauge and
556	the statically adjusted rainfall data. This is the case, not only for the radar rainfall
557	forecasts, but also for the radar rainfall measurements (see the cross correlation
558	function in Figure 7).
559	
560	One likely reason is that the adjustment window of 40 minutes may be too short,

561 leading to a nonlinear alteration of the radar data which cannot be compensated for

562	by the automatic calibration of the rainfall-runoff model. This effect may be
563	amplified by the fact that radar rainfall measurements are made as 'snapshots' every
564	10 minutes, while the rain gauge data used for radar adjustment are continuous over
565	the interval. Recent works by Nielsen et al. (2014) and Thorndahl et al. (2014)
566	suggested an interpolation of the radar data to a higher temporal resolution using an
567	advective model and demonstrated that such processing reduces the bias as compared
568	to rain gauge measurements. The effect of such interpolation schemes on on-line
569	runoff forecasts needs to be investigated. In general, we suggest that the development
570	of an adjustment methodology focuses not only on the deviation between radar
571	rainfall estimates and rain gauges but also on the information content about the
572	runoff time series.
573	
574	Additionally, when generating rainfall forecasts, the bias between the dynamically
575	adjusted radar forecast that is considered here and the observation on the ground
576	changes linearly as a function of the forecast horizon. The reason is that especially in
577	situations with sparse or very inhomogeneous rainfall within the radar range we risk
578	adjusting the mean field based on very few radar-rain gauge pairs with very little
579	observed rain. This might result in very small or very large adjustment factors.
580	Applying these adjustment factors to the forecast has previously produced severe
581	over- or underestimation of the forecasted rain. More rain gauges within the range of
582	the radar might reduce the problem but would also reduce the added value of the
583	radar. Generally, the non-constant bias in the rainfall forecasts introduces additional
584	uncertainty in the runoff forecast. Improved results can likely be obtained if

- 585 replacing the simple linear change of the bias factor by time series models that are
- 586 fitted in a way such that the runoff forecast error is minimized.
- 587
- 588 Table 2. Forecast evaluation for mean areal rainfall (type a) and integrated
- subcatchment (type b) models with different rainfall inputs for the Ballerup
- 590 catchment (B). Values are based on predicted runoff volumes in m³ over a prediction

591 horizon of 100 min (10 time steps) and averaged over the considered rain events. We

Model	Rel	ARIL	CRPS	RMSE 1	RMSE 10
	[%]	[%]		[m ³]	[m ³]
B1a	69%	30%	131.9	10.8	247.9
B1b	72%	30%	127.7	10.7	234.1
B2a	68%	29%	126.8	10.7	231.4
B2b	70%	30%	126.0	10.7	230.1
B3a	59%	23%	133.0	10.7	235.5
B3b	64%	27%	128.7	10.6	234.8

592 include RMSE values for 1-step and 10-step prediction horizons.

593

Table 3. Forecast evaluation for mean areal rainfall (type a) and distributed

subcatchment (type c) models with different rainfall inputs for the Damhusåen

596 catchment (D). Values are based on predicted runoff volumes in m³ over a prediction

597 horizon of 100 min (10 time steps) and averaged over the considered rain events. We

598 include RMSE values for 1-step and 10-step prediction horizons.

Model	Rel	ARIL	CRPS	RMSE 1	RMSE 10
	[%]	[%]		[m ³]	[m ³]
D1a	66%	35%	1126.3	61.2	2864.1
D1c	51%	20%	1029.5	46.9	2112.9
D2a	53%	23%	1210.6	70.2	2330.2

D2c	51%	22%	962.6	45.1	1900.9
D3a	51%	21%	1262.5	70.9	2416.0
D3c	52%	21%	1133.4	47.3	2301.3

