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ABSTRACT 15 

 16 

We investigate the application of rainfall observations and forecasts from rain gauges 17 

and weather radar as input to operational urban runoff forecasting models. We apply 18 

lumped rainfall runoff models implemented in a stochastic grey-box modelling 19 

framework. Different model structures are considered that account for the spatial 20 

distribution of rainfall in different degrees of detail.  21 

 22 

Considering two urban example catchments, we show that statically adjusted radar 23 

rainfall input improves the quality of probabilistic runoff forecasts as compared to 24 
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input based on rain gauge observations, although the characteristics of these radar 25 

measurements are rather different from those on the ground. Data driven runoff 26 

forecasting models can to some extent adapt to bias of the rainfall input by model 27 

parameter calibration and state-updating. More detailed structures in these models 28 

provide improved runoff forecasts compared to the structures considering mean areal 29 

rainfall only. 30 

 31 

A time-dynamic adjustment of the radar data to rain gauge data provides improved 32 

rainfall forecasts when compared with rainfall observations on the ground. However, 33 

dynamic adjustment reduces the potential for creating runoff forecasts and in fact 34 

also leads to reduced cross correlation between radar rainfall and runoff 35 

measurements. We conclude that evaluating the performance of radar rainfall 36 

adjustment against rain gauges may not always be adequate and that adjustment 37 

procedure and online runoff forecasting should ideally be considered as one unit. 38 

 39 
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1 INTRODUCTION 48 

 49 

Urban catchments are typically of a spatial extent where a homogeneous distribution 50 

of rainfall over the catchment cannot be assumed. This is one of the main drivers for 51 

developing real time control (RTC) setups for urban drainage systems. The load on 52 

the sewer network is higher in some places than in others, which results in an uneven 53 

use of the available storage capacities. This suboptimal load distribution can be 54 

improved by a dynamic operation of the network. As a result, combined sewer 55 

overflows can be reduced, for example.  56 

 57 

Real time control systems are in operation in a multitude of urban catchments (Fuchs 58 

and Beeneken, 2005; Pleau et al., 2005; Sharma et al., 2012, Seggelke et al., 2013). 59 

Classically, decision making is done on the basis of offline knowledge about the 60 

system, for example in a framework of decision rules. More recent developments 61 

incorporate an online optimization of the system that accounts for runoff forecasts 62 

(Puig et al., 2009; Vezzaro and Grum, 2012). The control setup suggested in Vezzaro 63 

and Grum (2012) makes it possible to account for forecast uncertainties in the 64 

optimization and decision making process. 65 

 66 

In a dynamic optimisation based real time control setup, simplified rainfall runoff 67 

models that lump a bigger part of the catchment are typically applied for forecasting 68 

over short horizons of a few hours as they are fast enough to generate forecasts 69 

within seconds to minutes (for example Pleau et al., 2001, Puig et al., 2009, Vezzaro 70 

and Grum (2012)). Using highly simplified models for forecasting is also common in 71 
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other fields like district heating (Nielsen and Madsen, 2006) or wind power 72 

forecasting (Giebel et al., 2011). Apart from being computationally efficient, lumped 73 

models make the application of statistical techniques such as state-updating and 74 

automated parameter calibration easier. Generating runoff forecasts in such an on-75 

line setup is the case we consider here. 76 

 77 

Generating runoff forecasts on-line requires rainfall inputs. For forecast horizons up 78 

to two hours, rainfall radars are currently the only means that provide the possibility 79 

to generate rainfall forecasts with a spatial and temporal resolution suitable for urban 80 

catchments. Examples of radar rainfall forecasting systems applied for quantitative 81 

online predictions in urban drainage systems are rare (Einfalt et al., 2004), but can 82 

for example be found in Einfalt et al. (1990), Kraemer et al. (2005) and Thorndahl 83 

and Rasmussen (2013). 84 

 85 

Emmanuel et al. (2012a) discourage the direct application of the French operational 86 

weather radar product for quantitative purposes in urban hydrology. Similarly, other 87 

authors propose an adjustment of radar data to rain gauge measurements (Thorndahl 88 

et al., 2009; Villarini et al., 2010). Whereas the results of Villarini et al. (2010) 89 

suggest a constant bias between radar and rain gauge measurements during an event, 90 

other authors propose adjustment of radar measurements to gauge data also in the 91 

course of an event (Borup et al., 2009; Brown et al., 2001; Chumchean et al., 2006; 92 

Thorndahl et al., 2009, Wang et al., 2013, Wood et al., 2000). Gjertsen et al. (2003) 93 

and Goudenhoofdt and Delobbe (2009) give overviews of different methods applied 94 

in Europe.  95 
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 96 

Radar adjustment is quite usually demonstrated to be beneficial by validating 97 

adjusted radar observations against rain gauge observations (Goudenhoofdt and 98 

Delobbe, 2009, Smith et al., 2007, Thorndahl et al., 2014, Wang et al., 2013) or by 99 

generating runoff forecasts from models that were statically calibrated using rain 100 

gauge input (Borup et al., 2009, Cole and Moore, 2008, Vieux and Bedient, 2004, 101 

Wang et al., 2013). The improvement in runoff forecasting performance may 102 

however be less clear for auto-calibrated online models that can dynamically adapt to 103 

observations as well as different rainfall inputs. In such cases the skill of different 104 

quantitative precipitation estimates to describe runoff should be assessed instead. 105 

