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Preface

The present thesis has been prepared at the Institute of Mathematical

Statistics and Operations Research �IMSOR�
 Technical University of Den�

mark and I� Kr�uger Systems AS
 in partial ful�llment of the requirements

for the degree of Ph�D� in engineering�

The thesis is concerned with the modelling of wastewater processes with

the objective of using the models for control of wastewater treatment plant

with nutrient removal� The general framework of the thesis is applied time

series analysis and wastewater treatment� Prior knowledge of these areas

will be bene�cial to the understanding of the thesis
 but not crucial�

The treatment of the subjects is by no means exhaustive
 but it is intended

to show the aspects of time series analysis applied to wastewater treatment

technology�

This version of the thesis is for the World Wide Web and includes some

minor corrections of the published version�

Lyngby
 January ����

Jacob Carstensen
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Summary

The introduction of on�line sensors for monitoring of nutrient salts con�

centrations on wastewater treatment plants with nutrient removal
 opens a

wide new area of modelling wastewater processes� The subject of this thesis

is the formulation of operational dynamic models based on time series of

ammonia
 nitrate
 and phosphate concentrations
 which are measured in

the aeration tanks of the biological nutrient removal system� The alternat�

ing operation modes of the BIO�DENITRO and BIO�DENIPHO processes

are of particular interest� Time series models of the hydraulic and biolo�

gical processes are very useful for gaining insight in real time operation

of wastewater treatment systems with variable in�uent �ows and pollution

loads
 and for the design of plant operation control�

In the present context non�linear structural time series models are pro�

posed
 which are identi�ed by combining the well�known theory of the

processes with the signi�cant e�ects found in data� These models are

called grey box models
 and they contain rate expressions for the processes

of in�uent load of nutrients
 transport of nutrients between the aeration

tanks
 hydrolysis and growth of biomass
 nitri�cation
 denitri�cation
 bio�

logical phosphate uptake in biomass
 and stripping of phosphate� Several

of the rate expressions for the biological processes are formulated on the

assumption of Monod�kinetics� The formulation of models for time�varying

parameters in a new time domain divides the variations of the processes

into fast dynamics and slower dynamics� In addition
 this modelling in two
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time domains increases the interpretability of the parameters� The models

are put into state space form and the parameters are estimated by the

maximum likelihood method
 where a Kalman �lter is used in calculating

the likelihood function�

The grey box models are estimated on data sets from the Lundtofte pilot

scale plant and the Aalborg West wastewater treatment plant� Estimation

of Monod�kinetic expressions is made possible through the application of

large data sets� Parameter estimates from the two plants show a reason�

able consistency with suggested kinetic parameter values of the literature�

A large amount of information about the two plants and their performances

is obtained from the models
 of which the variations of the in�uent ammonia

load
 and the autotrophic and heterotrophic biomass activity have partic�

ular interest� The models are appropriate for control
 because the present

states of the plants are re�ected in the parameter estimates�

The grey box models may be applied to control of wastewater treatment

plants in many ways� In this thesis o��line simulations of control strategies

and on�line model�based predictive control are discussed� Both methods

include the evaluation of a cost function incorporating the cost of operation

and discharge of nutrients to the recipient� The concept of prediction based

control is demonstrated in a simulation study�

x

Resum�e

Med indf�rslen af on�line sensorer til overv�agning af n�ringssalts koncentra�

tioner p�a rensningsanl�g med n�ringssalts�fjernelse er et helt nyt omr�ade

indenfor modellering af spildevands�processer blevet �abnet� N�rv�rende

afhandling omhandler formuleringen af operationelle dynamiske modeller

baseret p�a tidsr�kker af ammoniak�
 nitrat� og fosfat�koncentrationer m�alt i

luftningstankene i den biologiske del af et rensningsanl�g� Den alternerende

drift af BIO�DENITRO og BIO�DENIPHO processerne har speciel inter�

esse� Tidsr�kkemodeller
 som beskriver de hydrauliske og biologiske pro�

cesser
 er meget anvendelige til at opn�a indsigt i real�tids styring af systemer

til spildevandsrensning med varierende str�mningshastigheder og stofbe�

lastninger
 og som fundament for udviklingen af forbedred styringsmetoder�

I denne sammenh�ng foresl�as ikke�line�re strukturelle tidsr�kkemodeller


som identi�ceres ved at kombinere den kendte teori fra processerne med

de v�sentlige e�ekter
 som kan �ndes i data� Disse modeller kaldes grey

box�modeller
 og de indeholder hastighedsudtryk for f�lgende processer�

belastning af n�ringssalte
 stoftransport mellem luftningstanke
 hydrolyse

and biomasse�v�kst
 nitri�kation
 denitri�kation
 biologisk fosfat�optagelse

og fosfat�stripning� Flere af de anvendte hastighedsudtryk for de biologiske

processer er formuleret p�a basis af Monod�kinetikken� Ved formulering af

modeller for tids�varierende parametre i et nyt tids�dom�ne opdeles proces�

variationerne i hurtig og langsom dynamik� Denne formulering i to tids�

dom�ner giver en forbedret fortolkning af parametrene� Modellerne bringes
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p�a en tilstandsform
 hvor parametrene estimeres ved hj�lp af maximum

likelihood metoden
 idet et Kalman �lter bruges til at beregne likelihood

funktionen�

Grey box�modellerne er estimeret p�a datas�t fra pilotanl�gget i Lundtofte

og �Alborg Vest renseanl�g� Ved anvendelse af store datas�t er en esti�

mation af Monod�kinetiske udtryk mulig� Parameter estimaterne fra de to

anl�g viser en rimelig overensstemmelse med anvendte kinetiske parameter

v�rdier fra litteraturen� En stor m�ngde information om de to anl�g er

udtrykt i parametrene fra modellerne
 hvoraf variationerne i ammoniak�

belastningen og den autotrofe og heterotrofe biomasse aktivitet er speciel

interessant� Modellerne er egnede til styring
 fordi anl�ggets nuv�rende

tilstand er afspejlet i parameter estimaterne�

Grey box�modellerne kan umiddelbart anvendes som fundament for en

forbedret styring� I n�rv�rende afhandling foresl�as� o��line simuleringer

af styringsstrategier og on�line model�baseret pr�diktiv styring� Begge

metoder indeholder en vurdering af en kriterie�funktion
 som bygger p�a

omkostningerne ved driften og udledning af n�ringssalte til recipienten�

Fremgangsm�aden ved prediktionsbaseret styring er vist vha� simuleringer�

xii
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Chapter �

Introduction

The discharge of wastewater from urbanized areas has a major impact on

the receiving body of water� Insu�cient wastewater treatment potentially

devastate the ecological balance of nature
 and environmental and health

problems associated with eutrophic conditions in receiving waters requires

greater removals in many areas� Thus
 removal of organic matter and nutri�

ents �mainly nitrogen and phosphorus� from the wastewater is an important

cause for the society of today�

Historically
 wastewater treatment requirements were determined by the

need to maintain the oxygen content of the receiving water
 and this was

accomplished primarily through the removal of settle�able solids and dis�

solved organic materials from the wastewater before discharge� However


discharge of nutrients stimulate growth of algae and other photo�synthetic

aquatic life
 which lead to accelerated eutrophication
 excessive loss of oxy�

gen resources
 and undesirable changes in aquatic populations� Biological

nutrient removal systems are relative new technologies with the potential

of high quality e�uents� Furthermore
 they have shown to be the most

operation cost�e�ective systems at present time�

�

� �



� Chapter �� Introduction

In the last decade reliable on�line sensors for monitoring of nutrient salt con�

centrations �ammonia
 nitrate
 and phosphate� on activated sludge waste�

water treatment plants �WWTP� have been developed� Though
 the main

objective of these sensors so far has been surveillance of plant performance

and alarmhandling
 the use of these sensors for on�line control of operations

of WWTP�s has a large potential and still needs to be investigated�

ManyWWTP�s are presently operated according to predetermined schemes

with very little considerations to the variations of the material loads� Using

on�line sensors in on�line control of the operation of the plants may enhance

the ability to comply with the assigned e�uent standards� In general
 a

better understanding of the dynamic behaviour of the WWTP�s and an on�

line identi�cation of loads with the use of control systems have signi�cant

potential for solving operational problems as well as reducing operational

costs� In addition
 this knowledge may be used to reduce volume holdings

in the design of the plants to be constructed in the future�

The understanding of the dynamic behaviour of a WWTP is often de�

scribed in the form of a model� However
 the dynamics of a WWTP can

be expressed in a multitude of ways
 and the objective of a given type of

model should agree with the employment of the model �i�e� some models

are developed to yield a very detailed understanding of the processes
 while

other models are developed to be operational�� The purpose of this thesis

is to develop operational models based on the information obtained from

on�line sensors with the objective of controlling the plant operation� The

most important physical and biochemical laws of the WWTP are sought

captured in the formulation of the models�

��� State of the art

For modelling of wastewater processes
 most e�ort in the last decade has

been placed in detailed and complex deterministic models� Especially the

IAWPRC �International Association on Water Pollution
 Research
 and

Control� Activated Sludge Model No�� �Henze et al� ������� has gained

��� State of the art �

much attention� The model expresses a very detailed theoretically relation

of all the processes in activated sludge using Monod�kinetic expressions�

However
 the model contains a huge number of parameters which implies

that an identi�cation of all the parameters by statistical methods is very

di�cult or in fact impossible
 and that the model is unsuitable for an on�line

control�

Great emphasis has also been placed in modelling reduced�order forms of

the IAWPRC model
 for instance models for the process of aerobic degra�

dation of organic materials have been published frequently� Kabouris 

Georgakakos ������ suggest using a deterministic model with stochastic

input for optimal control� The control method minimizes the expected de�

viations of e�uent substrate from its steady�state values� In Parkum ������

a non�linear adaptive controller for the nitri�cation process is considered�

Some authors have proposed more inductive methods for the modelling

of wastewater processes� These are developed from input and output

monitoring data series� Hiraoka et al� ����	� have used a multivariate

autoregressive model with exogenous input and a PI�controller to suppress

�uctuations in treated wastewater quality� Novotny et al� ������ sug�

gest using time series ARMA �AutoRegressive Moving Average��models to

processes
 that are mathematically linear or can be linearized and neural

network models for highly non�linear processes� It is furthermore recom�

mended that the ARMA� and neural network�models are self�learning
 i�e�

the performance can be periodically improved as new information is col�

lected by monitoring� In Capodaglio et al� ������ ARMA� and transfer

function�models are shown to have a better performance than simpli�ed

deterministic models for characterization of the activated sludge process�

ARMAX�models �ARMA with eXogenous input� with an on�line estimation

of the parameters using a Kalman �lter or a recursive parameter estimation

method are proposed by Olsson et al� ������� Some parameter variations

are assumed to be considerable slower than the process variable rate of

change�
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� Chapter �� Introduction

Applications of neural network models to wastewater processes including

nutrient removal have been employed by Bhat  McAvoy ����	�� Com�

paring feed�forward networks with recurrent networks they found
 that

recurrent networks are more appropriate for the application of model pre�

dictive control� Enbutsu et al� ������ suggest using neural networks on

on�line data to provide operation guidance for a fuzzy logic system
 which

incorporates operators� heuristic as fuzzy rules� Couillard  Zhu ������

propose fuzzy logic for control of the concentration of dissolved oxygen and

the height of the sludge blanket at the bottom of the clari�er under shock

loading
 while on�line microorganism image information from a high resolu�

tion submerged microscope is combined with heuristic on a full scale plant

using fuzzy logic in Watanabe et al� �������

The applied models for control of a WWTP tend to be either purely de�

terministic �white box� or of the black box type� In this thesis stochastic

models incorporating physical knowledge are reported�

��� Outline of the thesis and reading guide

Chapter � gives an overview of the essential biological processes for nu�

trient removal in an activated sludge WWTP� The use of Monod�kinetic

expressions in modelling the rates of these processes is described
 and rate

expressions for the di�erent processes are derived� Finally
 environmental

factors in�uencing the biological processes are mentioned�

The performance of a WWTP is mainly determined by the composition

of the wastewater and the design and operation of the plant� Chapter

� lists some of the important characteristics of the incoming wastewater


and a description of biological nutrient removal plants is given with the

most emphasis on the BIO�DENITRO and BIO�DENIPHO processes� The

modelling of the activated sludge reaction vessels is also explained�

Chapter � is the central part of the thesis
 where operational models de�

scribing the hydraulic and biological processes of the WWTP are derived�

��� Outline of the thesis and reading guide �

The modelling methodology and the components of which the models are

built
 are described before the modelling of the WWTP can be properly

explained� These models which incorporates physical knowledge of the bio�

logical and hydraulic processes are called grey box models� An introduction

to the identi�ability concept of model parameters is also given� The last

part of the chapter deals with the technicalities of getting the grey box

models into a form such that the parameters of the models can be esti�

mated� Statistics of the model performance and parameter signi�cance are

described� Readers with less interest in statistics and stochastic modelling

may skip some of the sections in this chapter�

Chapter � and Chapter � deal with the application of the grey box mo�

dels on data from the Lundtofte pilot scale plant and the Aalborg West

WWTP
 respectively� The models of the two chapters also represent a

step�wise development of the grey box models� The use of extensive time

series shows that the identi�cation of Monod�kinetic expressions is feasible�

Furthermore
 most of the parameter estimates obtained from the models

are interpretable and relate to the theory of the processes given in Chapter

� and �
 and comparison of these parameter estimates with suggested val�

ues from the literature show a reasonable correspondence� The parameter

estimates are found to give a clear indication of the state of the plant at

any time� These two chapters are self�containing and may to some extent

be read independently of the rest of the thesis�

The prospects of using the grey box models for prediction based control are

dealt with in Chapter �� The methods include o��line simulations of control

strategies and on�line model�based predictive control of the BIO�DENITRO

and BIO�DENIPHO processes� The considered controlling actions are the

oxygen concentration setpoint and phase lengths of the aerobic and anoxic

periods� Several strategies for control of the oxygen concentration setpoint

and the aerobic�anoxic phase lengths
 and a cost function for evaluating

the strategies incorporating cost of operation and nutrient discharge
 are

proposed� In a simulation study the e�ect of improved plant operation is

investigated�
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� Chapter �� Introduction

Numerical methods are indispensable for the application of the grey box

models on real data
 due to the complexity of the models and the sizes of

the applied data sets� Methods for stabilizing the Kalman �lter recursions

and optimization techniques are presented in Appendix A� The presentation

of the applied methods is self�contained
 and this appendix has only little

relevance for the understanding of the previous chapters�

Chapter �

The biological processes

The theory of the activated sludge processes has been developed steadily

in the last decades� One major step towards combining the theory of the

di�erent processes and unifying the terminology used to describe the pro�

cesses
 was made by the introduction of the IAWPRC model no� � �Henze

et al� �������� In this chapter the signi�cant biological processes essential

to a biological nutrient removal system
 are presented� The presentation

of the processes given here is very simpli�ed
 but it is su�cient for most

practical applications�

In the �rst section of this chapter the basic activities of the microorganisms

in the activated sludge are discussed
 followed by a description of the aerobic

organic carbon removal process
 the nitri�cation process
 the denitri�cation

process
 and the biological phosphorus removal process� In the last section

some of the environmental factors in�uencing the processes are mentioned�

For a more detailed description of the processes
 see Eckenfelder  Grau

������ and Randall et al� �������

�
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� Chapter �� The biological processes

��� Microorganisms and their activities

The biological processes in a WWTP are carried out by many di�erent

types of bacteria� The most important microorganisms in the activated

sludge process are bacteria
 while fungi
 algae
 and protozoa are of sec�

ondary importance� Thus
 for the biological processes considered in the

following the term bacteria is used in a more general sense to represent all

the microorganisms in the activated sludge�

The di�erent types of organisms which can be found in the activated sludge

on a speci�c WWTP
 are also found in the raw wastewater led to the plant

and�or the immediate surroundings of the plant �e�g� air and soil�� The

predominant genera of bacteria in the activated sludge is mainly determined

by the composition of the raw wastewater
 the design of the plant
 and to

some extent the operation of the speci�c plant�

Bacteria need energy permanently in order to grow and to support essential

life activities� Growing cells utilize exogenous substrate �located outside the

cell membrane� and exogenous nutrients for growth and energy

Substrate � Nutrients � Oxygen �� Biomass � Energy

The major part of bacteria in the activated sludge �called heterotrophic

bacteria� use organic carbon in the form of small organic molecules as sub�

strate
 and some bacteria �called autotrophic bacteria� which are essential

to biological nutrient removal
 use inorganic carbon as substrate� When

the bacteria decay the organic carbon of the bacteria is partly reused� The

lifecycle of biomass is illustrated in Figure ���
 which is a very simpli�ed

illustration of the biochemical processes in the activated sludge� Some of

the biomass originates from the raw wastewater as indicated by the dotted

arrow�

Substrates and nutrients are absorbed within the biomass faster than they

are utilized
 but the bacteria cannot accumulate large amounts of such

products� Instead the substrates and nutrients are chemically modi�ed

��� Microorganisms and their activities �

������������������������������������������������������

������������������������
����

������������������������
����

������������������������
����

��������������������������
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Slowly biodegradable substrate

��������������������������

Raw wastewater

Raw wastewater

Raw wastewater

Raw wastewater

Bacterial decay

Bacterial growth
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Inert material
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Readily biodegradable substrate

Figure ���� Biomass lifecycle� The regeneration and production of biomass

in the activated sludge�

into a few types of large molecules �typically polysaccharides
 lipids
 and

polyphosphates�
 which can be stored for a long period of time without

signi�cant energetic expenses�

����� Hydrolysis

Hydrolysis is an enzymatic accelerated process transforming larger organic

molecules �including both soluble and particulate organic materials� into

smaller
 readily bio�degradable molecules� The hydrolysis process rate is

slow compared to the rate of growth of biomass and it will be the rate limit�

ing factor for the growth of biomass
 if the substrate in the raw wastewater

primarily consists of larger organic molecules�
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�	 Chapter �� The biological processes