599	
600	Evaluating the probabilistic runoff forecast skill obtained for the different events
601	(Figure 9), we see that the event with the highest volume and rain intensity (no. 6,
602	c.f. Figure 4 and Figure 6) also leads to rather high forecast errors. We cannot
603	identify a clear relation between event characteristics (Figure 4) and runoff forecast
604	qualities which may be due to the small number of events considered. For event 2 the
605	clearly lowest forecasting skill in the Ballerup catchment is observed when using rain
606	gauge input which is a result of the gauges being located outside the catchment as
607	discussed earlier.
608	
609	FIGURE 8 APPROX. HERE
610	
611	FIGURE 9 APPROX. HERE
612	
613	3.4 PROBABILISTIC RUNOFF FORECASTING WITH DIFFERENT SPATIAL
614	RESOLUTIONS
615	Comparing model layouts that account for the spatial distribution of rainfall
616	observations in different degrees of detail, we can identify a trend that smaller
617	forecast errors are obtained with more complex model structures.
618	Table 2 compares the runoff forecasting skills in the Ballerup catchment. For all
619	rainfall inputs, slightly smaller CRPS and RMSE values are obtained on the 10-step
620	horizon for the integrated subcatchment approach (model type b). The estimation of a

621	separate effective area and using different rainfall inputs for each subcatchment,
622	instead of averaging all inputs into a mean areal rainfall, consequently yields better
623	results.
624	
625	A similar trend can be observed in the Damhusåen catchment (Table 3). Accounting
626	for the spatial rainfall distribution with a more complex model structure (distributed
627	subcatchment approach - model type c) leads to a clear reduction in forecast error for
628	all rainfall inputs. Following the discussion in Schilling and Fuchs (1986), this result
629	was expected. Also with the slightly more complex model structure, models with
630	statically adjusted radar input outperform those with rain gauge input and
631	dynamically adjusted radar input (comparing models D1c, D2c and D3c in terms of
632	CRPS and RMSE).
633	
634	4 CONCLUSIONS
635	The quality of probabilistic on-line runoff forecasts obtained with different types of
636	rainfall input and different conceptual model layouts that account for the spatial
637	distribution of rainfall in varying degrees of detail was analysed. Forecasts were
638	generated for two urban catchments with forecast horizons of up to 100 min. A
639	number of conclusions were identified with respect to the considerations described in
640	section 1. These are summarized here.
641	
642	1) The time-dynamic adjustment of radar observations to rain gauges that is applied
643	here makes those data resemble the rain gauge observations more closely.

 \leq

645	2) Radar rainfall observations and forecasts can improve the skill of probabilistic
646	runoff forecasts compared with those based on rain gauges.
647	
648	3) For all considered runoff model structures, the best results are obtained with radar
649	input that is time-statically adjusted to rain gauge observations. The time varying
650	(dynamic) adjustment of the radar data reduces the potential for creating runoff
651	forecasts with the stochastic grey box models. In fact, also the cross correlation
652	between radar rainfall and runoff measurements is reduced as a result of the time
653	varying radar adjustment.
654	
655	4) Rainfall inputs for conceptual, data-driven forecasting models need not be the
656	same as the values observed by gauges on the ground. The model can to some extent
657	adapt to the characteristics of the input series in the parameter estimation procedure
658	and will give the best forecasts with the rainfall input that best explains the patterns
659	in the flow observations. In this sense, the radar is likely to provide a better spatial
660	representation of rainfall patterns which, although biased compared with the ground
661	observations, leads to better runoff forecasts. It is, however, important that the bias of
662	the radar observations is not altered in a non-constant fashion. The aim of the radar
663	adjustment should in this context be to merge rainfall information from different
664	sources in a statistically optimal way.
665	
666	5) An evaluation of radar adjustment methodologies should not only focus on the
667	comparison with rain gauge observations but also on the final purpose for the
668	adjusted measurements. In our case, this was runoff forecasting with data-driven