Gourley and Vieux (2005) follow this thought on a 1200 km2 catchment to compare 106 

results of spatially variable radar adjustments against mean field bias adjustment by 107 

evaluating hydrologic simulation results with different rainfall inputs and ensembles 108 

of different model parameters. They argue that rain gauge data may not be sufficient 109 

for the validation of quantitative precipitation estimates (QPE) as they are often used 110 

in the QPE algorithm itself, because rain gauge point measurements are often 111 

inaccurate and because there are issues of different scales between rain gauges and 112 

remotely sensed rainfall. The value of time varying radar adjustments for urban 113 

online runoff forecasting is in our view unclear.  114 

 115 

A second issue in the generation of online runoff forecasts is the required spatial 116 

resolution of the rainfall input. A multitude of studies have been performed in 117 

hydrology as to what degree of spatial model resolution is appropriate. The results 118 

from the Distributed Model Intercomparison Project (Reed et al., 2004) show in a 119 
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non-urban context that conceptual models outperformed distributed models in the 120 

majority of cases. Das et al. (2008) give an overview of studies and find that 121 

generally, a higher spatial resolution does not necessarily lead to improved model 122 

performance. The authors conclude that a multitude of factors like scale of the 123 

catchment, physiographic characteristics or data availability influence model 124 

performance and that a lower, optimal limit of spatial resolution is to be expected 125 

because the model “represents spatial average behaviour”. This is underlined by 126 

results obtained by the authors in predicting river discharge from a 4000 km2 127 

catchment using different degrees of spatial resolution of model input data.  128 

 129 

In urban hydrology, where catchment response is generally much faster than in 130 

natural catchments and data typically available in higher resolutions, Schilling (1984) 131 

and Schilling and Fuchs (1986) find that spatial rainfall variability is the key factor 132 

for the accuracy of simulations of urban runoff and that rainfall estimation errors are 133 

amplified by the rainfall runoff models. The authors suggest the use of high 134 

resolution rainfall data and simplified models for on-line operations. Using a 135 

hydrodynamic modelling setup for an 1100 ha catchment, Schellart et al. (2011) 136 

conclude that spatial resolution of inputs should be high (in their case 1 km2) in order 137 

to obtain a good representation of the observed flows in the sewer network. Finally, 138 

Berne et al. (2004) suggest a spatial rainfall resolution of 3 km for a 1000 ha 139 

catchment, while Emmanuel et al. (2012b) suggest 2.5 km resolution for a 600 ha 140 

catchment and Schilling (1991) suggests 1 km for on-line purposes. Studies in urban 141 

hydrology generally point in a direction where improved spatial resolution of rainfall 142 

inputs leads to improved model performance, a result which is less clear in modelling 143 
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of river flows as the spatial scales considered are much larger and data more scarce. 144 

We note that previous studies in urban hydrology focused on simulation, not on the 145 

case of on-line runoff forecasting with models that adapt to observations, although 146 

similar results may be expected. 147 

 148 

Despite the above discussed results on model performance considering different 149 

spatial resolutions of rainfall inputs, a practitioners approach to building an on-line 150 

forecast model for real time control would often be to lump the catchment upstream 151 

from a control point. Practical experience suggests that the effect of this lumping on 152 

runoff simulation quality is limited (Achleitner et al., 2007; Grum et al., 2011; Wolfs 153 

et al., 2013). Similar to previous studies in natural catchments (Das et al., 2008), we 154 

therefore consider lumped models of different spatial resolutions for runoff 155 

forecasting in urban catchments over short horizons. 156 

 157 

Finally, runoff forecasts generated by any model are uncertain due to uncertain 158 

measurements and forecasts of the rainfall input as well as an incomplete description 159 

of the reality by the model. Achleitner et al. (2009) and Thorndahl and Rasmussen 160 

(2013) evaluate the quality of urban runoff forecasts using radar rainfall input. 161 

Acceptable forecast errors could be obtained for forecast horizons of 90 and 60 162 

minutes, respectively. In an online setting, however, predicting also the uncertainty 163 

of runoff forecasts is of strong interest. The performance of lumped rainfall-runoff 164 

models in a stochastic grey-box layout was evaluated by Breinholt et al. (2011) and 165 

Thordarson et al. (2012) but rainfall input was assumed known. We here present an 166 
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evaluation of probabilistic runoff forecast quality that can be obtained in a realistic 167 

on-line setting. 168 

 169 

Other approaches for modelling uncertainty in conceptual models exist and these 170 

apply Bayesian frameworks (Del Giudice et al., 2013, Kuczera et al. 2006, Renard et 171 

al., 2010), for example, GLUE (Breinholt et al., 2013, Dotto et al., 2012, Thorndahl 172 

et al., 2008) or simple output error methods (Breinholt et al., 2012). The approach 173 

presented here distinguishes itself in the explicit focus on forecasting over a 174 

multitude of horizons on a short time scale instead of describing simulation 175 

uncertainty and thus improving the capability of the model to describe reality. In 176 

addition, high computational efficiency is a focus of the presented approach. 177 

 178 

In the following, the article first gives an introduction to the rainfall data considered 179 

as input for runoff forecasting in this study. Rainfall observations and forecasts from 180 

rain gauges and two types of C-band radar data are evaluated and compared. The 181 

types of weather radar data considered are 182 

• temporally and  spatially constant adjustment over the whole period (static 183 

adjustment)  184 

• time-dynamic mean-field bias adjusted to rain gauge measurements in the 185 

course of an event, in addition to the static adjustment (dynamic adjustment). 186 