Because hydrolysis is a generic term for a great number of di�erent bio�

chemical processes
 the rate of the total process is often given by a �rst

order kinetic expression

dSh
dt
 kh � Sh �����

where Sh is the slowly bio�degradable organic substrate concentration and

kh is the time constant of the process� When a more detailed rate expression

for the hydrolysis process is desired
 Monod kinetic expressions �see below�

for the rate limiting concentrations can be used �see Henze et al� ��������

����� Growth of bacteria

Readily bio�degradable substrate is considered to be the only substrate

which can be used for growth of biomass� The readily bio�degradable ma�

terial consists of small organic molecules like acetic acid
 methyl alcohol


ethyl alcohol
 propionic acid
 glucose
 etc� The growth rate of biomass and

the in�uence of limiting nutrient or substrate concentrations can be mod�

elled using Monod�kinetics
 e�g� the in�uence of a single limiting nutrient

concentration can be described as follows�

dXB
dt

 �max

Sn

Sn �KS

�XB �����

where

Sn  the concentration of the rate limiting nutrient or substrate

XB  the concentration of active biomass

�max  the maximum speci�c growth rate of biomass

KS  the appropriate half�saturation constant

The Monod�fraction in ����� show that the Monod�kinetic approximates

a zero�order kinetic �i�e� constant expression on right�hand side of �����

for Sn � KS and a �rst�order kinetic in Sn �i�e� �rst�order di�erential

��� Microorganisms and their activities ��

equation� for Sn � KS � For a more detailed description of the di�erent

kinetic expressions
 see Monod ������� Multiple limitations on the growth

rate can be modelled by multiplying the right�hand side of ����� with the

appropriate number of Monod�fractions of the limiting substrate
 oxygen


or nutrient concentrations�

The growth of biomass is related to a proportional consumption of nutrients

and substrates
 and the proportion of biomass produced
 !XB
 to nutrient

or substrate removed
 �!S is called the observed yield coe�cient Yobs
 i�e�

Yobs  �
!XB

!S

�����

Thus
 for the limitingnutrient concentration Sn in �����
 the rate of nutrient

consumption is given as follows�

dSn
dt
 �
�max

Yobs
�

Sn

Sn �KS

�XB �����

If several nutrients and substrates are used for growth of bacteria
 the

consumption of the given nutrient or substrate is found by dividing the

growth rate of bacteria with the individual observed yield coe�cients of

the given nutrient or substrate�

����� Decay of bacteria

Biomass is lost by decay
 which incorporates a large number of mechanisms

including endogenous metabolism
 death
 predation
 and lysis� Bacterial

decay is the transformation of active biomass into slowly bio�degradable

substrate as illustrated in Figure ���� Part of the bacterial decay is consid�

ered inert
 because the hydrolysis process is too slow relative to the sludge

retention time of a typical WWTP� The decay of biomass is described as a

�rst order kinetic process

� �



�� Chapter �� The biological processes

dXB
dt

 �b �XB �����

where b is the decay rate �b � 	�� The decay rate is assumed to be inde�

pendent of environmental factors
 e�g� temperature
 oxygen concentration


nutrients
 and substrates�

��� Aerobic removal of organic carbon

The organic matter in the raw wastewater is often divided into a number

of categories as shown in Figure ���� The most widely used subdivision

is based on bio�degradability� While the slowly or readily bio�degradable

substrate is utilized for biochemical processes and therefore changes its

form
 inert material leaves the biological nutrient removal system in the

same form as it enters� Inert material is of little interest for the operation

of the plant unless it is toxic� The readily bio�degradable substrate is used

for growth of biomass and supply of energy
 and the slowly bio�degradable

substrate is hydrolyzed to readily bio�degradable substrate�

In practice
 the aerobic heterotrophic yield of biomass with no limitations to

growth of bacteria is in the range 	���	�� g COD biomass�g COD substrate


which makes the bacteria very fast growing� The formation of a typical

biomass compound �C�H�NO�� from a typical substrate �C��H��O�N �

with a typical yield coe�cient is given by the following reaction�

C��H��O�N� 	���NH	

 � ���	O� ��

����C�H�NO� � ���	CO�� ����H�O �H	 �����

The end�products on the right�hand side of the biochemical reaction are

obviously harmless to the environment� It should also be noted that addi�

tional to the removal of organic matter
 ammonia is removed by growth of

heterotrophic bacteria�

��� The nitri�cation process ��

The removal of readily bio�degradable substrate under aerobic conditions

with no other limitations to the growth rate than the readily substrate

concentration
 is given by the following Monod�kinetic expression�

dSS
dt
 �
�max�H

Yobs�S

�

SS

SS �KS

�

SO�

SO�

�KO�

�XB�H �����

where

SS  the concentration of readily bio�degradable substrate

SO�

 the concentration of dissolved oxygen

XB�H  the concentration of active heterotrophic bacteria

�max�H  the maximum speci�c growth rate of heterotrophic

bacteria

Yobs�S  the observed biomass yield coe�cient of substrate

KS �KO�

 the appropriate half�saturation constants

In case nutrients impose limitations to the growth rate of heterotrophic

bacteria during aerobic conditions
 the appropriate Monod�fractions would

need to be multiplied on the right�hand side of ������

��� The nitri�cation process

Nitri�cation is a two�step micro�biological process transforming ammonia

into nitrite and subsequently into nitrate� The process is well�known from

the biosphere
 where it has a major in�uence on oxygen conditions in soil


streams
 and lakes� Soluble ammonia serves as the energy source and nu�

trient for growth of biomass of a special group of autotrophic bacteria


called nitri�ers� The intermediate formation and removal of nitrite is not

considered here�

If ammonia is only used as a source of energy
 the �rst step of oxidizing

ammonia into nitrite is�

� �



�� Chapter �� The biological processes

NH	

 � ���O� �� NO�
� �H�O � �H
	 �����

and the second step of oxidizing nitrite into nitrate is�

NO�
� � 	�� 	� �� NO�
� �����

A typical representative for the �rst step is the bacteria of the genus Ni�

trosomonas and for the second step the bacteria of the genus Nitrobacter�

Because the processes ����� and ����� only give a small energy yield
 the

nitrifying bacteria are characterized by a low biomass yield� This is an

essential problem for the nitri�cation process in biological nutrient removal

systems� The observed yield coe�cients for Nitrosomonas and Nitrobacter

are typically signi�cantly smaller compared to those of the heterotrophic

bacteria
 which makes the nitrifying bacteria a rather slow growing pop�

ulation� Using these yield coe�cients for autotrophic growth of biomass


the following reaction for the total nitri�cation process is obtained�

NH	

 � ����O�� ����HCO�
� ��

	�	�	C�H�NO� � 	���NO�
� � ����H�CO� � ��	�H�O ����	�

where HCO�
� is the form of soluble carbon�dioxide for pH�values in the

range from � to �� From the reaction above ����	� it is seen that a large

amount of alkalinity is destroyed for every NH	

 being oxidized� However


the wastewater of many areas contains large alkalinity bu�ers
 but some

wastewater treatment facilities require the addition of lime or soda ash to

maintain desirable pH�levels for nitri�cation�

For practical reasons in a WWTP
 the nitri�cation process is considered

as a one�step process
 which incorporates kinetic parameters for the total

process� In ����	� the three components on the left�hand side may all be

rate limiting
 but in practice only the ammonia and oxygen concentration

��� The nitri�cation process ��

impose limitations to the growth of nitri�ers� Thus
 for the removal of

ammonia by nitri�cation
 the following expression can be obtained

dSNH�
�

dt

 �

�max�A

Yobs�NH�
�

�

SNH�
�

SNH�
�

�KNH�
�

�

SO�

SO�

�KO�

�XB�A ������

where

SNH�
�

 the concentration of NH	



SO�

 the concentration of dissolved oxygen

XB�A  the concentration of active autotrophic biomass

�max�A  the maximum speci�c growth rate of autotrophic

bacteria

Yobs�NH�
�

 the observed biomass yield coe�cient of ammonia

KNH�
�

�KO�

 the appropriate half�saturation constants

For the simultaneous formation of nitrate a similar kinetic expression is

found�
dSNO�

�

dt

 

�max�A

Yobs�NO�
�

�

SNH�
�

SNH�
�

�KNH�
�

�

SO�

SO�

�KO�

�XB�A ������

The observed yield coe�cient for the formation of nitrate Yobs�NO�
�

will be

larger than Yobs�NH�
�


 which is clearly seen from ����	� where less nitrate

is produced than ammonia removed�

Operating a WWTP requires special attention to the nitri�cation process


because the slow rate of growth makes the nitri�ers more vulnerable to

inhibitions
 changes in the operation of the plant
 and the composition of

the raw wastewater�
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��� The denitri�cation process

Denitri�cation is a micro�biological heterotrophic process transforming ni�

trate into nitrogen gas
 using nitrate instead of oxygen as the oxidation

agent� The conditions during which this process occurs
 are called anoxic


because oxygen is not present and some heterotrophic bacteria are able

to use nitrate for oxidation� Denitri�cation is also well�known from the

biosphere
 where it is common in soil and stationary waters beneath the

surface�

Most of the heterotrophic bacteria are optional to the use of oxidation

agent
 but the energy yield of using nitrate is less than using oxygen�

Thus
 if oxygen is present
 the bacteria prefer to use oxygen� In prac�

tice
 denitri�cation only takes place at low oxygen concentrations� The

overall mechanism can be described by a typical microbial reaction of a

saccharide with nitrate�

�C�H��O� � ��NO�
� �� ��N� � ��HCO�
� � �CO� � ��H�O ������

The lower energy yield for the heterotrophic bacteria during the anoxic

conditions is also re�ected in a somewhat smaller biomass yield coe�cient�

Denitrifying bacteria using ammonia and the typical form of organic sub�

strate �C��H��O�N � in wastewater for bacterial growth with an observed

yield coe�cient of 	��� g biomass�g substrate gives the following reaction�

	���C��H��O�N�����NO�
� � 	���NH	

 � ����H
	 ��

C�H�NO� � ����N� � ���	CO�� ����H�O ������

Fortunately
 some of the alkalinity lost by nitri�cation is gained by deni�

tri�cation� Combining the typical reactions for the nitri�cation ����	� and

��� The denitri�cation process ��

denitri�cation ������ processes
 a total of ��	� eq� alkalinity�mole NO�
� �

N removed is lost� Also
 from ������ it is seen
 that ��" of the nitrogen

resulting from the reaction is in the form of nitrogen gas�

On the left�hand side of ������
 three concentrations appear to be rate�

limiting for the denitri�cation process
 i�e� the readily organic substrate


nitrate
 and ammonia concentration� The required amount of ammonia

for cell growth is however very little
 and the heterotrophic bacteria are

capable of using nitrate for cell growth in lack of ammonia
 such that the

ammonia concentration in fact does not impose a limitation to the rate

of the process� Thus
 for the removal of nitrate by denitri�cation
 the

following kinetic expression can be obtained�

dSNO�
�

dt

 �

�max

Yobs�NO�
�

�

SS

SS �KS

�

SNO�
�

SNO�
�

�KNO�
�

�XB�H ������

where

SNO�
�

 the concentration of NO�
�

SS  the concentration of readily bio�degradable substrate

XB�H  the concentration of active heterotrophic biomass

�max�H  the maximum speci�c growth rate of heterotrophic

bacteria

Yobs�NO�
�

 the observed biomass yield coe�cient of nitrate

KNO�
�

�KS  the appropriate half�saturation constants

The inhibitory e�ect of the presence of oxygen on the nitrate removal rate

can be modelled by multiplying ������ with

K
�

O�

K
�

O�
	SO�

 where SO�

is the dis�

solved oxygen concentration
 and K
�

O�

is the inhibition constant for oxygen

�K
�

O�

and KO�

in ������ are two distinct constants�� For the WWTP types

considered in the present context the change from aerobic to anoxic condi�

tions is normally quite clear to detect as the oxygen approaches zero rather

rapidly after the aeration of the wastewater has stopped�
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A very important parameter for the denitri�cation process is the organic

carbon�nitrogen�fraction �C�N�ratio� of the raw wastewater
 which also

plays a signi�cant role for the design and operation of the WWTP� The

denitri�cation depends to a large extent on the readily bio�degradable

substrate concentration in the raw wastewater
 because the hydrolysis of

organic substrate is slow during anoxic conditions� In practice
 the C�N�

ratio of the raw wastewater should at least be ��� g COD�g N for the most

typical WWTP�s
 in order to assure a relative high denitri�cation rate�

��� The biological phosphorus removal pro�

cess

In the �rst section of this chapter
 the accumulation of phosphates in

the bacterial cell
 used as an energy storage in the form of intra�cellular

polyphosphates
 was shortly mentioned� Polyphosphates are an energy

source
 which is built up during aerobic and anoxic conditions
 and during

anaerobic conditions the polyphosphates are stripped and energy gained in

order to store organic substrate�

Some of the heterotrophic bacteria are able to store phosphates
 but the

bacteria of the genus Acinetobacter are the most important for this process�

The bacteria of the genus Acinetobacter can only store polyphosphates

during aerobic conditions
 but they e�ectively compete with the faculta�

tive species in the biological nutrient removal system� A minor part of the

phosphate accumulating bacteria are also capable of performing denitri��

cation� Thus
 the formation rate of polyphosphates is signi�cantly higher

during aerobic conditions compared to anoxic conditions in the activated

sludge�

During anaerobic conditions the phosphate accumulating bacteria use their

energy storage by stripping phosphates to accumulate readily bio�degradable

substrate
 which is used for cell growth during aerobic�anoxic conditions�

This ability gives the phosphate accumulating bacteria an advantage to

��� The biological phosphorus removal process ��

Figure ���� Illustration of the biological phosphorus removal process�

other heterotrophic bacteria during anaerobic periods
 which can be used

for selecting the phosphate accumulating bacteria by continuous cycling

of the activated sludge through aerobic�anoxic and anaerobic conditions�

The process of phosphate uptake�release and the simultaneous readily bio�

degradable consumption�uptake is depicted in Figure ����

The heterotrophic phosphate accumulating bacteria grow at the same rate

as other heterotrophic bacteria
 i�e� a biomass yield of 	���	�� g COD

biomass�g COD substrate� The bacteria can store polyphosphates to a

maximum of approximately �	" of the total cell weight
 i�e� phosphorus
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alone makes up ����	" of the biomass of the Acinetobacter and other

phosphate accumulating bacteria� In practice
 ���" of the biomass of

Acinetobacter is made up of phosphorus
 and the phosphorus is thus re�

moved biologically by removing excess sludge�

The formation of polyphosphates during aerobic conditions assuming the

accumulated readily bio�degradable substrate to be in the form of acetic

acid and Yobs 	�� g COD biomass�g COD substrate
 is given by the fol�

lowing reaction�

C�H
O� �	���NH	

 � ���O�� 	��PO
��


 �� 	���C�H�NO�

����CO�� 	���HPO��n � 	���OH
�� ����H�O ������

and during anoxic conditions�

C�H
O� � 	���NH	

 � 	��PO
��


 � 	���NO�
� �� 	���C�H�NO�

����CO�� 	���HPO��n � ���OH
� � 	���N�� 	���H�O ������

where �HPO��n is the phosphate stored intra�cellular as polyphosphate and

PO��

 denotes the phosphate in the wastewater
 which for moderate pH�

values is in the form of HPO��

 and H�PO
�


 � The readily bio�degradable

substrate uptake and simultaneous phosphate release during anaerobic con�

ditions is described as follows�

�C�H
O� � �HPO��n �H�O �� �C�H
O��� � PO��

 � �H	 ������

where �C�H
O��� is the intra�cellular substrate formed of acetic acid�

The alkalinity is only in�uenced a little by the phosphate uptake during

aerobic and anoxic periods� Both processes
 ������ and ������
 produce al�

kalinity �	�	� and ��	 eq� alkalinity�mole acetic acid used�
 but combined

��� The biological phosphorus removal process ��

with the slow rate of phosphate uptake during anoxic conditions
 the al�

kalinity almost remains unchanged by the intra�cellular accumulation of

phosphates� The phosphate release process ������
 however
 removes some

alkalinity�

The uptake of phosphates during aerobic conditions assuming that the

phosphate concentration is the only limiting nutrient concentration
 and

the readily bio�degradable substrate �both endogenous and exogenous� and

oxygen concentration are not rate�limiting
 can be described by the follow�

ing Monod�expression�

dSPO��
�

dt

 �

�max�P

Yobs�PO��
�

�

SPO��
�

SPO��
�

�KPO��
�

�XB�P ������

where

SPO��
�

 the concentration of PO��



XB�P  the concentration of active phosphate accumulating

biomass

�max�P  the maximum speci�c growth rate of phosphate

accumulating bacteria

Yobs�PO��
�

 the observed biomass yield coe�cient of phosphate

KPO��
�

 the appropriate half�saturation constant

Occasionally
 the readily bio�degradable substrate or the oxygen concen�

tration turns out to be rate limiting as well
 which requires multiplication

of the right�hand side of ������ by the appropriate Monod�fraction� During

anoxic conditions
 a similar expression to ������ holds with �max�P being

signi�cantly lower in this case� The reason is
 that all phosphorus accu�

mulating bacteria can take up phosphate under aerobic conditions whereas

only part of the phosphorus accumulating bacteria take up phosphate under

anoxic conditions�

The release of phosphate during anaerobic conditions is typically limited

only by the concentration of readily bio�degradable substrate �mainly in

the form of acetic acid
 HAc��

� �
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dSPO��
�

dt

 kmax�PO��
�

�

SHAc

SHAc �KHAc
�XB�P ����	�

where

SPO��
�

 the concentration of PO��



SHAc  the concentration of acetic acid

XB�P  the concentration of active phosphate accumulating

biomass

kmax�PO��
�

 the maximum speci�c release of phosphate

KHAc  the appropriate half�saturation constant

The release of phosphate automatically stops
 when all the intra�cellular

polyphosphate is used� The amount of polyphosphate in the biomass
 itself


however does not a�ect the release rate of phosphate�

Exposing the activated sludge to anaerobic periods in the operation of a

WWTP favors the Acinetobacter and other phosphate accumulating bac�

teria
 which results in a larger amount of phosphate accumulating bacteria

of the total biomass and a larger removal of phosphorus� Thus
 for a bio�

logical nutrient removal system
 the period lengths of aerobic
 anoxic
 and

anaerobic conditions should be determined according to the composition

of the raw wastewater and biomass
 and the given regulatory discharge

requirements�

��	 Environmental in
uence on the biological

processes

For the processes described above a number of environmental factors in�u�

ence the rates of the processes� These factors include temperature
 e�ect of

pH�value
 toxic and inhibiting materials
 and rate�limiting concentrations

of nutrients and substrates� Some of the rate�limiting concentrations of the

processes are already incorporated in the rate�expressions given previously


��� Environmental in�uence on the biological processes ��

while other seldom impose limitations to the growth of bacteria� In order

to model the in�uences of environmental factors
 �max in the expressions

above
 is de�ned as being a function of these factors
 which have not been

incorporated in the rate expressions above� The maximum speci�c growth

rate of biomass is besides the bio�degradability of the substrate and the

speci�c biomass composition given by factors such as�

�max  f�T� pH� Sx� Sy� � � �� ������

where

T  the temperature in the activated sludge

pH  the pH�value

Sx� Sy  the concentrations of rate�limiting materials

The maximum speci�c growth rate �max is reported to grow exponentially

from 	����C with approximately �	" for every degree Celsius� In the range

����	�C �max is approximately constant
 while it decreases very rapidly for

temperatures above �	�C� Thus
 the rates of the processes may di�er by

more than a factor of � from winter to summer temperatures� The bacteria

are also sensitive to rapid changes in the temperature of the raw wastewater


which often occur during rainy weather and the melting of snow�

The biological processes are also sensitive to the pH�value in the raw

wastewater
 and the pH�value should at least be within the range of ��

�	� Heterotrophic bacteria attain the highest maximum speci�c growth

rate for pH�values ranging from ���
 while autotrophic bacteria prefer a lit�

tle more alkali wastewater
 typically a pH�value within ���� Recent work of

Antoniou et al ����	� suggests a cross�correlation e�ect of the pH�value and

temperature on �max
 indicating a greater pH e�ect at lower temperatures�

Many organic compounds and inorganic metal compounds have a toxic

e�ect on the biological processes
 even though these processes are rather

robust in the mixed bacterial cultures of the activated sludge� Quanti��

cation of toxicity in wastewater treatment systems is di�cult due to the

number of factors that may a�ect the rates of the processes� Knowledge of

� �
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toxicity of di�erent compounds is often found from laboratory batch tests

on a single speci�c bacterial culture� However
 toxicity on larger WWTP�s

are mainly caused by industrial outlet of toxic materials
 and the com�

pound causing the toxicity may be identi�ed by a closer examination of the

industries in the catchment area�

Some compounds which are not toxic to the biomass
 inhibits the biological

processes
 causing the rates of the processes to decrease� The inhibition of

a given matter can be modelled by multiplying the rate expression with the

following fraction�

KS�I

KS�I � SS�I

������

where

SS�I  the concentration of the inhibiting material

KS�I  the appropriate half�inhibition constant

The inhibition of a speci�c bacterial culture
 which makes the speci�c bac�

terial growth rate slow
 combined with the removal of excess sludge
 may

result in loss of the given bacterial culture�

��� Conclusion

In the previous sections the biological processes of a biological nutrient

removal system and rates of the processes have been presented� In order

for the processes to actually occur
 some basic nutrients and substrates are

crucial� These materials are normally present in the wastewater and pro�

duced by hydrolysis� The rates of the biological processes heavily depend

on the concentration of these basic substances
 but other factors �oxygen

concentration
 temperature
 pH�value
 toxic materials
 inhibitory materi�

als
 etc�� have a signi�cant in�uence on the rates� The di�erent bacterial

genera found in the activated sludge is determined by the composition of

��� Conclusion ��

the wastewater and the operation of the plant
 by means of which also the

amount of speci�c bacterial genera to some extend can be controlled� As�

suring optimal conditions for the biological processes is an important task

for the operation of a biological nutrient removal system�

� �
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Chapter �

Wastewater and

treatment plants

Two important factors for the performance of the biological processes de�

scribed in the previous chapter are� the composition of the raw wastewater

and the design�operation of the WWTP� In fact
 the design�operation of a

plant is largely determined by the composition of the raw wastewater
 which

can vary a lot in both volume and composition of materials� Thus
 it is

crucial when designing a WWTP or setting up operation strategies for the

plant to know the variation of wastewater loads� In the �rst section
 mea�

sures to characterize the wastewater loads of a typical municipal WWTP

plant are given
 followed by description of biological nutrient removal plants

and particularly the BIO�DENITRO�BIO�DENIPHO�processes
 which will

be modelled later� The last section deals with the theory of the reaction

vessels or tanks used in an activated sludge process�

��
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��� Characterization of wastewater