669	models and the radar adjustment and the runoff forecasting models should
670	consequently be considered as a chain and coordinated.
671	
672	6) Generally, rainfall runoff forecasting models will yield best results if the applied
673	rainfall input closely resembles the input used in model calibration. Distributed
674	simulation models are typically calibrated to resemble observations in the sewer
675	network based on rain gauge observations. Adjusting radar data to more closely
676	resemble the observations of rain gauges will consequently improve the results
677	obtained with these models. Any type of model calibrated using radar rainfall
678	observations as input may, however, yield different results.
679	
680	7) The probabilistic runoff forecasts obtained with the stochastic grey-box models
681	improve if we account for the spatial distribution of rainfall in the model. The best
682	forecasts in the Damhusåen catchment are obtained for the distributed subcatchment
683	approach, i.e. when splitting the catchment into 3 subcatchments that are modelled
684	by separate, connected reservoir cascades.
685	
686	8) We can identify insufficiencies in the applied models. The uncertainty description
687	based on the model states does not allow us to capture the high forecast uncertainty
688	at the start of a rain event. An improved model layout should be obtained by making
689	the model uncertainty depend on the rainfall input. Further, considering also dry
690	weather periods during parameter estimation of the models leads to unacceptably
691	small uncertainty estimates during rain events. Either, only periods with rainfall
692	should be considered for parameter estimation, or the model structure should be

 \leq

693	modified to allow for proper separation between forecast uncertainties during dry and
694	wet weather.
695	
696	5 ACKNOWLEDGEMENTS
697	
698	This research has been financially supported by the Danish Council for Strategic
699	Research, Programme Commission on Sustainable Energy and Environment through
700	the Storm- and Wastewater Informatics (SWI) project. The catchment and flow data
701	were kindly provided by Avedøre Wastewater Services and Copenhagen Utility
702	Company (HOFOR). We thank the Danish Weather Service (DMI) for providing
703	data from the C-Band radar at Stevns.
704	
705	6 REFERENCES
706	Achleitner, S., Möderl, M., Rauch, W., 2007. CITY DRAIN © – An open source
707	approach for simulation of integrated urban drainage systems. Environ. Model.
708	Softw. 22, 1184–1195.
709	
710	Achleitner, S., Fach, S., Einfalt, T., Rauch, W., 2009. Nowcasting of rainfall and of
711	combined sewage flow in urban drainage systems. Water Sci Technol 59, 1145-1151.
712	
713	Berne, A., Delrieu, G., Creutin, J.D., Obled, C., 2004. Temporal and spatial
714	resolution of rainfall measurements required for urban hydrology. J Hydrol 299, 166-
715	179.

717	Borup, M., Grum, M., Linde, J. J., Mikkelsen, P. S., 2009. Application of high
718	resolution x-band radar data for urban runoff modelling: constant vs. dynamic
719	calibration, 8th International Workshop on Precipitation in Urban Areas, 10-13
720	December, 2009, St. Moritz, Switzerland.
721	
722	Breinholt, A., Thordarson, F.O., Møller, J.K., Grum, M., Mikkelsen, P.S., Madsen,
723	H., 2011. Grey-box modelling of flow in sewer systems with state-dependent
724	diffusion. Environmetrics 22, 946-961.
725	
726	Breinholt, A., Møller, J.K., Madsen, H., Mikkelsen, P.S., 2012. A formal statistical
727	approach to representing uncertainty in rainfall-runoff modelling with focus on
728	residual analysis and probabilistic output evaluation - distinguishing simulation and
729	prediction, J Hydrol, 472-473, 36-52.
730	
731	Breinholt, A., Grum, M., Madsen, H., Thordarson, F.Ö., Mikkelsen, P.S., 2013.
732	Informal uncertainty analysis (GLUE) of continuous flow simulation in a hybrid
733	sewer system with Infiltration Inflow – consistency of containment ratios in
734	calibration and validation? Hydrol Earth Syst Sci. 17, 4159-4176
735	
736	Brown, P.E., Diggle, P.J., Lord, M.E., Young, P.C., 2001. Space-time calibration of
737	radar rainfall data. J Roy Stat Soc C-App 50, 221-241.
738	
739	Cole, S.J., Moore, R.J., 2008. Hydrological modelling using raingauge- and radar-
740	based estimators of areal rainfall. J Hydrol 358, 159-181.