The purpose of this evaluation is to demonstrate how the different rainfall 187 

measurements relate to each other and that the dynamic adjustment indeed makes the 188 

radar observations resemble the ground measurements more closely. 189 

 190 
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Subsequently, the different rainfall measurements and forecasts are considered as 191 

inputs for runoff forecasting. A quantification of probabilistic online runoff 192 

forecasting skill is provided on a 100 minute horizon. We evaluate if runoff forecasts 193 

can be improved by the different types of radar rainfall input and by an increased 194 

spatial resolution of the forecast model. 195 

 196 

The article is structured as follows: section 2 describes the considered catchments, 197 

available rainfall measurements, the methodology for generating and evaluating 198 

stochastic runoff predictions, and the different model layouts considered. In section 3 199 

we compare the available rainfall measurements from gauges and radar in the area, 200 

and evaluate the runoff forecast quality obtained with different rainfall inputs and 201 

model layouts. Finally, in section 4 we conclude the article. 202 

 203 

2 MATERIAL AND METHODS 204 

2.1 CATCHMENTS 205 

 206 

Two catchments in the Copenhagen area are considered in this study. The Ballerup 207 

catchment has a total area of approximately 1,300 ha. It is mainly laid out as a 208 

separate sewer system but has a small combined part and shows strong influences 209 

from rainfall-dependent infiltration and misconnection of surface runoff to sanitary 210 

sewers (Breinholt et al., 2013).  211 

 212 

The Damhusåen catchment is located close to Ballerup but drains to a different 213 

treatment plant. We consider the northern part of the catchment with a total area of 214 
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approximately 3,000 ha. The catchment is laid out as a combined sewer system and 215 

consists of several subcatchments with a longest flow path of approximately 10 km. 216 

 217 

An overview of the catchments can be seen in Figure 1. Flow measurements 218 

averaged over 5 min are available at the outlets of both catchments. Flow predictions 219 

are generated for both outlets and compared to the observations at 10 min resolution, 220 

where the measurements within an interval are averaged.  221 

 222 

 223 

FIGURE 1 APPROX. HERE 224 

 225 

 226 

2.2 RAINFALL MEASUREMENTS AND FORECASTS USING GAUGES AND RADAR 227 

Observations from tipping bucket rain gauges from the Danish SVK network 228 

(Jørgensen et al., 1998) are available in the considered catchments. Rainfall 229 

measurements are available at 1 min intervals and averaged to 10 min time steps 230 

(equivalent to the temporal resolution of the radar data). In the rain gauge based 231 

forecast models we use 2 and 4 gauges as input for the Ballerup and Damhusåen 232 

catchments (Figure 1). The gauges are located within or close to the catchment 233 

borders. 234 

 235 

Rainfall forecasts are generated from the gauge measurements using a local linear 236 

trend method. A trend line is fitted to the rain gauge intensities in the past 100 min 237 

and then extrapolated over the forecast horizon. 238 

 239 
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The Danish weather service operates a C-band radar in Stevns approx. 45 km south 240 

of the considered catchments (Gill et al., 2006). Measurements from this radar were 241 

made available for this study with a resolution of 10 min and 2x2 km2. Figure 1 242 

shows the location of the catchments within the utilized C-band radar pixels.  243 

 244 

We apply radar rainfall forecasts with lead times up to 100 min generated by Aalborg 245 

University using the CO-TREC algorithm (Thorndahl and Rasmussen, 2013). 246 

Corresponding to the available temporal resolution of the radar data, we apply all 247 

rainfall input data with a temporal resolution of 10 min. Considering the spatial 248 

extent of the catchments and concentration times tc above 60 min, this resolution can 249 

be considered sufficient to capture the rainfall runoff process in the catchments. 250 

Schilling (1991) suggests a temporal resolution of the rainfall data which is between 251 

0.2tc and 0.33tc. 252 

 253 

2.3 RADAR RAINFALL ADJUSTMENT 254 

C-band radar measurements are provided as reflectivities. A direct conversion to rain 255 

intensities is commonly considered problematic. A methodology to adjust the radar 256 

measurements to gauge observations has therefore been developed at Aalborg 257 

University and is applied here.  258 

 259 

In the adjustment, the rain gauges marked in Figure 1 are used (SVK numbers 30252, 260 

30309, 30313, 30316, 30319, 30326, 30348 and 30386). The adjustment is 261 

performed with only 8 gauges distributed in the Copenhagen area, as one of the main 262 
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objectives for using radar rainfall measurements is to derive rain intensities using as 263 

small a number of ground measurements as possible. 264 

 265 

In a first ‘static’ adjustment step, the coefficients in the reflectivity (Z) – rain 266 

intensity (R) relationship are adjusted for the whole data period (see Section 2.4). 267 

The rainfall depths from all rain events at all considered rain gauges are plotted 268 

against the rainfall depths derived from the radar observations in the corresponding 269 

pixels. The Z-R coefficients are adjusted, such that the regression line between radar 270 

rainfall depths and rain gauge observations has slope 1 (Thorndahl et al., 2010). The 271 

resulting Z-R relationship is used for deriving rain intensities over the whole data 272 

period.  273 

8.150 RZ ⋅=  (1) 

 274 

In a second ‘dynamic’ adjustment step, the radar rain intensities are again adjusted, 275 

this time at every 10 min time step (Thorndahl et al., 2014). Considering the last 4  276 

observations, a spatially constant adjustment factor is derived, such that the radar 277 

measurements on average match the rain gauge measurements in the considered area. 278 

This is a mean field bias adjustment in the sense of Goudenhoofdt and Delobbe 279 

(2009), however, with an adjustment window of 40 minutes instead of one day. 280 

 281 

When generating forecasts, the time-dynamic adjustment factor is, over a period of 282 