The raw or untreated wastewater of a typical municipal WWTP originates

from households
 industries
 institutions
 in�ltration from the ground wa�

ter
 and generally also rainwater of the catchment area� In spite of the

mixing of the produced wastewater in the sewer
 the WWTP is faced with

strongly time�varying loads
 both in volume and composition of materials

such as organic substrate and nutrients�

In the following subsections three main characteristics of the raw wastewa�

ter are dealt with�

� Flow to the plant

� Organic materials

� Nutrients

but other characteristics needs to be shortly mentioned�

The temperature in the raw wastewater a�ects the overall temperature

in the activated sludge
 which has a large in�uence on the rates of the

processes described in the previous section� Actually
 due to the energy

gained from the biological processes the temperature of the activated sludge

is slightly higher than the temperature of the raw wastewater� In Denmark

the temperature of the activated sludge normally ranges from ���	 degrees

C� in winter to ����	 degrees C� in summer
 but rainy weather and melting

of snow may decrease the temperature of the activated sludge signi�cantly�

The alkalinity of the raw wastewater in�uences the pH�value in the ac�

tivated sludge
 because alkalinity in total is removed by the biological

processes� Henze et al� ����	� states that the biological processes will

not be a�ected by the loss in alkalinity
 if the alkalinity of the raw muni�

cipal wastewater is above � eq� alkalinity�m� wastewater� The alkalinity

��� Characterization of wastewater ��

is mainly geographically determined and as such
 it does not vary signi��

cantly over longer periods of time� Though
 rainy weather and melting of

snow may temporarily change the alkalinity of the raw wastewater�

Inorganic materials are found in various concentrations in the raw wastewa�

ter� Especially anions like sulphate �SO��

 �
 and chloride �Cl�� are found

together with cations like potassium �K	�
 calcium �Ca�	�
 sodium �Na	�


and magnesium �Mg�	�� Results reported by Pattarkine ������ have shown

that the presence of both magnesium and potassium is essential to the

biological phosphorus removal process� Fortunately
 the requirements are

considerably less than the quantities of these two cations found in most

wastewaters� Also
 many heavy metals are found in the raw wastewater of

which the most typical are lead
 cadmium
 chromium
 nickel
 and copper�

Sometimes
 these heavy metals are found in concentrations which may have

an inhibiting e�ect on the biological processes�

����� Flow to the plant

The in�uent �ow rate to the WWTP shows a large variation due to human

behaviour and weather conditions such as rain
 snow
 and temperature�

While weather conditions can be quite unpredictable
 human behaviour

follows a regular pattern which consist of a diurnal
 weekly
 and yearly

variation� Figure ��� shows the diurnal variation of the measured �ow rate

to Aalborg West WWTP on a typical weekday without precipitation� The

curve serves as a smoothed and delayed illustration of human activities

due to highly varying retention times in the di�erent sub�nets of the sewer�

Figure ��� shows the daily total inlet �ow to the Aalborg West WWTP

over a �� days period
 where days with precipitation are marked with a

square� There seems to be a signi�cant di�erence in the �ow to the plant

between weekdays and weekends�

� �
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��� Characterization of wastewater ��

����� Organic materials

Wastewater normally contains thousands of di�erent organic compounds of

di�erent sizes
 which makes organic materials the signi�cantly largest com�

ponent group as to both quantity and diversity� The organic compounds

are grouped into readily�
 slowly�
 and non�bio�degradable substrate with

respect to the degradation time� The general rule is� the larger the organic

compound is
 the slower is the degradation process�

Three measures of organic matter concentration and composition have

gained acceptance and are widely used� Biochemical Oxygen Demand

�BOD�
 Chemical Oxygen Demand �COD�
 and Total Organic Carbon

�TOC�� The measures are not to be explicitly compared
 because each

measure gives an individual characteristic of the wastewater composition


but COD is the preferred measure�

The basic idea of the BOD�analysis is
 that oxygen demand is caused by

microorganisms when degrading organic matter� BOD is found as the total

oxygen consumption of a sample after � days and nights at a temperature

of �	�C� The disadvantage of this measure is
 that it takes � days before

the results are obtained
 and it is di�cult to make reproducible� The

COD�analysis is performed by adding potassiumdichromate �K�Cr�O�� to

oxidize the organic carbon� Some inorganic compounds are also oxidizes


but for most wastewaters this is of less importance� The analysis is rather

fast ���� hours�
 and it can be automated� TOC is equal to the production

of carbon�dioxide after heating the sample to high temperatures� However


as COD it tells little about the actual oxygen consumption and the fraction

of organic carbon
 that can be removed from the wastewater� Table ���

summarizes typical values of the three measures for three di�erent types of

wastewater� More details on the di�erent organic carbon measures can be

found in Carstensen ������ or Henze et al� ����	��

Biological nutrient removal cannot be accomplished without su�cient bio�

degradable substrate� Ekama  Marais ������ state that ��� mg COD is

needed to reduce � mg of NO�
� �N to nitrogen gas and approximately �	���

� �
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Heavily Moderately Lightly

loaded loaded loaded

Measure Unit wastewater wastewater wastewater

BOD g O��m
� ��	 ��	 ��	

COD g O��m
� ��	 ��	 ��	

TOC g C�m� ��	 ��	 ��	

Table ���� Measures of organic matter in typical Danish wastewater� Data

from Henze et al� �����

mg COD is needed to remove � mg PO��

 �P from the wastewater� The bio�

logical phosphorus removal is as described in the previous chapter strongly

a�ected by the speci�c organic compound available for assimilation� The

bio�degradable substrate for biological nutrient removal mainly comes from

the raw wastewater
 but a minor part originates from the fermentation of

sludge�

����� Nutrients

Nitrogen in the raw wastewater consists primarily of ammonia and organic

nitrogen
 however
 a small fraction of nitrite and nitrate may also be found�

The fraction of nitrogen including ammonia and organic nitrogen is often

referred to as Kjeldahl nitrogen� Typically
 the organic nitrogen to COD

ratio of the raw wastewater is rather constant in the range 	�	��	��� g N�g

COD
 and the organic nitrogen in the non�bio�degradable substrate is also

considered inert� Table ��� summarizes typical values for nitrogen in the

raw wastewater�

Phosphorus is found in raw wastewater as inorganic phosphate �PO��

 �


inorganic polyphosphates �long chains of phosphates�
 and organic phos�

phorus� Likewise
 Table ��� summarizes typical values for phosphorus in

the raw wastewater�

��� Biological nutrient removal systems ��

Heavily Moderately Lightly

loaded loaded loaded

Measure Unit wastewater wastewater wastewater

Total nitrogen g N�m� �	 �	 �	

Ammonia g N�m� �	 �	 ��

Organic nitrogen g N�m� �	 �	 ��

Total phosphorus g P�m� �� �� �	

Phosphate g P�m� �� �	 �

Polyphosphate g P�m� � � �

Organic phosphorus g P�m� � � �

Table ���� Measures of nutrients in typical Danish wastewater� Data from

Henze et al� �����

��� Biological nutrient removal systems

A WWTP with biological nutrient removal is made up of two parts� the

mechanical treatment and the biological treatment� In most cases the me�

chanical treatment consists of a grid and a primary sedimentation basin


where larger particles and grease are removed before the wastewater enters

the biological part
 where it is mixed with returned sludge�

The basic idea of an activated sludge WWTP is to keep the activated

sludge suspended in the wastewater through mixing and�or aeration in the

reaction tanks� After processing the wastewater
 the activated sludge is

allowed to settle in the secondary sedimentation basin �also called clari�

�er�
 where the activated sludge is recycled in order to maintain a high

concentration of activated sludge in the reaction tanks� From top of the

secondary sedimentation basin processed wastewater is led to the e�uent�

An activated sludge system must include one or more un�aerated zones in

order to accomplish biological nutrient removal� Furthermore
 the activated

sludge must recycle through all zones �anaerobic
 anoxic
 aerobic� for the

selection of the desired types of bacteria
 i�e� the WWTP must be a single

� �
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sludge system� Biological phosphorus removal can be maximized by placing

the anaerobic zone �rst so that the phosphorus�removing bacteria have

the �rst opportunity to utilize the organic substrate
 thus giving them a

competitive edge over those bacteria that cannot utilize or store substrate

under anaerobic conditions� Likewise
 nitrogen removal can be maximized

by placing the anoxic zone �rst
 but nitrogen removal is less sensitive to

the types of organic compounds available
 so the anaerobic zone is usually

placed before the anoxic zone�

The �rst process con�gurations for biological nutrient removal appeared in

the ���	s� Today
 the number of process con�gurations is very large
 and

it must be recognized that there is not merely one type of plant which will

always prove optimal� Some of the major contributions to the develop�

ment of biological nutrient removal are due to Ludzack  Ettinger ������


Levin  Shapiro ������
 Barnard ������
 and Barnard ������� In this in�

vestigation the modelling of the BIO�DENITRO�BIO�DENIPHO process

con�guration is concerned� This will be examined in the next section�

��� The BIO�DENITRO and BIO�DENIPHO

process

The BIO�DENITRO con�guration uses multiple oxidation ditches in an

alternating operation mode
 which enables a ditch to be isolated for a spe�

ci�c treatment objective� The alternating operation mode provides phased

treatment in each ditch� The operation cycle of a BIO�DENITRO plant

with indication of �ow patterns and phases is sketched in Figure ���� To

illustrate the duration of the di�erent phases
 a time schedule for a typical

operation cycle is also shown� The phases of nitri�cation and denitri�cation

are indicated on the Figure by N and DN�

In�uent wastewater can be divided to multiple ditches where operating con�

ditions are alternated
 i�e� aerobic�anoxic conditions� Operational phases

in a ditch are short relative to hydraulic retention time ����� and the amount

��� The BIODENITRO and BIODENIPHO process ��

: Nitrification

Tank 2

Tank 1

Outlet

Excess
sludgeReturn sludge

Inlet
DN

N

Tank 1

Tank 1

Tank 1

Tank 2

Tank 2

Tank 2

N

N

N

N

N

DN

Return sludge

Return sludge

Return sludge

Inlet

Inlet

Inlet

Outlet

Outlet

Outlet

Outlet

Excess

Excess

Excess

sludge

sludge

sludge

Phase A

Phase B

Phase C

Phase D

0.0-1.5 h

1.5-2.0 h

2.0-3.5 h

3.5-4.0 h

DN

N

: Denitrification
Figure ���� The BIO
DENITRO process operation with typical phase

lengths� The nitri�cation and denitri�cation processes are alternated be


tween the two tanks�
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of wastewater entering a ditch during a speci�c operating phase is small

compared to the ditch volume� Therefore
 the reactor mode approaches

that of a batch process� The ditches are connected through a spill�way

to enable the clari�er of large hydraulic loads induced by the switching of

phases� Automatically controlled weirs regulate �ow to and from ditches

to implement the alternating treatment mode
 and rotor aerators and �op�

tional� propellers satisfy all aeration and mixing requirements� Thus
 phase

lengths and operating conditions can be varied to achieve a speci�c treat�

ment objective�

The BIO�DENITRO process for biological nitrogen removal has been ex�

tended to include biological phosphorus removal by introducing an anaero�

bic contact tank into the system� In this tank
 the raw wastewater and the

returned sludge from the secondary sedimentation basin are mixed before

entering the BIO�DENITRO system� By this process
 the wastewater �rst

passes the anaerobic pretreatment tank where only a mixing takes place


and where neither nitrate nor oxygen is present� This new process is known

as the BIO�DENIPHO process�

A process �ow scheme for the BIO�DENIPHO process is shown in Figure

��� with a total operation cycle of four hours� Only the �rst two hours

of the operation cycle are shown
 while the last two hours of the cycle

are performed with the �ow direction and the denitri�cation�nitri�cation

phases interchanged between the two tanks�

For a more detailed description of the BIO�DENITRO and BIO�DENIPHO

processes
 and experiences of implementing these processes
 see Bundgaard

������� In Einfeldt ������ a case study of implementing the BIO�DENIPHO

process on the Aalborg West WWTP is given�

��� Dynamics of the reaction vessel

In the previous section the operation mode of the BIO�DENITRO and

BIO�DENIPHO processes were described
 and in the previous chapter the

��� Dynamics of the reaction vessel ��
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Outlet

: Anaerobic tank
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sludgeReturn sludge
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: Denitrification

: Nitrification

Figure ���� The BIO
DENIPHO process operation with typical phase

lengths� The nitri�cation and denitri�cation processes are alternated in the

two aeration tanks� while phosphorus accumulating bacteria are selected by

introducing the anaerobic pretreatment tank�
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����������
����������������

� ��
��

�

C�V

In�uent E�uent

Ci�Qi Cu�Qu

Figure ���� Illustration of an ideally mixed tank with the notation used in

this section�

dynamics of the biological processes were explained� In order to model the

dynamics of the plant
 the dynamics of the reaction tanks also needs to

be examined� In Figure ��� a reaction vessel is illustrated with an index

notation which will be used throughout this section�

The following identities are valid for the reaction tank�

Qi�t  Qu�t �
dVt

dt

�����

Qi�tCi�t  Qu�tCu�t �
dVtCt

dt

�����

where Q is the �ow
 C is the concentration of a given matter
 and V is

the volume of the tank� However
 the volume of the tank is assumed to be

constant in the following
 i�e� Vt  V and as a result Qi�t  Qu�t  Qt�

The most commonly used parameter to characterize a reaction vessel is the

hydraulic retention time�

Th  
V

Q

�����

��� Dynamics of the reaction vessel ��

If the �ow
 Q
 is time�varying the average �ow Q to the tank is used in

������ Thus
 the hydraulic retention time expresses the average retention

time of a particle in the reaction vessel� However
 particles di�ering in their

degree of suspension may have very di�erent retention times�

The reaction tanks used in a WWTP are equipped with aerator and�or

propellers in order to keep the activated sludge suspended� The mixing

of the tanks approximates that of ideal mixing
 i�e� the concentration of

a given matter being measured is unrelated to the position of the sample

being taken in the tank� The concentration of the given matter is thus con�

stant with respect to the position in the tank
 and the outlet concentration

of the tank is equal to the overall concentration of the tank �Cu�t  Ct��

Applying this result to ����� and using ����� gives the following di�erential

equation�

dCt

dt
 
Ci�t � Ct

Th

�����

The inlet concentration
 Ci�t
 to the aeration ditches in the BIO�DENITRO

and BIO�DENIPHO processes can be characterized by a step�function with

a step equal to the average inlet concentration of the phase with in�uent

load to the reaction tanks� The in�uence of a step�function load in an

ideally mixed tank is illustrated in Figure ���� The solution to ����� with

a step�function load is as follows�

Ct  Ci � �Ci �C� � e
� t
Th �����

where Ci is the average inlet load concentration and C is the concentration

in the ideally mixed tank of the given matter at the starting time of the

in�uent load as indicated in Figure ����

The basic assumption of ideal mixing is generally valid for the reaction ves�

sels of the BIO�DENITRO and BIO�DENIPHO processes
 but non�ideal

mixing can be modelled by connecting several ideally mixed tanks with

identical volume holdings in series� As shown in Harremo�es et al� ������
 a
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Figure ���� Response of a step
function load in an ideally mixed tank�

large number of identical ideally mixed tanks in series approximates a pipe

without any mixing� Thus
 non�ideal mixing can be modelled by connect�

ing the appropriate number of identical ideally mixed tanks in series� In

Chapter �
 this issue will be further investigated�

��� Summary

In the previous sections the important characteristics of the raw wastewater

have been presented
 and especially the variations of these characteristics


which have a major impact on the operation of a WWTP
 have been dis�

cussed� The main characteristics of the raw wastewater are� �ow
 organic

materials �quantity and composition�
 and nutrients� The design and op�

eration of a plant is largely determined by these three characteristics�

The basic principle of biological wastewater treatment is
 that the plant

must be a single sludge system
 which must include at least one un�aerated

zone� Biological phosphorus removal requires that the activated sludge

��� Summary ��

is exposed to anaerobic conditions
 while denitri�cation and nitri�cation

occur in the anoxic and aerobic zones of the WWTP
 respectively� BIO�

DENITRO and BIO�DENIPHO are two alternating process con�gurations


which are able to perform biological nutrient removal� These processes will

be modelled for the two considered cases in Chapter � and Chapter �


respectively� The reaction tanks of these two processes are considered as

being ideally mixed
 and the various consequences of these tanks have been

described in the last section of this chapter�
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Chapter �

Structural modelling of

time series

In the two previous chapters the theory of the wastewater processes
 bio�

logical and hydraulic processes
 was explained
 and models describing the

dynamics of these processes in continuous time were examined� The pa�

rameters of these models have the disadvantage of not being able to be

estimated on the basis of available measurements on a WWTP� In particu�

lar
 it should be stressed that measurements of the concentration of active

biomass �XB�A
 XB�H 
 or XB�P � do not exist� Hence
 they are calibrated

with some preset parameters in order to re�ect the dynamics of the mea�

surements� In this chapter the use of structural models is proposed
 which

can be identi�ed on the basis of the available data but at the same time in�

corporates the most important knowledge of the wastewater processes� The

�rst section deals with the modelling methodology of time series analysis


and the second section describes the tools used for structural modelling�

The third section gives a theoretical and a practical explanation on the

identi�ability of parameters� The structural models of the wastewater pro�

cesses are formulated in the fourth section� In the last four sections the

��
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technicalities of getting the structural models into a form
 where they can

be estimated via the Kalman �lter
 are explained� A number of tests and

criteria used to select the best �tting model are also described� However


the central part of this chapter is the model formulation set out in the fourth

section� A lot of inspiration for this chapter is due to Harvey �������

��� Modelling methodology

A physical phenomenon can be modelled using either deterministic or

stochastic models� Deterministic models are obtained explicitly frommath�

ematical functions and physical constants� Such mechanistic models of

processes give rise to deterministic description of data since
 for the system

of equations comprising the model
 the output can be calculated exactly

given values of the input and initial conditions� Study of phenomena usu�

ally begins with the assumption that the physical world is fundamentally

deterministic
 but in order to give a mechanistic description of the pro�

cesses
 the inclusion of a great number of parameters is often required�

Unfortunately
 it is often found that a large class of phenomena is not de�

terministic or the underlying theory of the processes is so complex
 that a

mechanistic description cannot be achieved�

Modelling these phenomena gives rise to a stochastic modelling approach�

That is
 rather than founding the model on a theoretical conception of the

system with subsequent validation by comparison with actual data
 the

data itself guides the model development with the result being a model

minimizing the di�erence between actual data and model predictions� The

model structure obtained using these procedures does not necessarily cor�

respond to a known mechanism
 but underlying mechanisms found in data

may be included� In the present context
 the stochastic models are char�

acterized by fewer parameters for the description of data compared to the

deterministic models�

In Box  Jenkins ������ a stochastic process is de�ned as #statistical phe�

nomena that evolves in time according to probabilistic laws#� An example

��� Modelling methodology ��

Prior knowledgeData

Model formulation

Parameter estimation

Model diagnosis

Final model

Is the model OK?

Yes!

No!