741	
742	Chumchean, S., Seed, A., Sharma, A., 2006. Correcting of real-time radar rainfall
743	bias using a Kalman filtering approach. J Hydrol 317, 123.
744	
745	Das, T., Bárdossy, A., Zehe, E., He, Y., 2008. Comparison of conceptual model
746	performance using different representations of spatial variability. J Hydrol 356, 106-
747 748	118.
749	Del Giudice, D., Honti, M., Scheidegger, A., Albert, C., Reichert, P., Rieckermann,
750	J., 2013. Improving uncertainty estimation in urban hydrological modeling by
751	statistically describing bias. Hydrol Earth Syst Sci Discuss, 10, 5121–5167.
752	
753	Dotto, C.B.S., Mannina, G., Kleidorfer, M., Vezzaro, L., Henrichs, M., McCarthy,
754	D.T., Freni, G., Rauch, W., Deletic, A., 2012. Comparison of different uncertainty
755	techniques in urban stormwater quantity and quality modelling. Water Res 46, 2545–
756	58.
757	
758	Einfalt, T., Denoeux, T., Jacquet, G., 1990. A radar rainfall forecasting method
759	designed for hydrological purposes. J Hydrol 114, 229-244.
760	
761	Einfalt, T., Arnbjerg-Nielsen, K., Golz, C., Jensen, N., Quirmbach, M., Vaes, G.,
762	Vieux, B., 2004. Towards a roadmap for use of radar rainfall data in urban drainage.
763	J Hydrol 299, 186-202.
764	

705 Emmanuel, I., Andrieu, H., Tabary, P., 2012a. Evaluation of the new	w Frencl	ew Frend	ncł
---	----------	----------	-----

operational weather radar product for the field of urban hydrology. Atmos Res 103,

767 20-32.

768

769 Emmanuel, I., Andrieu, H., Leblois, E., Flahaut, B., 2012b. Temporal and spatial

variability of rainfall at the urban hydrological scale. J Hydrol 430, 162-172.

771

Fuchs, L., Beeneken, T., 2005. Development and implementation of a real-time

control strategy for the sewer system of the city of Vienna. Water Sci Technol 52,

774 187-194.

775

776 Giebel, G., Brownsword, R., Karioniotakis, G., Denhard, M., Draxl, C., 2011. The

777 State-Of-The-Art in Short-Term Prediction of Wind Power - A Literature Overview.

778 FP6 ANEMOS.plus deliverable.

779

Gill, R. S., Overgaard, S., Bøvith, T., 2006. The Danish weather radar network, 4th

European Conference on Radar in Meteorology and Hydrology, 18-22 September,

782 2006, Barcelona, Spain.

783

Gjertsen, U., Salek, M., Michelson, D.B., 2003. Gauge-adjustment of radar-based
precipitation estimates-a review. COST-717 Work. Doc. WDD 2.200310.

- 787 Gneiting, T., Raftery, A.E., Westveld III, A.H., Goldman, T., 2005. Calibrated
- 788 probabilistic forecasting using ensemble model output statistics and minimum CRPS
- restimation. Mon Weather Rev 133, 1098-1118.
- 790
- Gneiting, T., 2007. Strictly proper scoring rules, prediction, and estimation. J Am
- 792 Stat Assoc 102, 359-378.

793

- 794 Goudenhoofdt, E., Delobbe, L., 2009. Evaluation of radar-gauge merging methods
- for quantitative precipitation estimates. Hydrol Earth Syst Sci 13, 195-203.

796

- 797 Gourley, J.J., Vieux, B.E., 2005. A Method for Evaluating the Accuracy of
- 798 Quantitative Precipitation Estimates from a Hydrologic Modeling Perspective. J
- 799 Hydrometeorol 6, 115–133.