120 minutes, linearly changed to 1 with increasing lead time. The linear transition 283 

towards zero-bias is performed because unrealistic and biased rainfall forecasts have 284 
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been observed on the longer lead times when forecasting with a time-dynamic 285 

adjustment factor based on only the past 40 minutes. 286 

 287 

2.4 DATA PERIOD 288 

We use a summer period of 2.5 months from 25/06/2010 until 6/09/2010 for 289 

generating probabilistic runoff forecasts. Figure 2 shows rain gauge and flow 290 

observations from the Ballerup catchment for this period. We can clearly identify the 291 

diurnal dry weather variations and a number of rain events that can be considered 292 

relevant for real time control purposes. The measurements contain no major gaps in 293 

this period.  294 

 295 

FIGURE 2 APPROX. HERE 296 

 297 

 298 

2.5 STOCHASTIC FLOW FORECASTING 299 

2.5.1 General Model Layout 300 

As mentioned before, we use stochastic grey-box models to generate flow forecasts 301 

for the catchments. In the basic setup we use a linear reservoir cascade of 2 storages 302 

with one rainfall input, implemented as stochastic differential equations in a state-303 

space model layout (Breinholt et al., 2011). The model is at every time step updated 304 

to current flow observations using an extended Kalman filter (Kristensen et al., 305 

2004). 306 

 307 
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This setup has been extensively tested for the Ballerup catchment but not for the 308 

Damhusåen catchment. The model is obviously too simple, especially for the 309 

(bigger) Damhusåen catchment. As we are mainly interested in investigating the 310 

effects of different rainfall inputs on the forecasts, we still apply this most simple 311 

setup. With respect to the magnitude of runoff forecast uncertainties, this could be 312 

considered a ‘worst case scenario’. 313 

 314 
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 315 

(2)  is called the system equation, where S1, S2 correspond to the storage states, A to 316 

the impervious catchment area, P to the rain intensity, a0 to the mean dry weather 317 

flow and K to the travel time constant. The uncertainty of model predictions is 318 

described in the so-called diffusion term by a Wiener process ωt. The increments dωt  319 

of this process are independent and normally distributed with a standard deviation 320 

corresponding to the considered time interval dt.  321 

 322 

The variance of the diffusion is here scaled dynamically depending on the current 323 

model states S and a scaling factor σ. Such a scaling can be problematic for the 324 

extended Kalman filtering. A Lamperti transform is therefore applied that removes 325 

the state-dependency from the diffusion term and leads to a set of transformed drift 326 
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equations that equivalently describe the dynamics of the system, but have constant 327 

diffusion (Breinholt et al., 2011).  328 

 329 

States and flow measurements are related in the observation equation (3). Qk 330 

corresponds to the observed flow values at times k, D describes the variation of the 331 

dry weather flow using trigonometric functions and e corresponds to the observation 332 

error with standard deviation σe.  333 

 334 

We refer to Kristensen et al. (2004) and Breinholt et al. (2011, 2012) for a detailed 335 

description of the modelling principles. We use the open-source software framework 336 

CTSM for the modelling process (Kristensen and Madsen, 2003). 337 

 338 

2.5.2 Stochastic Model Layout and Rainfall Inputs 339 

To investigate the influence of spatial resolution of rainfall inputs on the ability to 340 

create stochastic runoff forecasts, we consider the following model layouts: 341 

• Area mean – the rainfall is assumed constant over the whole catchment and 342 

inputs from gauges or radar pixels are averaged (as shown in equation (2)). 343 

• Integrated subcatchment – for radar inputs, the catchment is divided into 344 

subcatchments (Figure 1), an impervious area is estimated for every 345 

subcatchment, but only one storage cascade is used and all inputs are fed into 346 

the first storage. The same approach is applied for rain gauge input, but we 347 

estimate an effective area for every rain gauge and perform no assignment to 348 

subcatchments. This approach is applied for the (smaller and less complex) 349 

Ballerup catchment. 350 
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• Distributed subcatchments – every subcatchment has a cascade of 2 storages 351 

of its own and the outflows from the northern and eastern subcatchments are 352 

inputs to the western subcatchment. This approach is applied for the (bigger 353 

and more complex) Damhusåen catchment. In the simulation run with rain 354 

gauges, these are assigned to the closest subcatchment. 355 

 356 

As a variety of rainfall inputs and model layouts are considered, in the following we 357 

denote the different simulation runs with a 3-letter identifier in accordance with 358 

Figure 3. 359 

 360 

FIGURE 3 APPROX. HERE 361 

 362 

 363 

2.6 PARAMETER ESTIMATION 364 

Parameters for the proposed stochastic rainfall runoff models are estimated in an 365 

automated optimization routine. Most commonly this is done by maximizing the 366 

likelihood of one-step-ahead model predictions (Breinholt et al., 2011). In an online 367 

setup, however, the models are intended to provide multistep predictions. The model 368 

identified by minimizing the error of one-step-ahead predictions may not be the best 369 

model in terms of forecasting with longer lead times.  370 

 371 

Further, if there is strong noise on the flow observations, the model may not be 372 

identifiable. The model setup includes a Kalman filtering procedure, which means 373 

that the model states are updated to follow the observations at each time step. If the 374 
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model is estimated on the basis of one-step-ahead predictions, there is a risk that the 375 

estimated model parameters simply optimize this state-updating and do not describe 376 

the physical behaviour of the system.  377 

 378 

We therefore here apply a parameter estimation method that minimizes the error of 379 

the probabilistic multistep flow predictions (Löwe et al., 2014). The according 380 

criterion is the continuous ranked probability score (CRPS). At every time step, this 381 

score measures the squared difference between the cumulative distribution function 382 

(CDF) of the forecast and the CDF of the observation, where the latter is considered 383 

as a unit step at the observed value (Gneiting et al., 2005; Gneiting, 2007). 384 

 385 

The dry weather parameters a0 and D of the model are assumed fixed and are 386 

estimated deterministically in a dry weather period of one week at the beginning of 387 

the considered time series. We apply a heuristic optimization algorithm described by 388 