Figure ���� Illustration of the iterative model identi�cation process�

of such a process is the raw in�uent �ow to the WWTP over time which is

shown in Figure ��� for the Aalborg West WWTP� The daily �ow pattern

can be modelled deterministicly using trigonometric functions or a set of

dummy variables
 but the daily average �ow to the plant shown in Figure

���
 also shows large variations such that a deterministic function to de�

scribe the �ow only would apply for #an average day#� Data are usually

found to be dependent on past values of the same or di�erent variables


and modelling of this time dependency is of interest in this chapter� The

methods of describing data using stochastic time�varying models based on

the statistical properties are generally known as time series analysis�
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�� Chapter �� Structural modelling of time series

The building of stochastic structural models is an iterative process
 where

model diagnostics by statistical methods leads to the formulation of new

models� This is illustrated in Figure ���� Data and the known underlying

mechanisms of the process being modelled are used to formulate a class of

models with the estimation of the parameters being feasible� The formu�

lated models are assessed using a set of statistical tools typically based on

the models performance of reproducing the measured data� Based on the

model diagnostics new classes of models are proposed to remedy the model

de�ciencies� Model testing occasionally leads to the inclusion of additional

prior knowledge which may lead to the procurement of new data�

The following criteria for a good model have been proposed in Harvey

�����a��

�a� Parsimony A parsimonious model is one which contains a relatively

small number of parameters and
 other things being equal
 a simpler

model is to be preferred to a complicated one�

�b� Data coherence Diagnostic checks are performed to see if the model

is consistent with the data� The essential point is that the model

should provide a good �t to the data
 and the residuals
 as well as

being relatively small
 should be approximately random�

�c� Consistency with prior knowledge The estimated model should be

consistent with any prior information on the size or magnitude of the

various parameters�

�d� Data admissibility A model should be unable to predict values which

violate de�nitional constraints� For example many variables cannot

be negative�

�e� Structural stability As well as providing a good �t within the sample


a model should also give a good �t outside the sample�

�f� Encompassing A model is said to encompass a rival formulation if it

can explain the results given by the rival formulation� If this is the

case
 the rival model contains no information which could be used to

��� Modelling methodology ��

improve the preferred model� In order to be encompassing a model

does not need to be more general than its rivals� Indeed the notion of

parsimonious encompassing is essential to avoid vacuous formulations�

The structural stability criterion does not always apply to stochastic models

which are often restricted by the span of data used for estimation
 i�e� the

stochastic models may not be well�suited for describing e�ects which are

not found in the data used for identifying the structure of the model�

����� Time series operators

In this subsection the time series operators used to formulate stochastic

models in the following are de�ned� The notation follows that of Box 

Jenkins ������ and Madsen �������

Let yt
 t  �� � � � � N denote the time series of a given variable� The

back�shift operator or lag operator B plays a fundamental role in the math�

ematics of time series analysis� It is de�ned by the transformation

Byt  yt�� �����

Applying B to yt�� yields Byt��  yt��
 and so
 in general


B�yt  yt�� �����

The order of the lag operator
 � 
 only takes integer values
 and Byt  yt

in order to complete the de�nition�

A polynomial in the back�shift operator takes the form

$�B�  � � �� � � �� �q �����

� �
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where �� � � � � � are parameters or constants� The roots of such a polynomial

are de�ned as the q values of B which satisfy the polynomial equation

$�B�  	 �����

The �rst�di�erence operator is de�ned as

!  ��B �����

Thus
 !yt  yt � yt��� The root of !  	 is equal to unity� Similar to

����� the seasonal di�erence operator is de�ned

!S  ��BS �����

where S is the length of the season
 i�e� the number of observations in a

periodic cycle�

��� Stochastic components

A stochastic model is based on certain probabilistic assumptions
 which at�

tempt to capture the essential characteristics of the data generation process�

For this purpose the stochastic model can be structured in a way similar to

the underlying mechanisms of the process being modelled� Structural time

series models are built up by formulating stochastic components which


when combined
 give forecasts of the expected form� The stochastic com�

ponents are autoregressive models
 trend
 cyclic e�ects
 type�of�day e�ects

and explanatory variables
 each of which are dealt with in the following

subsections� Combining the di�erent types of models of the di�erent com�

ponents yields an in�nite number of models� Thus
 formulating a structural

time series model requires a somewhat goal�directed iterative search in the

in�nite class of structural time series models�

��� Stochastic components ��

The structural components are often assumed to have an additive e�ect

on yt� A typical time series model consisting of a trend and a cyclic e�ect

would thus be decomposed in the following form�

Observed series trend�cyclic�irregular

where the #irregular# component re�ects non�systematic movements in the

series� Sometimes
 a multiplicative form�

Observed series trend�cyclic�irregular

may prove more appropriate� However
 a multiplicative model may be

handled within the additive framework by a logarithmic transformation of

data�

����� Autoregressive models

A stochastic process in which the current value
 yt
 depends on the pre�

vious value
 yt��
 and a white noise disturbance term
 �t
 is known as an

autoregressive process� It may be written

yt  ��yt�� � �t �����

where �t is an identical independent distributed �i�i�d�� sequence with mean

zero and variance 	�
 and � is a parameter� Although the time series is

�rst observed at time t  �
 the process is regarded as having started at

some time in the remote past� If �  � the process ����� is known as a

random walk�

If j�j 
 �
 the process hovers around a constant mean of zero
 and is

said to be stationary� Likewise
 when j�j � �
 the in�uence of the noise

� �
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disturbance does not diminish over time
 and the process is said to be in�

stationary� The process de�ned in ����� is a �rst�order autoregressive model

or AR����model�

It is straight forward to extend the model so that yt depends on several

lagged values� Thus
 the AR�p��model is de�ned as

yt  

pX
i��
��iyt�i � �t �����

Using the polynomial notation introduced in �����
 the AR�p��model �����

takes the form

�� � ��B � � � �� �pB
p�yt  �t �����

Model identi�cation using autoregressive models requires determination of

the order p of the AR�model
 and subsequently estimation of the appropri�

ate parameters of the order p�

In order for the process to be stationary
 the p roots of $�B� satisfying

����� must all have a modulus greater than one� For certain values of

the parameters
 ��� � � � � �p
 the roots of the polynomial are complex
 which

re�ects the fact that the process exhibits some kind of oscillatory behaviour�

The autoregressive model ����� is often extended to include a moving av�

erage �MA� of the error terms �t


�� � ��B � � � �� �pB
p�yt  �� � ��B � � � �� �qB
q��t ����	�

but the use of MA�terms have not been employed in the present context

due to unstability of the estimation procedure�

��� Stochastic components ��

Multivariate autoregressive models are formulated similar to ����� with

yt being a vector of length k and �i a matrix at dimension k � k� In

fact
 the one�dimensional AR�p��process in ����� can be formulated as a

p�dimensional AR����process and a k�dimensional AR�p��process can be

formulated as a k � p�dimensional AR����process �for details
 see Harvey

�����b� or Appendix C��

����� Trend

The trend has often been used to characterize the long term change in

mean which can be extrapolated into the future� Granger ������ de�nes

#trend in mean# as comprising all frequency components whose wavelength

exceeds the length of the observed series� In the classical time series analysis

time series were made stationary by detrending or di�erencing� However


a trend can be modelled as a structural component which may describe

both short�term and long�term movements in the time series
 for instance

by introducing appropriate smoothing constants�

The simplest structural component used to model a trend
 �t
 is the deter�

ministic linear trend

�t  �� t ������

This deterministic trend may be converted into a stochastic trend by letting

� and  be given by stochastic autoregressive models as described in the

previous subsection �e�g� random walks�� A more satisfactory model is

obtained by working directly with the current level
 �t
 rather than the

intercept� Since �t may be obtained recursively from

�t  �t�� �  ������

� �
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with �  �� Stochastic terms may be introduced by letting  be a stochas�

tic process or by adding noise�
�t  �t�� � t�� ������

The scale parameter of the trend
 t
 can be modelled by combining all the

structural components presented in this section� The model ������ can be

used to describe both local and global trends in the mean by formulating

the appropriate model for t�

����� Cyclic e�ects

Some time series exhibit variation at a �xed period due to some physical

cause or human behaviour� These cycles may be due to diurnal variations


weekly variations
 monthly variations
 yearly variations
 or another periodic

cycle re�ected in the data induced by an external physical phenomenon�

In addition some time series exhibit oscillations which do not have a �xed

period but which are predictable to some extend �e�g� the prey�predator

population of animals or sunspot activity��

When formulating a model for periodic cyclic phenomena it is required that

the cyclic e�ects sum to zero if the model contains another parameter for

the mean� If a time series exhibits cyclic behaviour with a period of S

samples the cyclic e�ect can be modelled using S dummy variables
 which

always sum to zero
 i�e�

S��X
i�

�t�i  	 ������

By introducing a disturbance term with zero mean expectation into the

right�hand side of this equation
 the seasonal e�ects can be allowed to

change stochastically over time� Formally
 the model is�

��� Stochastic components ��

�t  
S��X

i��
�t�i � �t ������

Unfortunately
 for large values of S
 the formulation of a structural model

with a cyclic e�ect as given in ������ requires a large number of parameters

which might con�ict with the concept of parsimony given in Section ����

Alternatively
 let �t be a cyclical function of time with a period of S mea�

sured in samples� Such a cycle can be expressed as a mixture of sine and

cosine waves� The simplest trigonometric function used to describe the

periodic cycle is�

�t  � cos ��t�S �  sin ��t�S ������

where ������
�

� is the amplitude of the wave and arctan���� is the phase�

The trigonometric function can be extended to include multiple higher�

order frequencies or overtones to describe cyclic phenomena deviating from

a pure #single�tone# model as �������

�t  
S��X

i��
��i cos
��it

S

� i sin
��it

S

� ������

When S is even
 the sine term disappears for i  S�� and so the number

of trigonometric parameters
 the �i�s and i�s
 is always S � �
 which is

the same as the number of coe�cients in the dummy variable formulation�

However
 the number of parameters in ������ can be reduced by bring�

ing only a limited number of the higher order frequencies into the model

formulation� The su�cient number of overtones for describing the cyclic

behaviour can be determined by use of statistical tools presented in Section

� �
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Figure ���� Simulations of cyclic e�ects using the Fourier
expansion �solid

line� and the model of dummy variables �dotted line��

���� In order to make ������ and ������ stochastic
 a noise term
 �t
 is added

on the right�hand side�

One major advantage of formulating the periodic variation by use of trigono�

metric functions instead of dummy variables comes when the observations

are irregularly sampled
 i�e� the time between observations is not constant�

Though
the two types of models have di�erent adaptivity to cyclic e�ects�

While ������ consists of deterministic functions and therefore the cyclic ef�

fect does not change its form
 ������ can easily adapt to changes in the

periodic phenomenon� This is illustrated in Figure ���
 where the two mo�

dels have been simulated using the same random innovation sequence� The

model of dummy variables clearly have changed its form from a pure cosine

wave to a very di�erent but still periodic signal�

Periodic variations can also be modelled using the autoregressive models

described in Section ����� which are known as seasonal AR�models� Thus


a seasonal AR����model takes the form

��� Stochastic components ��

yt  ��Syt�S � �t ������

where �t is an i�i�d� sequence with mean zero and variance 	�
 and �S is a

parameter� Likewise
 the seasonal AR�P ��model takes the form

yt  

PX
i��
��iSyt�i�S � �t ������

and when using the polynomial notation

�� � �SB
S � � � �� �PSB
PS �yt  �t ����	�

In order for this process to be stationary the P roots of BS satisfying

$S�BS �  	 must all have a modulus greater than one� By combin�

ing the AR�p��model with the seasonal AR�P ��model in a multiplicative

fashion
 the well�known multiplicative autoregressive seasonal model or

AR�p��AR�P �S�model arises �see Box  Jenkins ��������

����� Type�of�day e�ects

Time series related to human behaviour often show di�erent variations on

di�erent types of days� The important task is to �nd the number of di�erent

types of day in a week
 and categorize the days of the week� For example


all weekdays are alike
 but Saturdays and Sundays are di�erent� In this

case
 there are three categories of days to be modelled� This situation can


however
 be further simpli�ed by assuming that Saturdays and Sundays are

alike
 which reduces the types of days to weekdays and weekends� Holidays

show the same pattern as Sundays due to close�down of industries
 etc� and

are categorized as such�

� �
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Let �weekday�t and �weekend�t denote the type�of�day e�ects for the two

separate classes of days with the restriction that only one of them a�ects

the observation at any particular point in time� Using type�of�day e�ects

in the formulation of a model it is required that the e�ects sum to zero

over a week if the model contains another parameter for the mean
 due to

the identi�ability of the model� Thus
 in this case

kweekday � �weekday�t � kweekend � �weekend�t  	 ������

where kweekday  � �number of weekdays� and kweekend  � �number of

weekend days�� Another approach is to characterize the mean by two pa�

rameters
 �weekday and �weekend� The type�of�day e�ects
 �weekday�t and

�weekend�t can be formulated as stochastic models �e�g� random walks� with

the restriction ������ in mind� For further details about type�of�day e�ects


see Harvey �������

����� Explanatory variables

So far the variable yt has been modelled in terms of past values of itself

and its position with respect to time� Suppose now that the information

set is expanded to include l observable variables
 and that these variables

are able to explain some of the movements in yt� The additional variables

are considered exogenous if there is no feedback between them and the

dependent variable
 yt� If the explanatory variables
 ut
 are exogenous and

the relationship between ut and yt is linear
 the model may be written as�

yt  �Tut � �t ������

The vector � of length l contains the parameters associated with the ex�

planatory variables� More generally
 the explanatory variables may also be

��� Identi�ability ��

used in describing the trend
 cycles or type�of�day e�ects
 and the relation�

ship between yt and ut need not be linear� Lagged values of the explanatory

variables may also enter the ut�vector despite the index�

��� Identi�ability

The question of identi�ability is a fundamental one in stochastic modelling�

Loosely speaking
 the problem is whether the identi�cation procedure will

yield unique values of the parameters of the model structure given the data�

In order to give the standard de�nition of identi�ability of the statistical

literature it is important to distinguish between a model and a structure� A

model speci�es a distribution for yt while a structure speci�es the param�

eters determining that distribution� Given this background
 the following

concepts may be de�ned�

�a� If two models based on di�erent structures have the same joint density

function they are said to be observationally equivalent�

�b� A structure is identi�able if there exists no other observationally

equivalent structure�

�c� A model is identi�able if its structure is identi�able�

The concepts above are also known as theoretical identi�ability� In or�

der to illustrate the concept of identi�ability
 consider the Monod�kinetic

expression in �����
 which includes two variables �Sn and XB� and three

parameters ��max
 Yobs
 and KS�� A simultaneous identi�cation of �max

and Yobs is not feasible for obvious reasons and at least one of these pa�

rameters needs to be �xed or regarded as constant� With the observed

yield coe�cient
 Yobs
 set to a constant value
 the model ����� is actually

theoretically identi�able if XB can be measured�

Identi�ability has an immediate bearing on estimation� If two structures

are observationally equivalent �i�e� have the same joint density function�


� �
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the probability of generating a particular set of observations is the same for

both structures� Thus
 there is no way of di�erentiating between them on

the basis of data� Furthermore
 it will often be the case that attempts to

estimate models which are not identi�able will run into practical di�culties�

This leads to another question of identi�ability� the practical identi�ability�

This issue involves aspects on whether the data set is informative enough

�persistently excited� to distinguish between di�erent models �i�e� could

the dataset result from two di�erent distributions with the same probabil�

ity�� If so
 will di�erent sets of values of the parameters give equal models%

Holmberg  Ranta ������ have shown that the parameters of a Monod�

type model similar to ������ with �max�A and Yobs�NH�
�

modelled as one

parameter is not always practically identi�able even though it is theoreti�

cally identi�able� The simulated data set
 however
 only included a limited

number of observations� The practical identi�ability of the parameters is

also referred to as the identi�cation of parameters in the following�

��� Grey box modelling of wastewater pro�

cesses

The basis for the grey box modelling approach is the prior available in�

formation about the processes to be modelled� This knowledge can be

expressed in a multitude of ways
 e�g� as parameter values or model struc�

ture� It is important to include the prior knowledge in the modelling in

order to improve the precision and interpretability of the parameters that

are to be estimated� The concept of grey box modelling is illustrated in

Figure ���
 where the grey box models cover the broad area between the

#white# deterministic models and the black box models� The grey box

modelling is approached from both sides of the scale
 but the models in the

present context are obtained starting from the black box side and gradually

incorporating more physical knowledge of the system� In Carstensen et al�

������ grey box models of the wastewater processes were found to perform

signi�cantly better than the traditional ARMAX�model �see Ljung ��������

��� Grey box modelling of wastewater processes ��

approach

box
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Neural networks
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box
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IAWPRC No. 1 ARMAX-models

Figure ���� The spectrum of models 
 from deterministic models over grey

box models to black box models�

The tools used for the grey box modelling are the structural components

described in Section ���
 which are combined in order to bring the physical

knowledge into the models�

In this section grey box modelling of the wastewater processes described in

the two previous chapters is concerned� Modelling these processes is done

by combining the theory of the processes with signi�cant e�ects found in

data� By this approach the important terms of the di�erential equations

given in Chapter � and � are extracted and lacks of these deterministic

terms to describe data are compensated for by adding noise to the equa�

tions
 i�e� by formulating stochastic models�

In this thesis modelling of the processes for the ammonia
 nitrate
 and

phosphate concentrations is concerned� Other processes including oxygen

concentrations and suspended solids �SS� concentrations are assumed to be

perfectly controllable through control of aerators and return sludge pump�

ing and used as explanatory variables� The in�uent �ow
 however
 is not

controllable
 but if measurements are available the in�uent �ow may serve

as explanatory variable
 too� Furthermore
 control signals for the weirs and

gates of the WWTP are used as explanatory variables�

� �
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Let yt denote the measured concentration of the dependent variable
 i�e� the

concentration of ammonia
 nitrate
 or phosphate� The measured concentra�

tion is naturally encumbered with some uncertainty due to the measuring

system� In the following the notation t  �� � � � � N has been left out
 but it

is implicitly assumed unless otherwise stated� Thus
 with the assumption

of an additive noise structure
yt  mt � �t ������

where mt is the true concentration and �t is an i�i�d� sequence of measure�

ment errors with mean zero and variance 	��� If explanatory variables
 ut


are able to explain some of the movements in yt in an additive way
 the

equation get this form�

yt  mt � �
Tut � �t ������

where � contains the parameters associated with the elements of ut� The

equations ������ and ������ are referred to as observational equations� Fig�

ure ��� shows a time series of measurements of ammonia
 nitrate
 and

phosphate concentrations in the aeration tank from the Aalborg West

WWTP� The alternating operation mode of the BIO�DENIPHO process

is clearly recognized from the curves�

The upward and downward slopes of the curves may be considered as local

trends with a steepness determined by the biological and hydraulic pro�

cesses taking place in the tank� In fact
 the wastewater processes directly

a�ect the change in concentration of ammonia
 nitrate
 or phosphate and

thereby indirectly the absolute concentration� This can be formulated in

the following way�

mt  mt�� � �t � �t ������

or

��� Grey box modelling of wastewater processes ��
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Figure ���� Online measurements of ammonia �solid curve�� nitrate �dotted

curve�� and phosphate �dashed curve� concentrations from Aalborg West

WWTP� The operation of the plant follows the BIO
DENIPHO scheme�

!mt  �t � �t ������

where �t is the mean process rate determined by the biological and hy�

draulic processes active at time t
 and �t is an additive noise structure

which can be modelled as an autoregressive model of order p

�t  

pX
i��
��i�t�i � et ������

where et has zero mean and variance 	
�

e� The model ������ describes the

time�wise correlation in �t
 which is the error arising from explaining the

change in the true concentration !mt by the mean process rate �t� Incor�

porating prior knowledge of the biological and hydraulic processes into the

modelling of �t is dealt with in the following subsection�

� �
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Combining ������ and ������ yields the following equation�

�� � ��B � � � �� �pB
p��!mt � �t�  et ������

when using the polynomial notation of the autoregressive model� If ex�

planatory variables
 ut
 are used to explain some of the movements in !mt

in an additive way
 the equation looks like this�

�� � ��B � � � �� �pB
p��!mt � �t�  �Tut � et ������

where � contains the parameters associated with the elements of ut� The

equations above ������ and ������ are referred to as the process equations�

Using !mt in the process equation is very reasonable for a grey box mod�

elling approach� The reason for this is
 that the theory of the biological and

hydraulic processes use di�erential equations to describe the variation of

these processes� Hence
 if sampling is carried out relatively fast compared

to the rates of these processes
 then

!mt 	
dm

dt
� TS ����	�

is a reasonable approximation with TS being the time between samples�

Therefore
 !mt approximates the left�hand side of the theoretical di�eren�

tial equations described in Chapter � and � and �t may contain expressions

approximating the right�hand side of these di�erential equations� This will

become more obvious in the following subsection�

����� Modelling the mean process rate

The amount of biological processes taking place in the aeration tank of a

WWTP is tremendous
 and only a very limited number of these processes

��� Grey box modelling of wastewater processes ��

can actually be identi�ed from statistical analysis of data� For the data

considered in this thesis
 the following processes have been identi�ed�

Hydraulic processes�

� In�uent load to aeration tanks �rload�t�

� Nutrient transport of the aeration tanks �rtransport�t�

Biological processes�

� Hydrolysis and growth of biomass �rhydrolysis�t�

� Nitri�cation �rnit�t�

� Denitri�cation �rdenit�t�

� Biological phosphate uptake in biomass �rP�uptake�t�

� Stripping of phosphate �rP�strip�

The rates of these processes
 denoted by r�process�
 are assumed to have

an additive e�ect and no interaction e�ect on �t� The three time series of

ammonia
 nitrate
 and phosphate concentrations are not in�uenced by all

of the processes� The ammonia concentration is in�uenced by the in�uent

load of ammonia
 transport of ammonia between the alternating tanks and

clari�er
 hydrolysis of ammonia
 and nitri�cation of ammonia� Hence
 for

the time series of ammonia concentrations

�NH�
�

�t  rload�NH�
�

�t � rtransport�NH�
�

�t � rhydrolysis�NH�
�

�t � rnit�NH�
�

�t�

������

For the time series of nitrate concentrations
 where the nitrate concentra�

tion of the in�uent is assumed to be negligible

�NO�
�

�t  rtransport�NO�
�

�t � rnit�NO�
�

�t � rdenit�t ������

� �
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and for the time series of phosphate concentrations without chemical pre�

cipitation
�PO��

�

�t  rload�PO��
�

�t � rtransport�PO��
�

�t

�rhydrolysis�PO��
�

�t � rP�uptake�t� rP�strip�t ������

The processes in�uencing �t above are active �r�process��t 
 	� when cer�

tain conditions are present in the aeration tanks and inactive �r�process��t  

	� if these conditions are not present� For the processes above a�ecting

more than one time series of concentrations
 the in�uence on the di�erent

time series is indicated by indexing the rate with the formula of the con�

centration being a�ected� Sometimes
 when more than one time series can

be used as index
 this is marked with a period ����

In�uent load

The raw wastewater entering the biological part of a WWTP mainly con�

sists of organic materials
 ammonia
 and phosphate� It is mixed with

returned sludge
 which is assumed to have a vanishing concentration of

soluble nutrients
 i�e� ammonia
 nitrate
 and phosphate� The raw waste�

water mixed with returned sludge is led into the aeration ditches of the

BIO�DENITRO and BIO�DENIPHO processes mainly during the anoxic

phase of the speci�c tank�

Due to the alternating operation mode each of the tanks is only in�uenced

by in�uent �ow half the time of a total operation cycle� Thus
 the theory of

a step�function load given in ����� apply� Despite a highly time�varying �ow

to the plant the concentration in the tank will increase approximately at a

constant rate as illustrated in Figure ���
 because the in�uent �ow phases

are kept for a short time relative to the average hydraulic retention time

of the aeration ditch� This is also veri�ed by inspecting the measurements

of ammonia and phosphate concentrations in Figure ���� Naturally
 the

load rate is dependent of the �ow rate which normally does not change

��� Grey box modelling of wastewater processes ��

signi�cantly during the inlet phase of an operation cycle
 but certainly

shows signi�cant variations over a �� hours period
 see Figure ���� Thus


rload�NH�
�

�t  
�

kload�NH�
�

�Qt�� inlet gate open

	 inlet gate closed

������

where Qt�� is the in�uent �ow rate to the tank and kload�NH�
�

is a param�

eter� The reason for using lagged values of Qt in ������ will be explained

in the following� However
 kload�NH�
�

will be allowed to vary from one

operation cycle to another
 as will be described in the following� A sim�

ilar expression to ������ holds for the load process of phosphate with the

parameter kload�PO��
�

�

Di�erentiating the step�load response function ����� with respect to time

and using the fact that C is in general very small relative to the aver�

age inlet concentration Ci for both ammonia and phosphate
 the following

approximations appears from using ����� and ����	� on ������

kload�NH�
�

	
Ci�NH�

�

V

� TS ������

and the similar process rate equation for phosphate concentrations

kload�PO��
�

	
Ci�PO��

�

V

� TS ������

where TS is the time between samples�

Thus
 estimating kload�NH�
�

and kload�PO��
�

from the inclining curves of

ammonia and phosphate concentrations and knowing the volume V of the

tank
 an estimate of the average in�uent concentration of ammonia and

phosphate to the aeration ditch is found� For the BIO�DENITRO pro�

cess these estimates are equivalent with the concentration of ammonia and

phosphate where the mixing of raw wastewater and returned sludge takes

� �
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place
 and estimates of the ammonia and phosphate �no chemical precipi�

tation is assumed� concentrations in the raw wastewater may be obtained

if �ow rates of the raw wastewater and returned sludge are available� For

the BIO�DENIPHO process these estimates are equivalent with the am�

monia and phosphate concentration of the anaerobic pretreatment tank


and
 similar to the BIO�DENITRO process
 the ammonia concentration

in the raw wastewater can be estimated by knowing the �ow rates of the

raw wastewater and returned sludge� Such an estimate of the phosphate

concentration can
 however
 not be obtained
 due to the lack of information

on the stripping of phosphate in the anaerobic tank�

Municipal wastewater mainly originates from households
 and it is often

found that the load of organic materials
 ammonia
 and phosphate are

correlated �this can also be veri�ed by comparing Table ��� and Table �����

Thus
 kload�NH�
�

and kload�PO��
�

can be used as an indicator of the level of

organic materials in the raw wastewater for the BIO�DENITRO process�

Naturally
 only kload�NH�
�

can be used as indicator for the BIO�DENIPHO

process�

Nutrient transport of the aeration tanks

In order to give interpretable estimates of the processes to be modelled the

mass balance of nutrients needs to be taken into account� However
 it is

di�cult to give an exact theoretical model for the hydraulic e�ects between

the two alternating tanks in the BIO�DENITRO and BIO�DENIPHO pro�

cesses because of the continuous switching of �ow pattern in the WWTP


see Figure ��� and ���� The two alternating tanks are operated at di�erent

levels of wastewater in the tanks in such a way
 that in general the tank

with in�uent �ow has the highest level of wastewater while the tank with

e�uent �ow has the lowest level of wastewater� When switching in�uent

and e�uent �ow between the tanks it takes a while before the �ow be�

tween the two tanks changes� The hydraulic e�ects of the two tanks are

determined by the �ow and the control of inlet and outlet weirs�

��� Grey box modelling of wastewater processes ��

Assuming that the �ow pattern has reached a steady state for the main

phases of the BIO�DENITRO process �phase A and phase C on Figure ����

and the BIO�DENIPHO process �phase B �and phase C� on Figure ����
 the

di�erential equation for the transport of materials ����� apply� Combining

this with the approximation ����	� yields for the transport of ammonia in

the tank with e�uent �ow�

rtransport�NH�
�

�t  
�����

ktransport�NH�
�

�SI
NH�
�

�t��
� SNH�

�

�t��� �Qt��

outlet gate open

	 outlet gate closed
������

where SI
NH�
�

�t
is the ammonia concentration in the tank with in�uent �ow


SNH�
�

�t is the ammonia concentration in the tank with e�uent �ow
 Qt is

the in�uent �ow rate
 and ktransport�NH�
�

is a parameter� Similar expres�

sions hold for the transport of phosphate in the tank with e�uent �ow�

The transport of ammonia and phosphate in the tank with in�uent �ow

was modelled as a load process for the transport of ammonia and phosphate

by which the in�uent concentration of ammonia and phosphate could be

estimated� The nitrate concentration in the in�uent �ow was assumed to be

vanishing and as such not estimated as a load process� There is
 however


still a transport of nitrate from the tank which can be modelled similar to

������ by setting SI
NO�
�

�t
 	� Thus
 the transport of nitrate is given by

rtransport�NO�
�

�t  
�������������

ktransport�NO�
�

�SI
NO�
�

�t��
� SNO�

�

�t��� �Qt��

inlet gate closed and outlet gate open

�ktransport�NO�
�

� SNO�
�

�t�� �Qt��
inlet gate open

	 otherwise
������

where ktransport�NO�
�

is the transportation parameter for nitrate� The

transport of nutrients between the two alternating tanks in phase B and

� �
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phase D �Figure ���� of the BIO�DENITRO process and phase A �Figure

���� of the BIO�DENIPHO process is neglected�

If measurements of ammonia concentrations are only obtained from one of

the aeration ditches �the tank with e�uent �ow in �������
 an estimator of

SI
NH�
�

�t
is the ammonia concentration in the monitored tank half an opera�

tion cycle ago
 due to the alternating operation model �see Figure ����� This

estimator can also be applied for nitrate and phosphate concentrations�

Comparing the transportation rates above with ����� and using ����	� it

might be argued
 that ktransport�� 	

TS
V 
 where V is the volume of the

aeration tank� However
 due to the lack of information on the hydraulic

e�ects when switching the �ow pattern and the relative smaller signi�cance

of the process compared to some of the biological processes
 ktransport�� is

estimated instead of being �xed to TS
V � Estimating ktransport�� serves for

testing the model formulation of the nutrient transport process�

Hydrolysis and growth of biomass

Hydrolysis is a joint designation for many biochemical processes trans�

forming larger organic molecules from the raw wastewater or dead biomass

into smaller digestible organic compounds
 ammonia
 and phosphate as de�

scribed in Section ������ The rate of the hydrolysis is best identi�ed when

most of the other processes listed above are in�activated in some periods

of the time series and the load has been stable for a while� The rate
 how�

ever
 also includes the rate of the simultaneous uptake of ammonia and

phosphate used for bacterial growth not associated with any of the other

biological processes� Because the two processes
 hydrolysis and bacterial

growth
 are simultaneous
 the two process rates cannot be separately iden�

ti�ed� Hence
 the rates of the two processes together are considered as one

process rate � a net hydrolysis rate�

The processes of hydrolysis and growth of biomass are always present in

the reaction tanks
 but the rates of the processes vary a lot depending

on what substrate is available� Both processes will a�ect the ammonia

��� Grey box modelling of wastewater processes ��

and phosphate concentrations by producing and removing ammonia and

phosphate
 respectively� Normally
 the rate of the hydrolysis process is

larger than the simultaneous rate of ammonia and phosphate uptake for

growth of biomass�

In the deterministic theory of the processes establishing the system of dif�

ferential equations to describe the processes would require a great number

of parameters and assumptions of the load of hydrolysable compounds� In

a statistical sense this would lead to fatal over�parameterization� For the

time series used in this thesis only one parameter may be used for the

identi�cation of the net hydrolysis rate
 rhydrolysis�NH�
�

�t for the time se�

ries of ammonia concentrations and rhydrolysis�PO��
�

for the time series of

phosphate concentrations�

Thus
 rhydrolysis���t may be modelled as being constant throughout the time

series or proportional to another component
 e�g� the load rate of ammonia

rhydrolysis�NH�
�

�t  khydrolysis�NH�
�

� kload�NH�
�

�Qt�� ������

and

rhydrolysis�PO��
�

�t  khydrolysis�PO��
�

� kload�NH�
�

�Qt�� ����	�

The load rate of phosphate may also be used for the BIO�DENITRO pro�

cess
 if there is no chemical precipitation�

The nitri�cation process

During the aerobic phase of the operation cycle of the BIO�DENITRO and

BIO�DENIPHO processes ammonia is removed and nitrate is produced by

the nitri�cation process� The theory of the process was given in Section

���� However
 no methods for measuring the concentration of autotrophic

biomass exist and therefore the suspended solids concentration
 XSS�t
 is

used as a correlated measure�

� �
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Following the discussion in Section ���
 it is clear that the maximum spe�

ci�c growth rate of autotrophic bacteria
 �max�A
 and the observed biomass

yield coe�cients
 Yobs�NH�
�

and Yobs�NO�
�


 in ������ and ������ are not

theoretically identi�able� Thus
 from the declining curves of ammonia con�

centrations
 as depicted in Figure ���
 the following rate expression can be

identi�ed�

rnit�NH�
�

�t  
�������

�knit�max�NH�
�

�

S
NH

�
�

�t��

S
NH

�
�

�t��
	K
NH

�
�

�

SO��t��

SO��t��	KO�

�XSS�t��

aerobic conditions

	 anoxic�anaerobic conditions

������

and from the inclining curves of nitrate concentrations
 also depicted in

Figure ���
 the following expression can be identi�ed�

rnit�NO�
�

�t  
�������

knit�max�NO�
�

�

S
NH

�
�

�t��

S
NH

�
�

�t��
	K
NH

�
�

�

SO��t��

SO� �t��	KO�

�XSS�t��

aerobic conditions

	 anoxic�anaerobic conditions

������

The reason for using lagged values on the right�hand side of ������
 ������


and also in the previous rate expressions for the in�uent load process and

the transport of nutrients is twofold� Firstly
 the change in concentration

due to the nitri�cation process from t�� to t is determined by the state of

the process at t � � �i�e� using the state of the process at time t in ������

and ������ would result in a non�causal process�� Secondly
 making the

rate expression conditional on past values facilitates the estimation of the

parameters as will be explained later�

Using lagged values in the Monod�kinetic expression gives biased estimates

of the half�saturation constants� Estimating KNH�
�

and KO�

in ������ and

������ will likely give too high estimates of the half�saturation constants

��� Grey box modelling of wastewater processes ��

in ������ and ������
 because the process rate is only adjusted at the sam�

ple points in time for ������ and ������
 while it is continuously adjusted

in ������ and ������� In order to compensate for this lack of continuous

adjustment of the process rate in discrete time a higher value of KNH�
�

and KO�

in ������ and ������ will yield the same dynamics as in continu�

ous time� If the time between samples
 TS 
 is small relative to the rate of

the process
 the bias of the estimated half�saturation constants will also be

small
 and if the time between samples approaches zero
 the estimates of

KNH�
�

and KO�

will approach the values of ������ and ������ and become

unbiased�

Comparing ������ and ������ and using the approximation ����	� the fol�

lowing result is obtained�

knit�max�NH�
�

	

�max�A

Yobs�NH�
�

�
XB�A�t

XSS�t

� TS ������

and similarly when comparing ������ and �������

knit�max�NO�
�

	

�max�A

Yobs�NO�
�

�
XB�A�t

XSS�t

� TS ������

Assuming that XB�A�t and XSS�t show similar dynamics and knowing the

values of �max�A
 Yobs�NH�
�


 and Yobs�NO�
�


 two estimates of the average

proportion over time of autotrophic biomass in the suspended sludge �sus�

pended solids in the reaction tanks practically consists of suspended sludge�

can be obtained� Unfortunately
 in the literature many di�erent values of

especially �max�A
 but also Yobs�NH�
�

and Yobs�NO�
�

have been proposed �see

Eckenfelder  Grau ������ and Henze et al� ����	��� Thus
 it is not pos�

sible to get an estimate of the average proportion of autotrophic biomass

in the suspended sludge
 since it will depend on constants with virtually

unknown values� However
 the approximations above can be utilized to

assess the activity of the autotrophic biomass by letting knit�max�NH�
�

and

knit�max�NO�
�

be time�varying
 as will be explained in the following�

� �
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The denitri�cation process

During the anoxic phase of the operation cycle of the BIO�DENITRO and

BIO�DENIPHO processes nitrate is transformed into nitrogen gas by the

denitri�cation process� The theory of this process was given in Section ����

Similarly to the modelling of the nitri�cation process
 the suspended solids

concentration
 XSS�t
 is used as a correlated measure of the concentration

of heterotrophic biomass�

Likewise
 no measuring equipment for on�line monitoring of the readily bio�

degradable substrate concentration
 SS 
 is available at present
 although

much e�ort is put into the development of such a device� However
 using the

often found correlation between the ammonia concentration and the readily

bio�degradable substrate concentration in the raw wastewater
 the esti�

mated load rate of ammonia may prove adequate of describing the readily

bio�degradable substrate dependency of the denitri�cation process� This is

based on the rather crude assumption that an approximately constant load

rate of readily bio�degradable substrate will maintain an approximately

constant SS concentration in the reaction tank
 i�e� the consumption of

readily bio�degradable substrate is proportional to the load� Alternatively


the rate of the denitri�cation process is Monod�dependent of the in�uent

load rate
 rload�NH�
�

�t when the inlet gate is open
 i�e� kload�NH�
�

� Qt���

Thus
 from the declining curves of nitrate concentrations
 as depicted in

Figure ��� and because �max�H and Yobs�NO�
�

in ������ cannot be theoreti�

cally identi�ed
 the following rate expression can be identi�ed�

rdenit�t  
�������

�kdenit�max

S
NO
�

�

�t��

S
NO
�

�

�t��
	K
NO
�

�

k
load�NH

�
�

Qt��

k
load�NH

�
�

Qt��	K
load�NH

�
�

XSS�t��

anoxic conditions

	 aerobic�anaerobic conditions

������

The reason for using lagged values on the right�hand side of ������ is similar

to that of the nitri�cation process and was previously discussed�

��� Grey box modelling of wastewater processes ��

Comparing ������ and ������ and using the approximation ����	� under the

assumption of using rload�NH�
�

�t as a correlated measure to SS the following

result is obtained�
kdenit�max 	

�max�H

Yobs�NO�
�

�
XB�H�t

XSS�t

� TS ������

It should be noticed that the approximation is based on two assumptions

of which one of them is rather crude� Thus
 caution must be observed

before making conclusions based on this approximation� Like before
 the

approximation ������ cannot be used for obtaining a valuable estimate of

the average proportion of heterotrophic biomass
 but it can be utilized to

assess the activity of the heterotrophic biomass by letting kdenit�max be

time�varying� This is explained later�

Biological phosphate uptake in biomass

During the aerobic phase of the operation cycle of the BIO�DENIPHO pro�

cess phosphate is intra�cellular stored as poly�phosphates in the biomass�

The theory of the process was given in Section ���� Similar to the two

previously described processes the suspended solids concentration
 XSS�t


is used as a correlated measure of the concentration of phosphate accumu�

lating biomass
 XB�P�t�

Assuming that neither the oxygen concentration nor the readily bio�degradable

substrate concentration are rate limiting and knowing that �max�P and

Yobs�PO��
�

are not theoretically identi�able
 the following rate expression

can be identi�ed�

� �
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rP�uptake�t  
�������������������

�kP�uptake�max �

S
PO
��

�

�t��

S
PO
��

�

�t��
	K
PO
��

�

�XSS�t��

aerobic conditions

�k
�

P�uptake�max �

S
PO
��

�

�t��

S
PO
��

�

�t��
	K
PO
��

�

�XSS�t��

anoxic conditions

	 anaerobic conditions

������

where k
�

P�uptake�max is found to be signi�cantly lower than kP�uptake�max

in Kerrn�Jespersen  Henze ������� The reason for using lagged values on

the right�hand side of ������ is similar to that of the nitri�cation process

and was previously discussed�

When comparing ������ and ������ by use of the discrete time sampling

approximation ����	�
 the following approximation appears�

kP�uptake�max 	

�max�P

Yobs�PO��
�

�
XB�P�t

XSS�t

� TS ������

which provides information on the activity of the phosphate accumulating

biomass in the activated sludge�

Stripping of phosphate

Anaerobic periods occasionally occur in the aeration tanks at the end of

the anoxic period
 when all nitrate is removed by the denitri�cation process

and the aerators has not been turned on� In this situation the phosphorus

accumulating bacteria will strip phosphate in order to uptake readily bio�

degradable substrate as described in Section ���� The amount of phosphate

stripped is given by ����	�
 but lack of information on the concentration

of readily bio�degradable substrate which can be accumulated directly in

the phosphorus accumulating biomass and the rareness of the phosphate

��� Grey box modelling of wastewater processes ��

stripping occurrences only makes the identi�cation of a constant phosphate

stripping rate
 kP�strip
 possible�

rP�strip�t  
�

kP�strip anaerobic conditions

	 aerobic�anoxic conditions

������

Furthermore
 the anaerobic conditions occur in the tank with in�uent �ow


and thereby in�uent load of ammonia and phosphate� Thus
 the rate of

the phosphate stripping process has to be identi�ed on top of an in�uent

load rate
 rload�PO��
�

�t�

����� Transient modelling

The switching of phases in the BIO�DENITRO and BIO�DENIPHO pro�

cesses often introduce transient phenomena in the time series� This is

due to hydraulic e�ects which have not been modelled in the previous sec�

tion �transient dynamics from the switching of �ow�patterns� and non�ideal

mixing of the aeration tanks
 and the uncertainty induced by the switching

from aerobic to anoxic conditions and reverse�

Let the explanatory variable vector ut be given by

ut  &It� Ot'
T ����	�

where

It  
���
� at time when the inlet gate is opened

�� at time when the inlet gate is closed

	 otherwise

������

and

� �
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Ot  
���
� at time when the aerators are turned on