- 801 Grum, M., Thornberg, D., Christensen, M.L., Shididi, S.A., Thirsing, C., 2011. Full-
- 802 Scale Real Time Control Demonstration Project in Copenhagen's Largest Urban
- 803 Drainage Catchments, Proceedings of the 12th International Conference on Urban
- 804 Drainage, 11-16 Sep, Porto Alegre / Brazil.
- 805
- Jin, X., Xu, C.Y., Zhang, Q., Singh, V., 2010. Parameter and modeling uncertainty
 simulated by GLUE and a formal Bayesian method for a conceptual hydrological
 model. J Hydrol 383, 147-155.
- 809

- Jørgensen, H.K., Rosenørn, S., Madsen, H., Mikkelsen, P.S., 1998. Quality control of
- rain data used for urban runoff systems. Water Sci Technol 37(11), 113-120.
- 812
- 813 Kloeden, P.E., Platen, E., 1999. Numerical Solution of Stochastic Differential
- 814 Equations. third ed., Springer, Berlin-Heidelberg-New York.
- 815
- 816 Kraemer, S., Grum, M., Verworn, H.R., Redder, A., 2005. Runoff modelling using
- 817 radar data and flow measurements in a stochastic state space approach. Water Sci
- 818 Technol 52, 1-8.
- 819
- 820 Kristensen N.R., Madsen H., 2003. Continuous time stochastic modelling CTSM -
- 821 mathematics guide. Technical report, Technical University of Denmark, URL
- 822 http://CTSM.info.
- 823
- 824 Kristensen, N.R., Madsen, H., Jørgensen, S.B., 2004. Parameter estimation in
- stochastic grey-box models. Automatica 40, 225–237.
- 826
- 827 Kuczera, G., Kavetski, D., Franks, S., Thyer, M., 2006. Towards a Bayesian total
- 828 error analysis of conceptual rainfall-runoff models: Characterising model error using
- storm-dependent parameters, J Hydrol 331, 161-177.
- 830
- 831 Löwe, R., Mikkelsen, P., Madsen, H., 2014. Stochastic rainfall-runoff forecasting:
- 832 parameter estimation, multi-step prediction, and evaluation of overflow risk. Stoch
- 833 Environ Res Risk Assess 28, 505-516, doi 10.1007/s00477-013-0768-0.

834	
835	Nielsen, H.A., Madsen, H., 2006. Modelling the heat consumption in district heating
836	systems using a grey-box approach. Energy Build 38, 63–71.
837	
838	Nielsen, J.E., Thorndahl, S., Rasmussen, M.R., 2014. A numerical method to
839	generate high temporal resolution precipitation time series by combining weather
840	radar measurements with a nowcast model. Atmos Res 138, 1–12, doi
841	10.1016/j.atmosres.2013.10.015.
842	
843	Pleau, M., Pelletier, G., Lavalle, P., Bonin, R., 2001. Global predictive real-time
844	control of Quebec Urban Communitys westerly sewer network. Water Sci Technol
845	43, 123-130.
846	
847	Pleau, M., Colas, H., Lavallée, P., Pelletier, G., Bonin, R., 2005. Global optimal real-
848	time control of the Quebec urban drainage system. Environ Modell Softw 20, 401-
849	413.
850	
851	Puig, V., Cembrano, G.G., Romera, J., Quevedo, J., Aznar, B., Ramón, G., Cabot, J.,
852	2009. Predictive optimal control of sewer networks using CORAL tool: application
853	to Riera Blanca catchment in Barcelona. Water Sci Technol 60, 869-878.
854	
855	Reed, S., Koren, V., Smith, M., Zhang, Z., Moreda, F., Seo, D., DMIP Participants,
856	2004. Overall distributed model intercomparison project results. J Hydrol 298, 27-60.
857	