Tolson and Shoemaker (2007) for automated parameter estimation. 389 

 390 

2.7 ON-LINE RUNOFF FORECAST GENERATION AND EVALUATION 391 

We evaluate the quality of probabilistic forecasts of runoff volume obtained from the 392 

different models. Runoff volumes are the relevant decision variable in a real time 393 

control setup for urban drainage systems as described e.g. by Vezzaro and Grum 394 

(2012). To obtain probabilistic predictions of runoff volume, we do at every time 395 

step generate 1000 realizations of multistep flow predictions from the model 396 

equations (2) using an Euler Maruyama scheme (Kloeden and Platen, 1999). We 397 

consider forecast horizons up to 10 steps or 100 min.  398 
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 399 

In this approach, forecast uncertainties are in the on-line setting only determined by 400 

the state uncertainties, not the observation uncertainties. This is reasonable as in a 401 

real time control scheme we are not interested in the observation uncertainty. The 402 

estimated observation uncertainties are furthermore small compared to the 403 

uncertainties of the model predictions (c.f. section 3.3). 404 

 405 

Each of the 1000 multistep flow prediction scenarios can be integrated into a runoff 406 

volume prediction. We can then analyse the distribution of these values to obtain an 407 

empirical description of the predictive distribution of runoff volumes for each 408 

horizon. We evaluate the quality of the 10-step probabilistic runoff volume 409 

predictions as compared to the observed runoff volumes for this horizon. We 410 

consider the following criteria: 411 

• Reliability (Rel) – percentage of observations included in a 90% prediction 412 

interval. Ideally, this value corresponds to 90%, higher values suggest an 413 

overfitted model, lower values an unreliable model. 414 

• Average Interval Length (ARIL) – average width of the 90% prediction 415 

interval relative to the observations (Jin et al., 2010). 416 

• Continuous ranked probability score (CRPS) – mean squared error of the 417 

predictive runoff volume distribution for a 10-step horizon. The best forecast 418 

minimizes this value (Gneiting, 2007).  419 

• Root mean squared error (RMSE) between the 50% quantile of probabilistic 420 

runoff volume predictions and the corresponding observation. 421 

 422 
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3 RESULTS AND DISCUSSION 423 

3.1 COMPARING RADAR AND RAIN GAUGE OBSERVATIONS AND FORECASTS 424 

In a first step, the different rainfall observations are compared. The considered data 425 

period is split into rain events. Based on the spatially averaged rain gauge 426 

observations, it is assumed that a new event starts after 10 hours of dry weather. 427 

Rainfall intensities below 0.2mm/10min are considered dry weather and we only 428 

consider events with a total rainfall sum of at least 5 mm.  429 

 430 

Based on the above considerations, 10 rain events are identified from the averaged 431 

rain gauge observations in the Ballerup catchment and used for comparison. Figure 4 432 

shows the total rainfall depth and the maximum intensity together with the duration 433 

of the events. 434 

 435 

FIGURE 4 APPROX. HERE 436 

 437 

The effect of the dynamic radar adjustment clearly varies from event to event. Yet, 438 

on average, the root mean squared error (RMSE) between the total areal rainfall sums 439 

measured by radar and rain gauges is reduced from 9.8 mm with the static 440 

adjustment, to 7.3 mm for the dynamic adjustment. In the Damhusåen catchment (not 441 

shown) similar results are obtained with a reduction of the RMSE from 11.0 mm for 442 

the static adjustment to 6.7 mm for the dynamic adjustment. 443 

 444 

Figure 5 supports the indications from the analysis of total rainfall sums. The 445 

dynamically adjusted radar observations seem to better capture the rainfall dynamics 446 
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observed on the ground. However, in both cases, the radar rainfall forecasts fail to 447 

predict the intense rainfall peak towards the end of the event. A delay is observed for 448 

the rainfall forecasts derived from the gauge measurements. This is induced by the 449 

forecast method which is based on extrapolating the observations of the last 100 min. 450 

 451 

FIGURE 5 APPROX. HERE 452 

 453 

Figure 6 shows the total rainfall sum for the different events derived from forecast 454 

values for a 2-step (20 min) and a 10-step (100 min) horizon. The simplistic forecast 455 

applied for the rain gauge data leads to a systematic overestimation of the total 456 

rainfall. The forecasts generated from the dynamically adjusted radar data are close 457 

to the rain gauge observations for the shorter horizon and approach the value for the 458 

statically adjusted data on the longer horizon. This is in accordance with the radar 459 

adjustment and forecasting methodology described in section 2.3. 460 

 461 

FIGURE 6 APPROX. HERE 462 

 463 

In Figure 4 one rain event can be identified (event 2) which is only present in the 464 

gauge measurements but not in the radar measurements for the Ballerup catchment. 465 

This deviation is a result of the gauges being located outside the catchment.  466 

 467 

3.2 CORRELATION BETWEEN RAINFALL AND RUNOFF OBSERVATIONS 468 
 469 
Figure 7 shows the estimated cross correlation between catchment averaged rainfall 470 

observations and the measured runoff in the Ballerup catchment. For all rainfall 471 
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inputs, the highest cross correlation is identified for a lag of 16 time steps or 160 472 

minutes. The highest correlation between rainfall and runoff measurements is 473 

identified for statically adjusted radar measurements, and it is noticeably smaller for 474 

dynamically adjusted radar measurements. The same result is obtained in the 475 

Damhusåen catchment (not shown). It indicates that the type of time varying radar 476 

adjustment as described in section 2 may actually reduce the information about the 477 

runoff process that is contained in the radar rainfall time series. This is in spite of the 478 

fact that the time varying adjustment makes the radar data resemble the rainfall 479 