�� at time when the aerators are turned o�

	 otherwise

������

The vector ut may be extended to include also lagged values of It and Ot�

Functions of the same form as It and Ot are called interventions
 a term

which was introduced by Glass ������ and that became popular through

the work of Box  Tiao �������

The explanatory variable vector may a�ect both the observation equation

through the parameter vector � in ������ and the process equation through

the parameter vector � in ������ in order to describe the transient phe�

nomena� However
 the transient is very di�erent for the two methods� The

in�uence of an intervention at time t in the observation equation only a�ects

yt at time t
 while the in�uence of an intervention at time t in the process

equation a�ects !mt�!mt	�� � � � � with exponentially decreasing weights

due to the autoregressive polynomial on the left�hand side of �������

����� Operation cycle time domain

The alternating operation mode of the BIO�DENITRO and BIO�DENIPHO

processes introduces natural break�points in the time series of ammonia


nitrate
 and phosphate concentrations
 which can be used in subsequently

modelling of the wastewater processes described in Section ������ This is

considered as a new time domain
 where a given operation cycle �normally

covering ��� hours of samples� is equal to one time�step� The time�points

of the operation cycle domain are denoted by f 
 f  �� � � � � Nf 
 where Nf is

the number of operation cycles in the time series� The start of the operation

cycle for the given aeration tank is de�ned as the time where the in�uent

�ow starts� For the BIO�DENITRO process in Figure ��� the operation

cycle starts at Phase D and ends at Phase C for Tank �
 and the operation

cycle starts at Phase B and ends at Phase A for Tank �� The operation

cycle starts at Phase A in Tank � for the BIO�DENIPHO process depicted

in Figure ����

��� Grey box modelling of wastewater processes ��

��

�

Sample time domain

B
B

B
B

BN �
�
�
�
��B

B
B

B
BN �
�
�
�
��

��
��� BB

BBN

Predictions Estimates Predictions Estimates

Model in t Model in t

Observations Observations

f f � �Model in f

Operation cycle time domain

Figure ���� The exchange of information between the sample time domain

and the operation cycle time domain� Time of the exchange is determined

by the operation scheme�

Some of the parameters used to model the hydraulic and biological pro�

cesses previously were assumed to be constant within an operation cycle

in the sample time domain
 though it was pointed out that these param�

eters were allowed to change from one operation cycle to another� The

following three parameters from three di�erent processes are modelled in

the operation cycle domain


� In�uent load rate of nutrients

� Maximum nitri�cation rate

� Maximum denitri�cation rate

but the grey box models may be extended to include models in the operation

cycle domain for some of the other parameters described in Section ������

The interaction of the models in the sample time domain and the operation

cycle time domain is illustrated in Figure ���� Once the operation cycle f

is �nished all the data from this single operation cycle is used to produce

� �
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estimates of the time�varying parameters listed above based on the models

of the sample time domain� These estimates are considered as observa�

tions in the models of the operation cycle time domain
 which bring new

information to the process such that new predictions of the parameters are

obtained� The predictions are then fed back as parameter values to the

models in the sample time domain� This exchange of information between

the models of the two time domains is resumed at the end of operation

cycle f � ��

In�uent load rate of nutrients

Looking at Figure ��� it is noted that the upward slopes of ammonia and

phosphate concentrations are approximately constant within one operation

cycle and vary between operation cycles� This is due to both a changing

�ow rate and changing in�uent concentrations of ammonia and phosphate�

Information concerning the �ow rate is obtained from on�line measurements

of the very same and the in�uence on the slope was modelled in ������
 while

the in�uent concentration of ammonia and phosphate are estimated from

the individual slopes of each operation cycle using ������� Thus
 models for

the variation of kload�NH�
�

�f �obtained from ������� and kload�PO��
�

�f can be

set up in the operation cycle time domain� Because the composition of the

wastewater is mainly determined by human behaviour
 a diurnal variation

and a weekly variation is to be expected when disregarding rainy weather

periods�

These cyclic variations can be modelled using a multiplicative seasonal

AR�p��AR�P ��model for the diurnal variation

$load�B�$load�S �B
S ��kload���f � �load���f �  eload���f ������

where eload���f has zero mean and variance 	�e�load��
 and �load���f describes

the weekly variation as a type�of�day e�ect

��� Grey box modelling of wastewater processes ��

�load���f  
�

�weekday�� if operation cycle f is on a weekday

�weekend�� if operation cycle f is on a weekend

������

where �weekday�� is the mean load level on weekdays and �weekend�� is the

mean load level on weekends�

Alternatively
 the daily variation can be modelled using a Fourier�expansion

������ of order s which gives the following model for the load process in the

operation cycle time domain�

$load�B��kload���f � �load���t�  eload���f ������

where

�load���t  
�������

�weekday�� � �t if the samples of the operation cycle are

on a weekday

�weekend�� � �t if the samples of the operation cycle are

on a weekend

������

and

�t  

sX
i�
��i cos
��it

T

� i sin
��it

T

� ������

where T is the number of samples in a day and �  ��

The two alternative models for the mean load ������ and ������ are also

known as the process equations for the load process in the operation cycle

time domain� The autoregressive polynomial $load�B� models the variation

of kload���f from one operation cycle to another� This is not incorporated

in �load���f or �load���t�

� �
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Estimates of kload���f can be obtained using data from only one operation

cycle for all f 
 f  �� � � � � Nf �i�e� every single operation cycle�� These

estimates will
 however
 be encumbered with some uncertainty

bkload���f  kload���f � �load���f ������

where �load���f has zero mean and variance 	
�

	�load��� This equation is referred

to as the observation equation for the load rate process in the operation

cycle time domain� The model for the in�uent load in the operation cycle

time domain apply for both ammonia and phosphate concentrations as

indicated in the equations by the period� Using the approximations ������

and ������
 the results from estimating the load process in the operation

cycle time domain may be interpreted as in�uent ammonia and phosphate

concentrations�

Maximum nitri�cation rate

In Section ��� it was mentioned that Holmberg  Ranta ������ had ob�

served that a practical identi�cation of the parameters in a Monod�type

expression �e�g� knit�max�NH�
�


 KNH�
�


 and KO�

in �������
 based on obser�

vations from a single declining curve
 is not practically feasible� However
 if

several declining curves of ammonia concentrations are available a practical

identi�cation of the three parameters is actually feasible� In fact
 if large

time series are available �covering more than �	 operation cycles� estimates

of knit�max�NH�
�

�f for the separate operation cycles may be obtained �indi�

cated by the index f�
 when KNH�
�

and KO�

are estimated based on all

observations� Thus
 KNH�
�

and KO�

are regarded as constant parameters

which are estimated on all available observations
 and these estimates are

used to give estimates of knit�max�NH�
�

�f 
 f  �� � � � � Nf 
 based on data from

one operation cycle using ������� The estimates are naturally encumbered

with some uncertainty

bknit�max�NH�
�

 knit�max�NH�
�

� �nit�NH�
�

�f ������

��� Grey box modelling of wastewater processes ��

where �nit�NH�
�

�f has zero mean and variance 	
�

	�nit�NH�
�

� A similar result

holds for the nitri�cation process based on observations of nitrate concen�

trations� The equation ������ and the similar equation found for the time

series of nitrate concentrations are referred to as the observation equations

for the maximum nitri�cation rate process in the operation cycle time do�

main�

The half�saturation constants KNH�
�

and KO�

may be regarded as constant

for a limited number of operation cycles
 but for larger time series algo�

rithms for recursive estimation of these parameters should be applied �see

Kulhavy ����	��� Knowles et al� ������ have reported KNH�
�

as being a

function of temperature
 but e�ects of calibration o�set errors on the am�

monia and oxygen sensors could also be handled by a recursive estimation

procedure�

Applying the approximations ������ and ������ to the estimates of the max�

imum nitri�cation rate
 knit�max�NH�
�

�f and knit�max�NO�
�

�f 
 the dynamics

of the activity of the autotrophic biomass is assessed� It is assumed that

knit�max�NH�
�

�f and knit�max�NO�
�

�f in general show similar variations
 be�

cause the variations of the two parameters is caused by the very same

process� Hence
 the same type of model is used to describe the variations

in both parameters for the considered cases in Chapter � and �� An au�

toregressive model is found adequate for the nitri�cation process

$nit�B��knit�max���f � �nit�max���f�  enit���f ����	�

where enit���f has zero mean and variance 	
�

e�nit��� This equation applies for

both time series of ammonia and nitrate concentrations which is indicated

by indexing with a period�

Information on the in�uence of explanatory variables �e�g� temperature

�T�
 alkalinity �pH�
 ammonia load
 composition of raw wastewater� on the

maximum nitri�cation rate may be incorporated by letting �nit�max���f be

a function of the available observations for modelling of knit�max���f�

� �
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�nit�max���f  f�T� pH� kload�NH�
�

�f��� � � �� ������

Maximum denitri�cation rate

Following the discussion above KNO�
�

and Kload�NH�
�

in ������ are esti�

mated using all the available observations of the time series of nitrate


while estimates of kdenit�max�f are obtained for all the separate operation

cycles based on the estimates of KNO�
�

and Kload�NH�
�

� The estimates of

the maximum denitri�cation rate at operation cycle f is also encumbered

with some uncertainty
bkdenit�max�f  kdenit�max�f � �denit�f ������

where �denit�f has zero mean and variance 	�	�denit� The equation ������

is referred to as the observation equation for the maximum denitri�cation

rate process in the operation cycle time domain� A recursive estimation

of the half�saturation parameters KNO�
�

and Kload should be applied for

larger time series� Such algorithms are found in Kulhavy ����	��

The dynamics of the activity of the heterotrophic biomass is assessed when

the approximation ������ is applied to the estimates of kdenit�max�f � The

variations of the maximum denitri�cation rate may be modelled using an

autoregressive model

$denit�B��kdenit�max�f � �denit�max�f�  edenit�f ������

where edenit�f has zero mean and variance 	�e�denit
 and the in�uence of ex�

planatory variables �e�g� temperature �T�
 alkalinity �pH�
 ammonia load


composition of raw wastewater� is incorporated in the model by letting

�denit�max�f be a function of the available observations�

��� The state space model ��

�denit�max�f  f�T� pH� kload�NH�
�

�f��� � � �� ������

In Appendix B the grey box models presented in this section for the time

series of ammonia
 nitrate
 and phosphate concentrations are summarized

for the purpose of getting an overview of all the models�

��� The state space model

Behavior of dynamic systems can be conveniently described in the frame�

work of the state space notation� The state space form is a powerful tool

which opens the way to handling a wide range of time series models and

other models� Once a model has been put into a state space form
 the

Kalman �lter may be applied and this in turn leads to algorithms for predic�

tion
 �ltering
 and smoothing� In Aoki ������ the conversion of traditional

time series models into state space models and visa�versa is shown� The

grey box models presented in the previous section can also be formulated

in the framework of state space modelling� Kitagawa  Gersch ������ have

shown that time series which are decomposed into several components
 also

can be formulated as state space models�

The state space form arises by introducing the state vector xt of dimension

n
 which contains all the available information from previous samples of

the system being modelled� The measurement at time t is related to the

state vector via the observation equation

yt  cxt � �
Tut � �t ������

where c is a vector of length n
 and the dynamic of the system is given by

the process equation or transition equation

xt  Axt�� �Dut � bet ������

� �
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where A is a matrix of dimension n � n
 b is a vector of length n
 and D

is a matrix of dimension n � l
 where l is the number of elements in the

explanatory variable ut�

The relationship between the grey box models of the previous section and

the state space form above
 ������� and �������
 may be implicitly recog�

nized� However
 the vectors and matrices of the state space form showing

the direct relationship are given in Appendix C� The state space form of

the grey box models in Section ��� is not linear with respect to the pa�

rameters
 and the mean process rate �t is stochastic in that it depend on

observations available at time t � �� With the information at time t � �

available
 �t may be regarded as being �xed� If the noise disturbances are

normally distributed
 the state space form is a conditionally normally dis�

tributed model �the state vector is normally distributed�� The state space

form is employed for the use of a Kalman �lter�

��	 The Kalman �lter

The Kalman �lter is a recursive procedure for computing the optimal esti�

mator of the state vector at time t
 based on the information available at

time t� This information consists of the observations up to and including

yt� Thus
 the Kalman �lter provides on�line estimation of the state vector


xt
 which is continually updated as new observations become available�

The derivation of the Kalman �lter �see e�g� Kalman ����	� or Anderson

 Moore ������� rests on the assumption that the disturbances and initial

state vector are normally distributed� A standard result on the multivariate

normal distribution is then used to show how it is possible to calculate

recursively the distribution of xt
 conditional on the information set at

time t� For the presentation of the Kalman �lter the following notation is

applied

bxtjt  E&xtjYt' ������

��� The Kalman �lter ��

bPtjt  V &xtjY t' ������byt	�jt  E&yt	�jYt' ������bRt	�jt  V &yt	�jY t' ����	�

where Y t represents all observations made at time t and previously �i�e�

yt� yt��� � � � �ut�ut��� � � �� and the distribution of the initial state vector


x�
Given bxt��jt�� and bPt��jt��
 the optimal predictor of xt based on infor�

mation available at t� � is given by �see �������

bxtjt��  Abxt��jt���Dut ������

and the optimal predictor of yt is found using ������

bytjt��  cbxtjt��� �
Tut ������

while the optimal estimator of the covariance matrix of xt is

bPtjt��  A bPt��jt��A
T � b	�eb
T ������

and the variance of yt is
bRtjt��  c bPtjt��c
T � 	�� ������

These four equations are known as the prediction equations
 and the four

predictions are the mean and variance of the prior distribution of xt and

yt�
Once the new observation
 yt
 becomes available
 the estimates of xt and

Pt can be updated using

� �
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bxtjt  bxtjt�� �Kt�yt � bytjt��� ������bPtjt  bPtjt���Kt
bRtjt��K
T

t ������

where the Kalman gain is given by

Kt  bPtjt��c
T bR��

tjt�� ������

These three equations are known as the updating equations
 and ������ and

������ are the mean and variance of the posterior distribution of xt�

Missing observations due to e�g� failure in the measurement system is

handled conveniently by the Kalman �lter algorithm� If the observation at

time t is a missing value new information is not obtained and thus
 xt and

Pt are not updated
 i�e�

bxtjt  bxtjt�� ������bPtjt  bPtjt�� ������

The recursions of the Kalman �lter are obtained by again using the updated

estimates for xt and Pt to make predictions for t � � in ������������ The

starting values for the Kalman �lter may be speci�ed in terms of bxj andbPj� Given these initial conditions
 the Kalman �lter delivers the optimal

estimator of the state vector as each new observation becomes available�

The Kalman �lter recursions are in a steady state if the covariance matrix

of xt is time�invariant
 that is

bPtjt��  P ����	�

and as a result the variance of yt ������ is also time�invariant

��� Maximum likelihood estimation ��

R  cPc
T
� 	�� ������

when 	�� is regarded as a constant parameter�

��� Maximum likelihood estimation

The state space form and the Kalman �lter recursions provide the pre�

dictions used in estimating the parameters of a grey box model using

maximum likelihood techniques� The joint density function of the obser�

vations
 YN  y�� � � � � yN 
 is assumed to depend on a set of n unknown

parameters in the vector � ���� � � � � �n�
T � It will be denoted L�YN (���

Given the observations
 L�YN (�� may be interpreted as a likelihood func�

tion
 which may be evaluated for di�erent sets of �� The maximum

likelihood estimator is found as the value � which maximizes L�YN (���

If the disturbances and the initial state vector x all are normally dis�

tributed
 then the distribution of yt conditional on Y t�� will also be normal�

Thus
 the probability density function for yt conditional on Yt�� is given

by

p�ytjYt���  

�q
�� bRtjt��
exp��

v�t

� bRtjt��
� ������

where

vt  yt � bytjt�� ������

is the prediction error� The prediction bytjt�� and the variance bRtjt�� are

provided by the Kalman �lter�

The joint density function conditional on the initial state is therefore given

by

� �
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L�YN (�jx�  

NY
t��

p�ytjY t���

 

NY
t��

�q
�� bRtjt��
exp��

v�t

� bRtjt��
� ������

Maximizing the likelihood with respect to the parameters most frequently

takes place after forming a logarithmic transformation

logL�YN (�jx�  �
N

�
log �� �
�

�
NX

t��
log bRtjt�� �
�

�
NX

t��

v�tbRtjt��

������

This is also known as the prediction error decomposition form of the like�

lihood� It should be stressed
 that some of the standard deviations of the

estimates obtained from estimating the models in Chapter � and � are too

small due to the optimization routine �see Appendix A��

If prior information is available on the elements of x
 then the Kalman

�lter yields the exact likelihood function of the observations
 YN � Unfor�

tunately
 prior information on the distribution of x of the exact value of

x is rarely available� Hence
 the initial values of x and P may be incor�

porated into the likelihood function ������ and thereby estimated
 or if the

number of observations
 N 
 is su�ciently large such that the speci�cation

of initial values has a minor in�uence
 appropriate values of x and P may

be chosen�

��� Testing and model selection

Methods for testing hypotheses and parameter signi�cance can be derived

systematically using the maximum likelihood approach� The maximum

��� Testing and model selection ��

likelihood function itself provides a possible criterion for discriminating

between di�erent types of grey box models� However
 it is advisable to

make some allowance for the number of parameters in the model� Several of

the procedures for di�erentiating between models presented in this section

are at the same time used to determine the applicability of the given types

of models�

The basic test procedure is the likelihood ratio test� Consider the prob�

lem of testing a hypothesis H� �� M against H�� �� M�nM
 where

M � M�
 i�e� does the reduced parameter set M of M� give an equally

good description of the data% If the maximized likelihood function under

H
 L�YN ( b��
 is much smaller than the unrestricted maximum likelihood

function
 L�YN ( b���
 there is evidence against the null hypothesis� This

result is formalized in the Neyman�Pearson lemma which shows that a test

based on the likelihood�ratio
�  
L�YN ( b��

L�YN ( b���

������

is the most powerful for testing H against H��

Sometimes it is possible to transform the likelihood ratio into a statistic

having an exact known distribution under H� When this cannot be done


the following asymptotic result may be applied� This is based on the result

that the statistic

LR  �� log� ������

is asymptotically ���distributed under H for large sample sizes
 with

degrees of freedom equal to the number of restrictions or reduction of pa�

rameters� The proof for this result regarding the distribution of LR which

is based on a Taylor�expansion of ������
 is found in Rao ������ or Goodwin

 Payne �������

� �
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If variances of the parameter estimates
 b	�
i 
 i  �� � � � � n
 are obtained

from the estimation procedure
 the hypothesis H� �i  �i against H��

�i 
 �i may be tested using the statistic

T  
�i � �iqb	�
i ������

which is t�distributed with N � n degrees of freedom� However
 this is

not a very strong test of the H�hypothesis
 but for the grey box models

presented here it has been used as a guidance in the model development�

When comparing two di�erent models
 which cannot be made identical by

restrictions on the parameters of one of the models
 the likelihood ratio

test ������ does not apply� In this case the prediction error variance may

be used as a basic measure of goodness�of��t� For large sample sizes this

is practically the same as comparing the maximized likelihood functions�

However
 in order to avoid developing over�parameterized models a penalty

for the number of parameters should be used in conjunction with the max�

imum likelihood function� Many di�erent statistics have been proposed to

assess the goodness�of��t of a given model
 most of which are derivatives of

the two general criteria
 Akaike information criterion �AIC� �Akaike �������

and Bayes information criterion �BIC� �Schwarz �������� AIC is reluctant

to bring in more parameters than BIC into the model for large sample sizes

due a smaller penalty for the number of parameters�

Letting L�YN ( b�jx� denote the likelihood function evaluated at the max�

imum likelihood estimates b� and n the number of parameters
 then

AIC  �� logL�YN ( b�jx� � �n ������

and

BIC  �� logL�YN ( b�jx� � n logN ����	�

��� Testing and model selection ��

where the optimal number of parameters is given by the minimum of AIC

or BIC�

Ljung ������ has proposed a general identi�cation and estimation method

using AIC based on a given model structure� However
 as Jenkins ������

showed
 abandoning judgement altogether in model selection can lead to the

potential of selecting even more inappropriate models� L�utkepohl ������

shows that AIC will yield biased estimates of the model order of an autore�

gressive process�

In a well�speci�ed model
 the residuals should be approximately random�

This can be checked by various graphical procedures and various test� For

the analysis of the residuals of the grey box models presented in this thesis

the correlogram and the cumulated periodogram have been applied to the

normalized residuals

�t  

vtqbRtjt��

������

The correlogram is a plot of the sample autocorrelation function of the

residuals
 r�� �
 for di�erent lag values
 � 
 which describes the time�wise

correlation of the residuals �see Madsen ������ and Harvey �����b���

r�� �  

�
N

PN
t��	���t � ����t�� � ��

�
N

PN
t����t � ����t � ��

������

For large sample sizes the values of r�� �
 �  �� � � �
 are approximately

normally and independently distributed with a mean of zero and variance

��N under the assumption that �t is white noise�

The periodogram is calculated at the frequencies fi i�N 
 i 	� �� � � � � &n��'


for the stochastic process �t by

� �
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bI�fi�  �
N
&

NX
t��

�t exp��i��fit�'
� ������

i�e� bI�fi� describes the part of the variation of �t at the frequency fi� The

normalized cumulated periodogram is then found as

bC�fj�  Pj
i��
bI�fi�PN��

i��
bI�fi� ������

which is a non�decreasing function de�ned at the frequencies fi  i�N 


i  �� � � � � &N��'� A formal test for departures of randomness is obtained

by constructing two parallel lines to the ��� line
 s  j�&N��'
 de�ned by

s  s �

j
&N��'