- 858 Renard, B., Kavetski, D., Kuczera, G., Thyer, M., Franks, S., 2010: Understanding
- 859 predictive uncertainty in hydrologic modeling: The challenge of identifying input
- and structural errors, Water Resour Res 46, W05521.
- 861
- 862 Schellart, A., Shepherd, W., Saul, A., 2011. Influence of rainfall estimation error and
- spatial variability on sewer flow prediction at a small urban scale. Adv Water Resour
- 864 45, 65-75.
- 865
- 866 Schilling, W., 1984. Effect of spatial rainfall distribution on sewer flows. Water Sci
- 867 Technol 16, 177-188.
- 868
- 869 Schilling, W., Fuchs, L., 1986. Errors in stormwater modeling-a quantitative
- assessment. J Hydraul Eng 112, 111-123.
- 871
- 872 Schilling, W., 1991. Rainfall data for urban hydrology: what do we need? Atmos Res

873 27, 5-21.

- 875 Seggelke, K., Löwe, R., Beeneken, T., Fuchs, L., 2013. Implementation of an
- 876 integrated real-time control system of sewer system and WWTP in the city of
- 877 Wilhelmshaven. Urban Water J 10, 330-341.
- 878
- Sharma, A.K., Guildal, T., Thomsen, H.A.R., Mikkelsen, P.S., Jacobsen, B.N., 2013.
- 880 Aeration tank settling and real time control as a tool to improve the hydraulic

- capacity and treatment efficiency during wet weather: results from 7 years' full-scale
- operational data. Water Sci Technol 67, 2169-2176.
- 883
- 884 Thordarson, F.O., Breinholt, A., Møller, J.K., Mikkelsen, P.S., Grum, M., Madsen,
- H., 2012. Uncertainty assessment of flow predictions in sewer systems using grey
- box models and skill score criterion. Stoch Env Res Risk A 26, 1151-1162.

887

- 888 Thorndahl, S., Beven, K.J., Jensen, J.B., Schaarup-Jensen, K., 2008. Event based
- 889 uncertainty assessment in urban drainage modeling, applying the GLUE
- 890 methodology, J Hydrol 357, 421-437.
- 891
- 892 Thorndahl, S., Rasmussen, M. R., Grum, M., Neve, S. L., 2009. Radar Based Flow
- and Water Level Forecasting in Sewer Systems: a Danish case study. 8th
- 894 International Workshop on Precipitation in Urban Areas, 10-13 December, 2009, St.
- 895 Moritz, Switzerland.

896

897 Thorndahl, S., Rasmussen, M.R., Neve, S., Poulsen, T.S., Grum, M., 2010.

898 Vejrradarbaseret styring af spildevandsanlæg (in Danish). DCE Technical Report No.

- 899 95, Aalborg Universitet. Institut for Byggeri og Anlæg, ISSN 1901-726X.
- 900
- 901 Thorndahl, S., Rasmussen, M.R., 2013. Short-term forecasting of urban storm water
- 902 runoff in real-time using extrapolated radar rainfall data. J Hydroinf 15, 214-226.

- 904 Thorndahl, S., Nielsen, J.E., Rasmussen, M.R., 2014. Bias adjustment and advection
- 905 interpolation of long-term high resolution radar rainfall series. J Hydrol 508, 214-
- 906 226.
- 907
- 908 Tolson, B. A., Shoemaker, C. A., 2007. Dynamically dimensioned search algorithm
- 909 for computationally efficient watershed model calibration, Water Resour Res 43,
- 910 W01413.
- 911
- 912 Vezzaro, L., Grum, M., 2012. A generalized Dynamic Overflow Risk Assessment
- 913 (DORA) for urban drainage RTC. 9th International Conference on Urban Drainage
- 914 Modelling, 3-7 September, 2012, Belgrade, Serbia.
- 915
- 916 Vieux, B.E., Bedient, P.B., 2004. Assessing urban hydrologic prediction accuracy
- 917 through event reconstruction. J Hydrol 299, 217–236.
- 918
- 919 Villarini, G., Smith, J.A., Lynn Baeck, M., Sturdevant-Rees, P., Krajewski, W.F.,
- 920 2010. Radar analyses of extreme rainfall and flooding in urban drainage basins. J
- 921 Hydrol 381, 266-286.
- 922
- Wang, L., Ochoa, S., Simões, N., Onof, C., Maksimović, Č., 2013. Radar-raingauge
 data combination techniques: a revision and analysis of their suitability for urban
 hydrology. Water Sci Technol 68, 737-747.
- 926