measurements on the ground more closely as described above.  480 

 481 

FIGURE 7 APPROX. HERE 482 

 483 

3.3 PROBABILISTIC RUNOFF FORECASTING WITH DIFFERENT RAINFALL 484 

INPUTS 485 

We consider the quality of probabilistic runoff forecasts obtained using mean areal 486 

rainfall input derived from rain gauges and weather radar (model type a). Table 1 487 

shows the effective catchment area and the time constant estimated for the different 488 

models. We observe a tendency to estimate higher effective area values for the 489 

models with statically adjusted radar rainfall input. This is likely to be a result of the 490 

lower rain intensities in this type of input data (Figure 5). 491 

 492 

Table 1. Estimated travel time constant (K) and impervious catchment area (A) for 493 

mean areal rainfall models (type a) with rain gauge (1) and statically (2) and 494 
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dynamically (3) adjusted radar input for Ballerup (B) and Damhusåen (D) 495 

catchments. 496 

Model K [h] A [ha] 

B1a 4.62 70.6 

B2a 4.50 74.4 

B3a 3.79 61.4 

D1a 2.01 278.3 

D2a 4.45 392.1 

D3a 4.66 253.4 

 497 

 498 

Table 2 and Table 3 summarize the runoff forecast skill of the different models 499 

averaged over all 10 events. We see that all models seem to be rather unreliable, with 500 

only 51% to 72% of the observations included in a 90% prediction interval during 501 

rain periods. Considering the whole data period, including dry weather periods, 84 to 502 

92 % of the observations are included in a 90 % prediction interval (not shown). 503 

During dry weather periods, the flows in the sewer system are low and follow the 504 

well-defined diurnal cycle. The forecast error made by the runoff forecasting model 505 

is thus much smaller than during rain events. The uncertainty description in the 506 

model, however, accounts for dry and wet weather uncertainty in only one parameter. 507 

Uncertainties during rain events are hence forecasted too small. A solution to this 508 

problem could be to include a separate parameter for dry weather uncertainty in the 509 

diffusion term of equation (2). 510 

 511 

We further identify an insufficient quantification of forecast uncertainties, in 512 

particular at the start of rain events (Figure 8). The reason is the state dependent 513 



  

23 
 

uncertainty description in the model, which only leads to high forecast uncertainties 514 

for high forecast values. Ideally, the forecast uncertainty should increase already at 515 

the start of the event. This may be achieved by conditioning the forecast uncertainty 516 

on the rainfall input instead of the state values, but it is not further investigated here. 517 

 518 

The models with statically adjusted radar rainfall input (input type 2) perform best in 519 

both catchments and all model variations in matters of RMSE, whereas the models 520 

with dynamically adjusted radar rainfall input result in higher RMSE values ( 521 

Table 2 and Table 3). The forecast uncertainties for the radar based models are in 522 

most cases estimated smaller. During rain periods, this leads to a more pronounced 523 

underestimation of forecast uncertainties, resulting in some cases in a lower 524 

probabilistic forecasting skill expressed as CRPS. 525 

 526 

The better quality of runoff forecasts obtained with statically adjusted radar rainfall 527 

input as compared to dynamically adjusted radar rainfall input seems to somewhat 528 

contradict the results obtained by Borup et al. (2009). The authors showed that a 529 

dynamic calibration of X-band radar rainfall measurements results in better 530 

simulations of water levels at an overflow weir than a static calibration. Apart from 531 

using a different type of radar rainfall measurements in this work, we see the main 532 

reason for the differing results in the applied type of rainfall-runoff model and the 533 

way radar forecasts are generated. A distributed simulation model was applied in the 534 

work of Borup et al. (2009). These models are typically statically calibrated to reflect 535 

observations in the sewer system based on rain gauge input. The model parameters 536 

modified during the calibration (for example impervious area, surface roughness 537 
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values, pipe roughness values) do then also reflect the characteristics of rain gauge 538 

input (for example higher intensities as compared to radar rainfall measurements). 539 

Radar rainfall observations will consequently give better results the better they 540 

reflect the rainfall measurements on the ground, but different results may be obtained 541 

if the model is calibrated using radar rainfall input.  542 

 543 

The rainfall runoff models applied in this work are data driven and fitted to the 544 

supplied input data. The rainfall input for this type of model may well be biased as 545 

compared to the “ground truth”, as the bias can be compensated for by different 546 

parameter estimates (for example the impervious catchment area) and by the state 547 

updating. The best runoff forecast will with this type of model be obtained with the 548 

rainfall input that has the highest ‘information content’ with respect to the runoff 549 

observations. This is the statically adjusted radar input in our case which is 550 

underlined by the fact that this type of rainfall measurement shows the highest cross 551 

correlation with the runoff time series.  552 

 553 

More generally, it is interesting that the dynamically adjusted radar data appear to 554 

provide less information about the runoff time series than both, the rain gauge and 555 

the statically adjusted rainfall data. This is the case, not only for the radar rainfall 556 

forecasts, but also for the radar rainfall measurements (see the cross correlation 557 

function in Figure 7).  558 

 559 

One likely reason is that the adjustment window of 40 minutes may be too short, 560 

leading to a nonlinear alteration of the radar data which cannot be compensated for 561 
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by the automatic calibration of the rainfall-runoff model. This effect may be 562 

amplified by the fact that radar rainfall measurements are made as ‘snapshots’ every 563 