������

where s is a signi�cance value which depends on n and may be read o�

directly from a table given in Durbin ������� The cumulated periodogram

should lie in�between the two signi�cance lines�

The diagnostics of the correlogram and periodogram may suggest further

extensions to the grey box models as illustrated in Figure ���� Furthermore


the information obtained from the two graphical procedures also serves as

a test of the assumption of randomness of the residuals upon which the

models are built�

�� Conclusion

In this chapter statistical tools for the formulation
 estimation
 and valida�

tion of time series models are proposed� Incorporating prior knowledge

of the system being modelled into the models is emphasized� This is

��� Conclusion ��

obtained by incorporating deterministic terms
 and lacks of these terms

to describe the variations of the wastewater processes using traditional

stochastic terms� However
 time series modelling is an iterative procedure

which occasionally leads to the inclusion of additional physical knowledge

and additional explanatory variables�

The models proposed in this chapter are built up of �ve components� au�

toregressive models
 trends
 cyclic e�ects
 type�of�day e�ects
 and the use of

explanatory variables� Combining these components into operational mo�

dels such that the parameters of these models are physically interpretable


is called grey box modelling� However
 caution for the identi�ability of the

parameters should be observed
 e�g� a theoretically identi�able model may

not be practically identi�able due to the data available�

The grey box models in this chapter are modelled in two time domains


the sample time domain and the operation cycle time domain� While the

observations in the sample time domain consist of measurements
 the obser�

vations in the operation cycle time domain consist of parameter estimates

of the models in the sample time domain based on the measurements of

one operation cycle� In the time domain the following signi�cant processes

are modelled

� In�uent load

� Nutrient transport

� Hydrolysis and growth of biomass

� Nitri�cation

� Denitri�cation

� Biological phosphate uptake in biomass

� Stripping of phosphate

and the following three parameters obtained from the sample time domain

are modelled in the operation cycle time domain

� �
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� In�uent load rate of nutrients

� Maximum nitri�cation rate

� Maximum denitri�cation rate

Most of the parameters used in the grey box modelling of the wastewater

processes relate to the theory of the processes in Chapter � and �
 but some

of these parameters may not yield unbiased estimates due to assumptions

made in the discrete time series modelling� Transient phenomena occurring

due to the alternating operation mode of the BIO�DENITRO and BIO�

DENIPHO processes are also handled by the grey box models�

Finally
 the grey box models apply to a state space form
 which makes

the models treatable by the Kalman �lter� The Kalman �lter leads to algo�

rithms of prediction
 reconstruction
 and maximumlikelihood estimation of

unknown parameters through the prediction error decomposition� In order

to di�erentiate between di�erent types of grey box models estimated by the

maximum likelihood method
 tests and criteria for selecting the best �tting

model are proposed� Furthermore
 analysis of the residuals also serves as

a goodness�of��t criterion
 by means of which extensions to the analyzed

model may be obtained and the assumptions of randomness of the error

terms are tested�

Chapter �

Case � The Lundtofte

pilot scale plant

The grey box models described in Chapter � were mainly developed on

data from one of the aeration tanks at the Lundtofte pilot scale plant�

This is primarily due to a reliable measurement system for monitoring of

nutrient salt concentrations and the short time between samples from one

of the aeration tanks
 facilitating the identi�cation of the hydraulic and

biological processes� Furthermore
 some of the results from estimating the

grey box models are validated through additional measurements at the well�

monitored plant� However
 these additional measurements have not been

used in the modelling phase
 since they will rarely be available on a full�scale

plant� A short introduction of the plant is given in the �rst section of this

chapter� The measurement system of the plant introduces some correlated

measurement noise
 which is modelled in the second section� The third

and fourth section deal with the modelling of the hydraulic and biological

processes in the sample time domain of two di�erent data sets� Di�erent

models are proposed from the data sets in order to illustrate the evolution

of the grey box models in this context� The last section covers the grey

��
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box modelling in the operation cycle time domain of the second data set�

Some of the results of this chapter are also documented in Carstensen et al�

������� It should be emphasized that the models presented in this chapter

are derived by statistical methods from the class of grey box models in

Chapter � giving the best �t of data�

��� Introduction

The Lundtofte Pilot Plant is a pilot scale facility belonging to the De�

partment of Environmental Engineering at the Technical University of

Denmark� The pilot plant is fed with clari�ed wastewater from the neigh�

boring Lundtofte WWTP of Lyngby municipality� The raw wastewater

input has been pre�clari�ed at the municipal facility in order to remove

large particles
 sand
 and oils�

The biological wastewater treatment process is carried out in four vessels

as sketched in Figure ��� and the operation of the plant follows the BIO�

DENIPHO process �see Figure ����� The throughput of the plant is held

constant on the order of �	 liters per hour
 which is mixed with returned

sludge also at a constant �ow rate of �	 liters per hour� In this way the

plant is ideal for identifying the dynamics of the biological processes without

disturbances from hydraulic loads� The approximate holding volumes of the

pretreatment column �PRE�
 the two aeration tanks �T� and T�� and the

sedimentation tank �SED� are �		
 �		
 �		
 and ��		 liters respectively


i�e� the hydraulic retention time ����� is approximately �
 �
 �
 and � hours


respectively�

The pretreatment column is maintained anaerobic for selection of phos�

phorus accumulating bacteria� The primary process taking place in this

tank is the stripping of phosphate� The two aeration tanks T� and T�

are operated in an alternating manner scheduled prior to the operation�

Here the nitri�cation and denitri�cation processes take place alternatively

under aerobic and anoxic conditions
 respectively
 and phosphate is accu�

mulated in the biomass in both aerobic and anoxic periods� Oxygen is

��� Introduction ��

�����������
������������������������������������������������������������������

���

����������������������������������������������������������������������������������������������������
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Figure ���� Schematic diagram of pilot scale wastewater treatment plant

with symbols of the tanks used in the following�

supplied to the two tanks through di�users controlled by a PLC according

to a provided setpoint with hysteresis values� In that way an approximately

constant oxygen concentration within the range ��� mg O��l is maintained

throughout the aerobic phase� The feed to the two tanks is controlled by

one valve and each tank has a separate valve controlling the outlet of the

tank
 as indicated on Figure ���� These valves are either open or closed
 i�e�

controlled by an on�o� signal similar to the oxygen di�user� The operation

scheduling of the valves can be derived from Figure ���� The pretreatment

tank and the aeration tanks are all equipped with stirrers for keeping the

activated sludge suspended�

In the sedimentation vessel
 the heavier sludge falls out of suspension
 and

from top of the vessel the processed e�uent is removed from the system�

The sludge is returned via the sludge return pump and mixed with the

�uid entering the pretreatment column� The sludge concentration is held

approximately constant throughout intermittent removal of excess sludge

from the system at the point where it exits the sedimentation vessel� Sig�

ni�cant loss of activated sludge does not occur
 because the plant is not

� �
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exposed to large hydraulic loads during rainy weather� In fact
 the through�

put of the plant is constant�

Samples are taken from four di�erent locations in the plant� in the in�

let
 in the outlet of the anaerobic pretreatment column
 in the aeration

tank T�
 and in the outlet of the plant� Samples from the four locations

and from a standard solution �used for calibration� are pumped through a

multi�port valve to the Flow Injection Analysis �FIA� systems� Three FIA

systems connected in series monitor the concentration of ammonia
 nitrate

and phosphate at the four positions at the plant as well as the standard

solution� Procedures have been included in the controlling software system

to eliminate the e�ect of isolated gas bubbles and to initiate a vacuum cycle

if there should be signs of a signi�cant amount of gas in the system� An

overview of the sample selection system and FIA analyzers is provided in

Figure ���� More detailed descriptions of the pilot scale wastewater treat�

ment plant and the on�line measurement system are given in Pedersen et al�

����	� and Isaacs et al� �������

In this chapter two data sets are considered� For these data sets the sample

system was set up for a cycle of � measurements
 with every second sample

taken from aeration tank T� and the remaining four samples taken from

the inlet of the plant
 the outlet of the pretreatment column
 the outlet

of the plant
 and the standard solution� The sample cycle is controlled by

the multi�port valve shifting position every �	 seconds approximately� This

gives a total cycle length of �� minutes and a sample from aeration tank

T� every � minutes� The sample cycle is illustrated in Figure ����

The two data sets consist of measurements of ammonia
 nitrate
 and phos�

phate concentrations from the measurement cycle
 and the control signals

for the inlet and outlet valves of the aeration tanks� Furthermore
 mea�

surements of the oxygen concentration in T� and the corresponding control

signal for the di�user in T� are available� Due to the setpoint control of

the di�user the measurements of the oxygen concentration are considered

as a constant signal of the setpoint value covered with noise during the

aerobic phase of operation cycle� Hence
 the e�ect of di�erent oxygen con�

centrations on the biological processes have not been investigated
 but the

��� Introduction ��

�����������
����������������������������������������������������������������������������������������������

���������
�����������
����������������������������������������������������������������������������������������������

���������
����������
�����������������������������������������������������������������������������������������������

���������
����������
�����������������������������������������������������������������������������������������������

���������

������������������������������
������������������������������

������������������������������

��������������������������������������������������������������

������������������������
������

�������������������������������
�����������������������������������

������������
�����������
������������
������������
������������
������������
������������
������������
����������
������������
�����������
������������
������������
������������
���������

����������������
���������������
����������������
����������������
���������������
����������������
��������������
����������������
���������������
����������������
���������������
����������������
����������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������
�����������������������������������������������������
�������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������
�������������������
���������������������
�����

�������������������
���������������������
��������������������
��

������������������
��������������������
�������������������
������

������������������
��������������������
�������������������
������

����������
������������
���������������������������������������������������������������������������������������������������������������������������������

������������
��������

Inlet

������������������������������

����������
������������
���������������������������������������������������������������������������������������������������������������������������������

������������
��������

������������������������������

���������
�����������
������������������������������������������������������������������������������������������������������������������������������������

�����������
��������������������������������������

���������
������������������������������������������������������������������������������������������������

���������

������������������������������

���������
�����������
�������������
��������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������
�����������
��������

Phosphate

Nitrate

Ammonia

Multiport valve

Standard

Filter �

Filter �

Filter �

Filter �

Outlet

Aeration tank �T��

Pretreatment

Figure ���� Overview of the sample selection system and the three FIA

analyzers connected in series�
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Stand�OutletPREInlet T�T�T�

Figure ���� Scheduling of the sample cycle� T� is the aeration tank T�


PRE is outlet of pretreatment column� and Stand� is the standard solution�
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measurements of the oxygen concentration and nitrate concentration have

been used to divide the time series into aerobic
 anoxic
 and anaerobic

periods�

Aerobic conditions if SO� �t�� � 	�� mg O��l

Anoxic conditions if SO� �t�� 
 	�� mg O��l and

SNO�
�

�t�� � 	�� mg NO
�

� �N�l

Anaerobic conditions if SO� �t�� 
 	�� mg O��l and

SNO�
�

�t�� 
 	�� mg NO
�

� �N�l

The measurements from the inlet of the plant
 the outlet of the pretreat�

ment column
 and the outlet of the plant have not been used in the grey

box modelling
 because this information would rarely be available on a full

scale plant
 and the objective is to model the wastewater processes based on

measurements available on a full scale plant� The �rst data set consists of

��� observations covering nearly one day �October
 ��th ����
 Saturday�


and it has only been used for modelling in the sample time domain due to

the short period of sampling� This data set was used in the �rst developing

stage of the grey box models given in Section ���
 and the models of this

data set have been left unaltered to show the process of grey box modelling�

However
 the models of this data set also contain some interesting features�

The second data set consists of ���� samples covering more than a �� days

period �from March
 ��th to April
 �th ����
 starting on a Thursday and

ending on a Saturday� with highly varying loads of materials� This data

set has been used for modelling in both the sample time domain and the

operation cycle domain�

��� Modelling the measurement system

The basic assumption when estimating a grey box model by use of the

Kalman �lter and the maximum likelihood approach in Section ��� is
 that

the noise terms are Normal and Independently Distributed �NID�� If resid�

ual analysis �see Section ���� shows correlation amongst the residuals
 it is

often interpreted as a de�ciency of the process equation ������ or �������

��� Modelling the measurement system �	�

However
 at the pilot plant the measurement error
 �t
 in the observation

equation ������ or ������ �or see ����� later� is not NID due to changing

of the sample points in the measurement cycle of the measurement system

described in the previous section and the short time between samples of

the measurement cycle� Hence
 a model for the measurement error must

be formulated�

It is found
 that the samples from the aeration tank T� are highly corre�

lated with the intermediate measurements from the inlet of the pilot plant


the pretreatment column
 the outlet of the pilot plant
 and the standard

solution of the measurement cycle� The dependency of the sample points

of the intermediate measurements is modelled as a constant term for each

of the four samples from T� in the measurement cycle
 si
 i  �� �� �� �


where i indicates where the previous sample in the measurement cycle was

taken� The e�ects of the intermediate measurements must sum to zero�


X
i��

si  	 �����

Furthermore
 due to the dynamics of the ammonia
 nitrate
 and phosphate

concentrations in the inlet of the plant
 the pretreatment column
 and the

outlet of the plant from one measurement cycle to another
 �t will also

show some cyclic variations in addition to the constant term
 si� Because

the information from the intermediate measurements of the measurement

cycle is not used in the modelling stage as described previously
 a more

empirical model �refer to ����	� is used to describe the variations in the

measurement error�

$
�B

�$�B��t  �i�t �����

where �i�t is NID with E&�i�t'  si and V &�i�t'  	���i
 and i indicates the po�

sition of the previous sample in the measurement cycle� The index
 i
 may

be found as i  mod
�t���
 where mod
�t� is the modulus function of divi�

sion by �� Thus
 the error term is normally distributed with four di�erent

� �
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means and variances re�ecting the relationship to the intermediate mea�

surements in the measurement cycle
 and $
�B

� describes the deviation

from these four means caused by the variations of the ammonia
 nitrate


and phosphate concentrations in the inlet to the plant
 the pretreatment

column
 and the outlet of the plant� The correlation in the measurement

error between subsequent samples from T� is modelled through $�B�� This

term describes correlation due to the fast sampling
 clogging of tubes
 and

deposits covering the probes of the FIA�analyzers�

Data set No��

This data set covers a short period of time with a relative stable load to

the plant� The time series of the measurements of ammonia
 nitrate
 and

phosphate concentrations are shown in Figure ���� The measurement error


�t
 of the ammonia concentration FIA�analyzer is adequately modelled as

follows�

�� � �B��t  �i�t �����

where �i�t is given by four distributions with di�erent means
 si
 and

variances
 	���i� The measurement error of the nitrate concentration FIA�

analyzer is adequately modelled as follows�

��� �B��t  �t �����

where �t has zero mean and variance 	��
 while the measurement error of

the phosphate concentration FIA�analyzer is modelled as follows�

�t  �i�t �����

where �i�t is given by four distributions with di�erent means
 si
 and the

same variance 	��� The estimates from modelling the measurement error �t

��� Modelling the measurement system �	�

Parameter Ammonia Nitrate Phosphate

� 	���� 	���� �

s� �	�	�� � �	�	��

s� 	���� � 	�	��

s� �	�	�� � 	�	��

s
 �	�	�� � �	�	��

	���� 	�		��� 	�		��� 	�		���

	���� 	�		��� 	�		��� 	�		���

	���� 	�		��� 	�		��� 	�		���

	���
 	�		��� 	�		��� 	�		���

Table ���� Parameter estimates from modelling the measurement system

on data set No���

given the observation equation ����� and the process equation ����	� �see

later� on data set No�� are shown in Table ���� The error terms
 �i�t
 are

NID in the equations above�

The model of the measurement error on the measurements of ammonia

concentrations is clearly the most extensive
 followed by the models of the

measurement error on the measurements of phosphate and nitrate con�

centrations� This is due to the fact that the measurements of ammonia

concentrations in T� are more a�ected by the intermediate measurements

of the measurement cycle
 because the ammonia concentration in the inlet

of the plant and pretreatment tank are high relative to the ammonia con�

centration in T�� Similarly
 the measurements of phosphate concentrations

are a�ected by the intermediate measurements from the inlet of the plant

and pretreatment column
 but the in�uence on �t is smaller due to the

relative smaller phosphate concentrations of the inlet as shown in Table

���� This is re�ected in signi�cantly smaller si�estimates in Table ��� and a

smaller model in general� The nitrate concentrations in the sample points

of the intermediate measurements are very small relative to the nitrate

concentrations of T�
 and as a result the model for the measurement error

becomes very simple�

� �
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In the data set no information is available on the actual sampling sequence

of the measurement cycle
 or where the measurements previous to the sam�

ples of T� were taken� Thus
 it is di�cult to draw any conclusions on

the estimates
 but relating s� to the inlet sampling point and s� to the

pretreatment column sampling point might be a good guess� However
 it

should be stressed that the estimates are associated with uncertainty
 i�e�

the standard deviation of the estimates ranges from ���	" of the estimate�

Data set No��

The second data set from the pilot scale plant
 which covers a long period

of time
 contained several gaps in the time series due to calibration of the

FIA�analyzers
 cleaning of the probes
 and shutdown of the data acquisition

system� These gaps caused interruption breaks in the sampling sequence of

the measurement cycle
 and unfortunately
 no information is available on

the previous sample positions in the measurement cycle� As a result the

grey box models were at �rst estimated on every single part of the time

series without any gaps
 and the estimates of si from the di�erent parts of

the time series were combined to detect the most likely resumption of the

sampling sequence after an interrupt� However
 there is no guarantee that

the sampling sequence of the di�erent parts of the time series have been

joined correctly
 due to the uncertainty associated with the estimates of si�

Only time series of ammonia and nitrate concentrations are modelled for

this data set as described in the following� Models for the measurement

noise on the ammonia and nitrate FIA�analyzers are of the type �����

with the extension
 that the variances
 	���i
 are made time�varying �het�

eroscedastic� using an ARCH�structure �AutoRegressive model with Condi�

tional Heteroscedasticity�� For details on ARCH�models
 see Tong ����	��

	���i�t  	���i � ���
�

i�t�
 �����

where �� is a parameter� In practice
 when estimating ����� �i�t�
 is substi�

tuted by the prediction error
 vt�
 and the initial value of �i�t�
 is chosen

��� Modelling the measurement system �	�

arbitrarily� Long time series like data set No�� rarely have a constant vari�

ance on the measurement error
 due to varying accuracy in the measuring

equipment� The ARCH�structure is a convenient way of describing this

phenomenon
 because the variance of �i�t is a slow varying process partly

re�ected in the squared residuals�

The following models are obtained using ����� for the measurement error

of the ammonia concentration FIA�analyzer

��� �
B

��t  �i�t �����

and for the measurement error of the nitrate concentration FIA�analyzer

�t  �i�t �����

where �i�t is NID with mean si and a variance given by ������ The estimates

from modelling the measurement error �t on data set No�� are shown in

Table ���� The standard deviation of the estimates ranges from ���	" of the

estimated values
 which is somewhat smaller than the standard deviations

obtained from the previous data set due to the large number of observations�

Following the discussion from modelling the measurement error of data set

No��
 the estimates of si based on measurements of ammonia concentrations

are more signi�cant than those obtained from the measurements of nitrate

concentrations� The �
�parameter for the measurement error of the nitrate

concentration FIA�analyzer is found to be insigni�cant for the same reason�

Modelling ����� for this dataset
 the number of 	���i�parameters can be

reduced by sequentially testing 	���i  	���j for di�erent values of i and j

using the likelihood ratio approach ������� Thereby
 the number of 	���i�

parameters could be reduced by two for both time series� In Table ��� this

testing has resulted in equal values for some of the 	���i�parameters�

Analysis of the residuals weighted by the variance of the prediction errors

from the estimation of the models of Section ��� and ��� shows a correla�

tion in lag � of the correlogram
 which is signi�cantly di�erent from zero�

� �
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Parameter Ammonia Nitrate