927	Wolfs, V., Villazon, M.F., Willems, P., 2013. Development of a semi-automated
928	model identification and calibration tool for conceptual modelling of sewer systems.
929	Water Sci. Technol. Sci. Technol. 68, 167–175.
930	
931	Wood, S.J., Jones, D.A., Moore, R.J., 2000. Static and dynamic calibration of radar
932	data for hydrological use. Hydrol Earth Syst Sci 4, 545–554.
933	
934 935	7 FIGURE CAPTIONS
936	Figure 1. Ballerup (left) and northern Damhusåen (right) catchments with C-band
937	radar pixels (2x2km), location of rain gauges shown as dots (large grey circles – used
938	in radar adjustment, white rectangles – used as input to Ballerup model, black
939	triangles – used as input to Damhusåen model, small black dots – other gauges).
940	Different radar pixel shadings correspond to different subcatchments (c.f. section
941	2.5.2).
942	
943	Figure 2. Areal mean of rain gauge observations and flow measurements for the
944	Ballerup catchment in the estimation period.
945	
946	Figure 3. Simulation run identifiers depending on considered catchments, rainfall
947	input and spatial resolution.
948	
949	Figure 4. Rain event depths (left) and maximum intensity (right) derived for mean
950	areal rainfall with different rainfall measurements in the Ballerup catchment. Left
951	plot includes label of duration of rain event (in min).

952	
953	Figure 5. Sample rainfall event in the Ballerup catchment. Part a: rain gauge
954	observations (black, as in model B1a) and rainfall forecasts with lead times of 20 min
955	(green) and 100 min (blue), Part b: statically adjusted radar rainfall observations and
956	forecasts (B2a), Part c: dynamically adjusted radar rainfall observations and forecasts
957	(B3a).
958	
959	Figure 6. Total forecasted (FC) rainfall amount for the Ballerup catchment for lead
960	times of 20 (left) and 100min (right) for the considered rain events, together with
961	rainfall amount observed by rain gauges.
962	
963	Figure 7. Cross correlation (CCF) between runoff and catchment averaged rainfall
964	observations in the Ballerup catchment. Rainfall observations are lagged in 10min
965	steps to the runoff observations.
966	
967	Figure 8. 10-step forecasts of runoff volume for event 6 in Ballerup (left, model B2a)
968	and Damhusåen (right, model D2a) catchments together with observation (red). The
969	shading corresponds to different prediction intervals with coverage rates from 2% to
970	98%.
971	
972	Figure 9. Quality of probabilistic runoff forecasts for 100 min horizon (10 step)
973	expressed as CRPS for different rain events and inputs in Ballerup (left) and
974	Damhusåen (right) catchments.
975	

ACCEPTED MANUSCRIPT

Spatial resolution rainfall input

- a area mean
- b integrated subcatchments
- c distributed subcatchments

CCV CV

976 8 HIGHLIGHTS

977	
978	• Rainfall nowcasts from rain gauges and 2 types of adjusted radar data are
979	compared
980	• Probabilistic runoff forecasts are generated in 2 urban catchments in an on-
981	line mode
982	• Time-statically adjusted radar data as model input yield best runoff forecasts
983	• Radar adjustment and online runoff forecast should be considered as a whole
984	• Improved spatial resolution in on-line rainfall runoff models improves
985	forecasts
986	