10 minutes, while the rain gauge data used for radar adjustment are continuous over 564 

the interval. Recent works by Nielsen et al. (2014) and Thorndahl et al. (2014) 565 

suggested an interpolation of the radar data to a higher temporal resolution using an 566 

advective model and demonstrated that such processing reduces the bias as compared 567 

to rain gauge measurements. The effect of such interpolation schemes on on-line 568 

runoff forecasts needs to be investigated. In general, we suggest that the development 569 

of an adjustment methodology focuses not only on the deviation between radar 570 

rainfall estimates and rain gauges but also on the information content about the 571 

runoff time series. 572 

 573 

Additionally, when generating rainfall forecasts, the bias between the dynamically 574 

adjusted radar forecast that is considered here and the observation on the ground 575 

changes linearly as a function of the forecast horizon. The reason is that especially in 576 

situations with sparse or very inhomogeneous rainfall within the radar range we risk 577 

adjusting the mean field based on very few radar-rain gauge pairs with very little 578 

observed rain. This might result in very small or very large adjustment factors. 579 

Applying these adjustment factors to the forecast has previously produced severe 580 

over- or underestimation of the forecasted rain. More rain gauges within the range of 581 

the radar might reduce the problem but would also reduce the added value of the 582 

radar. Generally, the non-constant bias in the rainfall forecasts introduces additional 583 

uncertainty in the runoff forecast. Improved results can likely be obtained if 584 
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replacing the simple linear change of the bias factor by time series models that are 585 

fitted in a way such that the runoff forecast error is minimized.  586 

 587 

Table 2. Forecast evaluation for mean areal rainfall (type a) and integrated 588 

subcatchment (type b) models with different rainfall inputs for the Ballerup 589 

catchment (B). Values are based on predicted runoff volumes in m3 over a prediction 590 

horizon of 100 min (10 time steps) and averaged over the considered rain events. We 591 

include RMSE values for 1-step and 10-step prediction horizons. 592 

Model Rel 

[%] 

ARIL 

[%] 

CRPS 

 

RMSE 1 

[m3] 

RMSE 10 

[m3] 

B1a 69% 30% 131.9 10.8 247.9 

B1b 72% 30% 127.7 10.7 234.1 

B2a 68% 29% 126.8 10.7 231.4 

B2b 70% 30% 126.0 10.7 230.1 

B3a 59% 23% 133.0 10.7 235.5 

B3b 64% 27% 128.7 10.6 234.8 

 593 

Table 3. Forecast evaluation for mean areal rainfall (type a) and distributed 594 

subcatchment (type c) models with different rainfall inputs for the Damhusåen 595 

catchment (D). Values are based on predicted runoff volumes in m3 over a prediction 596 

horizon of 100 min (10 time steps) and averaged over the considered rain events. We 597 

include RMSE values for 1-step and 10-step prediction horizons. 598 

Model Rel 

[%] 

ARIL 

[%] 

CRPS 

 

RMSE 1 

[m3] 

RMSE 10 

[m3] 

D1a 66% 35% 1126.3 61.2 2864.1 

D1c 51% 20% 1029.5 46.9 2112.9 

D2a 53% 23% 1210.6 70.2 2330.2 
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D2c 51% 22% 962.6 45.1 1900.9 

D3a 51% 21% 1262.5 70.9 2416.0 

D3c 52% 21% 1133.4 47.3 2301.3 

 599 

Evaluating the probabilistic runoff forecast skill obtained for the different events 600 

(Figure 9), we see that the event with the highest volume and rain intensity (no. 6, 601 

c.f. Figure 4 and Figure 6) also leads to rather high forecast errors. We cannot 602 

identify a clear relation between event characteristics (Figure 4) and runoff forecast 603 

qualities which may be due to the small number of events considered. For event 2 the 604 

clearly lowest forecasting skill in the Ballerup catchment is observed when using rain 605 

gauge input which is a result of the gauges being located outside the catchment as 606 

discussed earlier. 607 

 608 

FIGURE 8 APPROX. HERE 609 

 610 

FIGURE 9 APPROX. HERE 611 

 612 

3.4 PROBABILISTIC RUNOFF FORECASTING WITH DIFFERENT SPATIAL 613 

RESOLUTIONS 614 

Comparing model layouts that account for the spatial distribution of rainfall 615 

observations in different degrees of detail, we can identify a trend that smaller 616 

forecast errors are obtained with more complex model structures.  617 

Table 2 compares the runoff forecasting skills in the Ballerup catchment. For all 618 

rainfall inputs, slightly smaller CRPS and RMSE values are obtained on the 10-step 619 

horizon for the integrated subcatchment approach (model type b). The estimation of a 620 
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separate effective area and using different rainfall inputs for each subcatchment, 621 

instead of averaging all inputs into a mean areal rainfall, consequently yields better 622 

results. 623 

 624 

A similar trend can be observed in the Damhusåen catchment (Table 3). Accounting 625 

for the spatial rainfall distribution with a more complex model structure (distributed 626 

subcatchment approach - model type c) leads to a clear reduction in forecast error for 627 

all rainfall inputs. Following the discussion in Schilling and Fuchs (1986), this result 628 

was expected. Also with the slightly more complex model structure, models with 629 

statically adjusted radar input outperform those with rain gauge input and 630 

dynamically adjusted radar input (comparing models D1c, D2c and D3c in terms of 631 

CRPS and RMSE). 632 

 633 

4 CONCLUSIONS 634 

The quality of probabilistic on-line runoff forecasts obtained with different types of 635 

rainfall input and different conceptual model layouts that account for the spatial 636 

distribution of rainfall in varying degrees of detail was analysed. Forecasts were 637 

generated for two urban catchments with forecast horizons of up to 100 min. A 638 

number of conclusions were identified with respect to the considerations described in 639 

section 1. These are summarized here. 640 

 641 

1) The time-dynamic adjustment of radar observations to rain gauges that is applied 642 

here makes those data resemble the rain gauge observations more closely. 643 

 644 
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2) Radar rainfall observations and forecasts can improve the skill of probabilistic 645 

runoff forecasts compared with those based on rain gauges.  646 

 647 

3) For all considered runoff model structures, the best results are obtained with radar 648 

input that is time-statically adjusted to rain gauge observations. The time varying 649 

(dynamic) adjustment of the radar data reduces the potential for creating runoff 650 

forecasts with the stochastic grey box models. In fact, also the cross correlation 651 

between radar rainfall and runoff measurements is reduced as a result of the time 652 

varying radar adjustment.  653 

 654 

4) Rainfall inputs for conceptual, data-driven forecasting models need not be the 655 

same as the values observed by gauges on the ground. The model can to some extent 656 

adapt to the characteristics of the input series in the parameter estimation procedure 657 

and will give the best forecasts with the rainfall input that best explains the patterns 658 

in the flow observations. In this sense, the radar is likely to provide a better spatial 659 

representation of rainfall patterns which, although biased compared with the ground 660 

observations, leads to better runoff forecasts. It is, however, important that the bias of 661 

the radar observations is not altered in a non-constant fashion. The aim of the radar 662 

adjustment should in this context be to merge rainfall information from different 663 

sources in a statistically optimal way. 664 

 665 

5) An evaluation of radar adjustment methodologies should not only focus on the 666 

comparison with rain gauge observations but also on the final purpose for the 667 

adjusted measurements. In our case, this was runoff forecasting with data-driven 668 
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models and the radar adjustment and the runoff forecasting models should 669 

consequently be considered as a chain and coordinated.  670 

 671 

6) Generally, rainfall runoff forecasting models will yield best results if the applied 672 

rainfall input closely resembles the input used in model calibration. Distributed 673 

simulation models are typically calibrated to resemble observations in the sewer 674 

network based on rain gauge observations. Adjusting radar data to more closely 675 

resemble the observations of rain gauges will consequently improve the results 676 

obtained with these models. Any type of model calibrated using radar rainfall 677 

observations as input may, however, yield different results.  678 

 679 

7) The probabilistic runoff forecasts obtained with the stochastic grey-box models 680 

improve if we account for the spatial distribution of rainfall in the model. The best 681 

forecasts in the Damhusåen catchment are obtained for the distributed subcatchment 682 

approach, i.e. when splitting the catchment into 3 subcatchments that are modelled 683 

by separate, connected reservoir cascades. 684 

 685 

8) We can identify insufficiencies in the applied models. The uncertainty description 686 

based on the model states does not allow us to capture the high forecast uncertainty 687 

at the start of a rain event. An improved model layout should be obtained by making 688 

the model uncertainty depend on the rainfall input. Further, considering also dry 689 

weather periods during parameter estimation of the models leads to unacceptably 690 

small uncertainty estimates during rain events. Either, only periods with rainfall 691 

should be considered for parameter estimation, or the model structure should be 692 
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modified to allow for proper separation between forecast uncertainties during dry and 693 

wet weather.  694 

 695 
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7 FIGURE CAPTIONS 934 
 935 

Figure 1. Ballerup (left) and northern Damhusåen (right) catchments with C-band 936 

radar pixels (2x2km), location of rain gauges shown as dots (large grey circles – used 937 

in radar adjustment, white rectangles – used as input to Ballerup model, black 938 

triangles – used as input to Damhusåen model, small black dots – other gauges). 939 

Different radar pixel shadings correspond to different subcatchments (c.f. section 940 

2.5.2). 941 

 942 

Figure 2. Areal mean of rain gauge observations and flow measurements for the 943 

Ballerup catchment in the estimation period. 944 

 945 

Figure 3. Simulation run identifiers depending on considered catchments, rainfall 946 

input and spatial resolution. 947 

 948 

Figure 4. Rain event depths (left) and maximum intensity (right) derived for mean 949 

areal rainfall with different rainfall measurements in the Ballerup catchment. Left 950 

plot includes label of duration of rain event (in min). 951 
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 952 

Figure 5. Sample rainfall event in the Ballerup catchment. Part a: rain gauge 953 

observations (black, as in model B1a) and rainfall forecasts with lead times of 20 min 954 

(green) and 100 min (blue), Part b: statically adjusted radar rainfall observations and 955 

forecasts (B2a), Part c: dynamically adjusted radar rainfall observations and forecasts 956 

(B3a). 957 

 958 

Figure 6. Total forecasted (FC) rainfall amount for the Ballerup catchment for lead 959 

times of 20 (left) and 100min (right) for the considered rain events, together with 960 

rainfall amount observed by rain gauges. 961 

 962 

Figure 7. Cross correlation (CCF) between runoff and catchment averaged rainfall 963 

observations in the Ballerup catchment. Rainfall observations are lagged in 10min 964 

steps to the runoff observations. 965 

 966 

Figure 8. 10-step forecasts of runoff volume for event 6 in Ballerup (left, model B2a) 967 

and Damhusåen (right, model D2a) catchments together with observation (red). The 968 

shading corresponds to different prediction intervals with coverage rates from 2% to 969 

98%. 970 

 971 

Figure 9. Quality of probabilistic runoff forecasts for 100 min horizon (10 step) 972 

expressed as CRPS for different rain events and inputs in Ballerup (left) and 973 

Damhusåen (right) catchments. 974 

975 
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8 HIGHLIGHTS 976 

 977 

• Rainfall nowcasts from rain gauges and 2 types of adjusted radar data are 978 

compared 979 

• Probabilistic runoff forecasts are generated in 2 urban catchments in an on-980 

line mode 981 

• Time-statically adjusted radar data as model input yield best runoff forecasts 982 

• Radar adjustment and online runoff forecast should be considered as a whole 983 

• Improved spatial resolution in on-line rainfall runoff models improves 984 

forecasts 985 

 986 