�
 	���� �

s� 	�	�� 	�		�

s� �	�	�� 	�	��

s� �	�	�� �	�		�

s
 �	�	�� �	�	��

�� 	�	�� 	����

	���� 	�		��	 	�			��

	���� 	�			�� 	�			��

	���� 	�		��	 	�			��

	���
 	�			�� 	�		���

Table ���� Parameter estimates from modelling the measurement system

on data set No���

This indicates that the model of the measurement system does not give

a su�cient description of the noise introduced by the measurement cycle�

Thus
 a more detailed model is required to assure that the error terms are

NID� In fact
 this correlation also has a major in�uence on the convergence

of the maximum likelihood estimation
 in particular
 for the modelling of

the ammonia concentrations� The use of an ARCH�structure to model the

variation of the variance of �i�t showed to be crucial for the convergence�

Attempts to estimate reduced models for the measurement system have

shown not to converge�

��� Modelling in the sample time domain �

data set No��

In the introduction of this chapter it was mentioned that this data set was

used in the early stage of the development of the grey box models presented

in Section ���� Therefore
 some of the models in this section may di�er

from the more general grey box models of the pilot plant presented in the

��� Modelling in the sample time domain  data set No�� �	�
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Figure ���� Online measurements of ammonia �solid curve�� nitrate �dashed

curve�� and phosphate �dotted curve� concentrations from the Lundtofte

pilot scale plant �data set No���� The operation of the plant follows the

BIO
DENIPHO scheme �see Figure ��	��

next section
 but they illustrate the evolution of grey box modelling of the

hydraulic and biochemical processes� Grey box models for the time series of

phosphate concentrations are only estimated on this data set
 because the

measurements of phosphate concentrations in data set No�� were unreliable�

Furthermore
 the nutrient transport process of the aeration tanks is not

incorporated in these preliminary models and thus not described below�

The measurements of ammonia
 nitrate
 and phosphate concentrations are

shown in Figure ����

The observation equations for the three time series of ammonia
 nitrate


and phosphate concentrations have the same form

yt  mt � �t �����

� �



�	� Chapter �� Case  The Lundtofte pilot scale plant

where models for �t were given in the previous section and mt is the true

concentration of ammonia
 nitrate
 or phosphate� The process equation for

the three time series are identi�ed as simple autoregressive models of the

type

��� �B��!mt � �t�  �Tut � et ����	�

where �t is given in ����������� and � is tested to be identical zero for

the modelling of ammonia and nitrate concentrations
 and b�  	��� �with

a standard deviation of 	�	�� for the modelling of phosphate concentra�

tions� The explanatory variables on the right�hand side of ����	� are used

to describe transient phenomena
 as described in Section ������ However


the modelling of transient phenomena will be not be discussed any further

in this chapter
 but it has been incorporated into the models� The signif�

icance of the ��parameters may also be veri�ed by inspecting Figure ���


where the dynamics of the operation cycles are similar for the measure�

ments of both ammonia and nitrate concentrations� The measurements of

the phosphate concentrations show larger variations� Actually
 the time

series of ammonia and nitrate concentrations in this data set do appear to

have a very systematic variation�

����� In	uent load

Assuming the nitrate concentration in the in�uent to the aeration tanks to

be vanishing
 the in�uent load process is only estimated for the time series

of ammonia and phosphate� For this data set a rate expression similar to

������ is found adequate for these two load processes� However
 it should be

stressed
 that the �ow rate to the pilot plant is held constant and models

for the operation cycle time domain have not been estimated� Thus
 in

order to describe the the diurnal variations of the load rate
 a pro�le
 �t


is applied

��� Modelling in the sample time domain  data set No�� �	�

rload���t  
�

kload�� � �t �Q inlet valve open

	 inlet valve close

������

where the period in rload���t and kload�� indicates that the model is valid for

both ammonia and phosphate concentrations� The diurnal pro�le
 �t
 is

described by a second order Fourier expansion �������

�t  � � �� cos
��t

S

� � sin
��t

S

� �� cos
��t

S

� � sin
��t

S

������

where S  ��	 is the number of observations in a day� Using the approxi�

mation in ������ it is found that

kload�NH�
�

V
TS
	 Ci�NH�

�

������

i�e� the average in�uent concentration of ammonia may be found from

the estimate of kload�NH�
�

� Multiplying kload�NH�
�

by �t describes the di�

urnal variation of the in�uent concentrations of ammonia� In Figure ���

the estimated in�uent concentrations of ammonia is compared to the mea�

sured concentrations of ammonia in the pretreatment column
 which are

not used in the modelling� The diurnal pro�le clearly has some de�ciencies

in describing the fast dynamics of the measurements from the pretreatment

column
 but the general trend of the measured concentrations is contained

in �t� The estimated in�uent concentrations are signi�cantly lower than the

measured values� The reason for this will be explained in the subsequent

section�

The approximation ������ does not implicitly apply to the estimate of

kload�PO��
�


 because the simultaneous phosphate uptake during anoxic con�

ditions cannot be identi�ed� Thus
 kload�PO��
�

is the rate of the combined

in�uent phosphate load process and biological phosphate uptake in biomass

process during anoxic conditions
 which is considered as a net in�uent

phosphate load process� In Figure ��� the equivalent in�uent phosphate

concentrations of the net in�uent load process is compared to the measured

� �
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Figure ���� Estimated �solid curve� and measured �dotted curve� in�uent

concentration of ammonia to aeration tank T��

phosphate concentrations of the outlet of the pretreatment column� The

cyclic phenomena in the measured phosphate concentrations of the outlet

is due to a small amount of nitrate being recycled from the sedimentation

vessel�

The pro�le of the estimated net in�uent phosphate load does contain the

general slow dynamics of the measured phosphate concentration in the

outlet of the pretreatment column without the cyclic e�ects from the alter�

nating operation
 but the net in�uent phosphate load rate is approximately

half the magnitude of the true in�uent phosphate load
 as indicated on

Figure ���� Thus
 the phosphate uptake during anoxic conditions is approx�

imately of the same magnitude as the net in�uent phosphate load rate
 i�e�

approximately ��� mg PO��

 �P�l�h is accumulated in the biomass during

anoxic conditions� With a maintained constant suspended solids concentra�

tion in the aeration tanks of ��� g SS�l
 the phosphate uptake during anoxic

conditions is in the range 	���	�� mg PO��

 �P�h�g SS� Kerrn�Jespersen 

Henze ������ have found from batch tests with activated sludge
 that the

��� Modelling in the sample time domain  data set No�� ���
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Figure ���� Estimated �solid curve� and measured �dotted curve� in�uent

concentration of phosphate to aeration tank T��

phosphate uptake rate during anoxic conditions is in the range 	�����	 mg

PO��

 �P�h�g SS at a temperature of ���C�

The diurnal pro�le of the in�uent ammonia load process resembles that of

the �ow rate to the Aalborg West WWTP in Figure ���
 but the diurnal

pro�le of the net in�uent phosphate load process is very di�erent� This

could be due to an unusual high load of readily bio�degradable substrate

at night�time in the anaerobic pretreatment column causing the phosphate

accumulating bacteria to strip an excessive amount of phosphate� When

estimating the pro�le
 �t
 insigni�cant parameters have been removed in

������� The estimates of the process are shown in Table ����

� �
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Parameter Ammonia Phosphate

Ci ���� �	��� ���� �	���

�� �	�	�� 	����

� �	�	�� �

�� �	�	�� �	�	��

� � �	�	��

Table ���� Parameter estimates from modelling the in�uent load process on

data set No���

����� Hydrolysis and growth of biomass

The hydrolysis and growth of biomass process is the least signi�cant process

estimated on this data set
 and it can only be identi�ed by a single param�

eter� However
 the variation of the process is assumed to be correlated to

the ammonia load process� The hydrolysis and growth of biomass process

is mainly identi�ed from the time series of ammonia and phosphate con�

centrations
 when there is no in�uent load to T� and oxygen is not present�

In Figure ��� the hydrolysis and growth of biomass process is graphically

recognized from the slightly increasing curves of ammonia and phosphate

concentrations at the bottom of the graph
 i�e� the time between the switch

o� of the di�user and the opening of the inlet valve�

In order to describe this process
 the rate was identi�ed as follows

rhydrolysis���t  khydrolysis�� � �t ������

where khydrolysis�� is the parameter being estimated and the ammonia load

pro�le �t is given by ������� The hydrolysis and growth of biomass process

is assumed to have the same diurnal pro�le as the load process of ammonia


simply because a separate pro�le for the process cannot be identi�ed� It is

found
 that on average ��	� mg NH	

 �N�l �	�	�� and 	��� mg PO
��


 �P�l

�	�	�� is produced from this process during the sampling period of data

��� Modelling in the sample time domain  data set No�� ���

set No��� On the assumption that the returned sludge is not hydrolyzed

this corresponds to an in�uent concentration of ��� mg organic N�l �	���

and ��� mg organic P�l �	���
 which can be hydrolyzed� Comparing this

to the typical measures of organic nitrogen and organic phosphorus in the

raw wastewater of Table ���
 only half of the organic nitrogen and ��� of

the organic phosphorus of the raw wastewater appears to be hydrolyzed�

However
 as mentioned in Section �����
 the estimated process rate is a

net hydrolysis rate including the simultaneous production of ammonia and

phosphate by hydrolysis and removal of ammonia and phosphate by growth

of biomass� Thus
 the in�uent concentrations of organic nitrogen and phos�

phorus which can be hydrolyzed are larger than the estimated values above�

����� The nitri
cation process

In these preliminary models two di�erent submodels for the nitri�cation

process are proposed� one based on the time series of ammonia concentra�

tions and the other based on the time series of nitrate concentrations� As

described in the introduction of this chapter
 the di�users are controlled

such that the oxygen concentration is practically constant in the aerobic

period� For this data set measurements of the oxygen concentrations are

available
 but an expression like ������ cannot be satisfactorily identi�ed

because of noise on the oxygen measurements and the fact that an almost

constant oxygen level makes the practical identi�cation of KO�

impossi�

ble� Thus
 in order to identify a Monod�kinetic expression for the oxygen

dependency of the nitri�cation process
 the data set should contain pe�

riods with di�erent oxygen setpoints� Instead
 the oxygen measurements

are used to distinguish aerobic periods from anoxic and anaerobic periods


when the measurements of the oxygen concentration exceeds 	�� mg O��l�

Furthermore
 measurements of the suspended solids concentration are not

available at the pilot plant
 but it is maintained constant through removal

of excess sludge and because the plant is not exposed to hydraulic loads of

rainwater�

� �
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For this data set the nitri�cation process is identi�ed as follows for the

measurements of ammonia concentrations

rnit�NH�
�

�t  
��� �knit�max�NH�

�

�

S
NH

�
�

�t��

S
NH

�
�

�t��
	K
NH

�
�

aerobic conditions

	 anoxic�anaerobic conditions

������

where bknit�max�NH�
�

 ��� mg NH	

 �N�l�h �	��� and
bKNH�

�

 	��� mg

NH	

 �N�l �	�	��� The mean of the posterior distribution for mt is used

as the optimal estimator of the true ammonia concentration in T�
 i�e�

SNH�
�

�t�� is replaced by the Kalman update bmt��jt�� in ������� The esti�

mate of KNH�
�

is low compared to the values given in the literature �Henze

et al� ����	� suggest KNH�
�

to be in the range 	���	�� mg NH	

 �N�l�� This

could be due to an o�set calibration error in the ammonia FIA�analyzer�

However
 the estimate is based on measurements of ammonia concentra�

tions of which almost all have values above 	�� mg NH	

 �N�l �only two

observations below the estimated half�saturation constant�
 due to an op�

eration strategy experiment� For this data set the di�user are switched o�


when the concentration of ammonia lies below ��	 mg NH	

 �N�l� Thus
 the

estimate is naturally uncertain
 but it is found to be signi�cantly di�erent

from zero �which would give a zero order kinetic process��

A totally di�erent and more empirical model is proposed for the same

process based on measurements of nitrate concentrations�

rnit�NO�
�

�t  
�

�knit�max�NO�
�

� ��t � t��t aerobic conditions

	 anoxic�anaerobic conditions

������

where t denotes the time for the start of the aerobic phase
 and �t is a

diurnal pro�le similar to ������
 but estimated for the time series of nitrate

concentrations� An obvious disadvantage of modelling the nitri�cation pro�

cess by ������ is the fact that long periods of aeration would eventually

��� Modelling in the sample time domain  data set No�� ���

result in removal of nitrate) For the phase lengths of the aerobic periods

in this data set
 the nitri�cation rate would decrease from ��� mg NO�
� �

N�l�h �	�	�� in the beginning of the aerobic phase to approximately ��	

mg NO�
� �N�l�h at the end of the aerobic phase� The model does not re�

�ect the true characteristics of the nitri�cation process
 but it serves the

purpose of showing the evolution from #dark grey# box models to the grey

box models
 which are shown in the subsequent section�

����� The denitri
cation process

It has previously been mentioned that periods of time in the operation cycle

occur when there is neither oxygen present nor in�uent load� For the time

series of ammonia and phosphate concentrations these periods were charac�

terized by the hydrolysis and growth of biomass process as shown in Figure

���
 while the denitri�cation process is the most signi�cant process in these

periods of the nitrate concentration time series� However
 the concentration

of readily bio�degradable substrate is much lower in these periods without

in�uent load compared to the anoxic periods with in�uent load
 and as a

result the rate of the denitri�cation process di�ers signi�cantly� A reduced

model of ������ is identi�ed for the given data set�

rdenit�t  
�������������������

�k�denit�max �

S
NO
�

�

�t��

S
NO
�

�

�t��
	K
NO
�

�

� �t

anoxic conditions and no in�uent load

�k�denit�max �

S
NO
�

�

�t��

S
NO
�

�

�t��
	K
NO
�

�

� �t

anoxic conditions and in�uent load

	 aerobic�anaerobic conditions

������

The maximum denitri�cation rate in anoxic periods with no in�uent load


k�denit�max
 and in anoxic periods with in�uent load
 k
�

denit�max
 are es�

timated to ��� mg NO�
� �N�l�h �	�	�� and ��	 mg NO
�

� �N�l�h �	����


respectively
 while the half�saturation constant
 KNO�
�


 is estimated to 	���

� �



��� Chapter �� Case  The Lundtofte pilot scale plant

mg NO�
� �N�l �	�	��� The mean of the posterior distribution for mt is

used as the optimal estimator of the true nitrate concentration in T�
 i�e�

SNO�
�

�t�� is replaced by the Kalman update bmt��jt�� in ������� A diur�

nal pro�le
 �t
 of the form ������ is used in the denitri�cation expression

in order to describe some of the dependency of the readily bio�degradable

substrate concentration� Estimates from the diurnal pro�le also suggest a

peak load of readily bio�degradable substrate at night�time�

The relative high denitri�cation rate in anoxic periods without in�uent load

could be a result of the experimental operational strategy of switching o�

the aeration when the ammonia concentration drops below ��	 mg NH	

 �

N�l� However
 further investigations are required to con�rm an overall

improved denitri�cation�

����� Biological phosphate uptake in biomass

The biological phosphate uptake is identi�ed using a model similar to ������

with the exception that the phosphate uptake during anoxic conditions can�

not be identi�ed
 and therefore it was included in the net in�uent phosphate

load process described previously� Furthermore
 measurements of the sus�

pended solids concentration are not available
 but the suspended solids

concentration is maintained approximately constant� Thus
 the following

model of type ������ can be identi�ed�

rP�uptake�t  
�������

�kP�uptake�max �

S
PO
��

�

�t��

S
PO
��

�

�t��
	K
PO
��

�

� �t
aerobic conditions

	 anoxic�anaerobic conditions

������

where bkP�uptake  �	�� mg PO��

 �P�l�h �	���� and bKPO��
�

 ���� mg

PO��

 �P�l �	�	��
 and the diurnal pro�le is identical to the pro�le es�

timated for the in�uent load of phosphate� The mean of the posterior

distribution of mt is used as the optimal estimator of the true phosphate

��� Modelling in the sample time domain  data set No�� ���

concentration in T�
 i�e� SPO��
�

�t�� is replaced by the Kalman updatebmt��jt�� in �������

The estimated uptake rate during aerobic conditions is signi�cantly larger

than the presumed phosphate uptake rate during anoxic conditions
 which

was loosely estimated in Section ������ However
 it is a biased estimate

due to the estimate of KPO��
�


 which is very high for a Monod�kinetic

expression� Furthermore
 it should be stressed that ������ does not take

the storage of intra�cellular substrate into account
 which may be rate�

limiting for the process� In fact
 comparing the estimate ofKPO��
�

with the

estimates of the half�saturation constants for the nitri�cation and denitri�

�cation processes
 the Monod�expression in ������ cannot be considered as

being a simple term for the di�usion of phosphate� Combining this with the

fact that the model for the rate of biological phosphate uptake in biomass

is improved using a diurnal variation
 it must be concluded that a physical

model of the process has to include additional rate�limiting terms �e�g� a

Monod�kinetic expression for the dependency of simple organic compounds

used by the phosphorus accumulating bacteria�� However
 these terms can�

not be identi�ed in a grey box model� Hence
 ������ gives a satisfactory

description of data
 but the physical interpretability of the parameters give

less satisfaction�

����� Stripping of phosphate

In the time series of phosphate concentrations there are six occurrences of

phosphate stripping� This process only occur when the nitrate concentra�

tion is below 	�� mg NO�
� �N�l in the anoxic phase of the operation cycle


i�e� anaerobic conditions are present in the aeration tank T�� The stripping

of phosphate is identi�ed on top of the in�uent load process of phosphate


which is seen as a crack on the inclining curves of phosphate concentrations

in Figure ���� The following expression is identi�ed for the process�

rP�strip�t  
�

kP�strip � ��t anaerobic conditions

	 aerobic�anoxic conditions

������

� �
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where ��t indicates that the stripping process shows a diurnal variation

which is di�erent from the diurnal pro�le of the in�uent phosphate load�

Actually
 the two pro�les are similar in form
 but the pro�le in ������ has

a phase displacement of � hours relative to the pro�le of the phosphate

in�uent load
 i�e� the maximum phosphate stripping rate occurs � hours

after the maximum in�uent phosphate concentration has been identi�ed�

It has been estimated that during the stripping of phosphate an average of

��� mg PO��

 �P�l�h �	���� is released�

��� Modelling in the sample time domain �

data set No��

This second data set from the pilot scale plant was used for developing grey

box models in both the sample time domain and operation cycle time do�

main� In this section the models of the sample time domain are concerned�

The models presented in this section are more comparable to the grey box

models described in Section ���
 than the models of the previous section�

However
 some allowances for the lack of information on the suspended

solids concentration and lack of di�erent oxygen setpoint in the operation

of the plant
 are made� Furthermore
 models based on observations of

phosphate concentrations are not estimated
 because the measurements are

unreliable in large periods of the time series� The time series of ammonia

and nitrate concentrations correspond to those shown in Figure ���
 but

showing far more variation in the slopes of the curves� For this data set

the aeration was solely controlled by prior scheduled phase�lengths of the

aerobic phases
 regardless of the present ammonia concentrations in the

aeration tanks as opposed to the previous data set�

The observation equations for the time series of ammonia and nitrate are

identical and given by ������

yt  mt � �t ����	�

��� Modelling in the sample time domain  data set No�� ���

where �t was modelled separately for the time series in Section ��� and mt

is the true concentration of ammonia or nitrate� The process equation for

the two time series is both described by

��� �B��!mt � �t�  �Tut � et ������

where et is NID
 and b�  	��	 �	�	�� for the model of the ammonia

concentrations and b�  	��� �	�	�� for the model of the nitrate con�

centrations� These estimates of � are larger than the estimates obtained

from the previous data set indicating that the variations of the concentra�

tion gradient
 !mt
 are more stochastic
 i�e� there are larger variations

in the slopes of the ammonia and nitrate measurements� The explanatory

variables on the right�hand side of ������ are used to describe transient

phenomena
 as described in Section �����
 which will not be discussed any

further� In order to manage variations in the model performance of ������


the variance of et is modelled as an ARCH�structure �see Tong ����	���

	�e�t  	�e � �e�t�� ������

where � is a parameter� In practice
 when estimating an expression like

������
 et�� is substituted by the prediction error
 vt��
 and the initial value

of et�� is chosen arbitrarily� However
 during the switching of �owpatterns

an expression like ������ is found inappropriate
 and as a result a separate

parameter for the variance of et during the switching of �owpatterns is

estimated�

����� In	uent load

The ammonia load to the pilot plant is modelled according to ������ with

kload�NH�
�

being a time�varying parameter of the operation cycle time do�

main �see the subsequent section�
 i�e�

� �
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rload�NH�
�

�t  
�

kload�NH�
�

�f �Q inlet valve open

	 inlet valve closed

������

where Q is the constant �ow into the aeration tanks ���	 l�h�� Thus


the load rate is constant during a given operation cycle
 and estimating

the load rate based on observations from one operation cycle
 f 
 by use

of e�g� a least squares algorithms
 an estimate of kload�NH�
�

�f is obtained�

This estimate is used for updating the model of the in�uent load rate of

ammonia in the operation cycle time domain� The average in�uent load

rate
 kload�NH�
�

�Q
 is estimated to ��	 mg NH	

 �N�l�h
 which is equivalent

to an average in�uent ammonia concentration of ��� mg NH	

 �l�

����� Nutrient transport of the aeration tanks

The nutrient transport process a�ects both the ammonia and nitrate con�

centration
 and it is important to incorporate this process into the grey

box models in order to yield better estimates of other processes and mak�

ing the mass balance of nutrients agree� Unfortunately
 an identi�cation

of this process for the time series of ammonia and the parameter of ������

is not possible
 because the processes of in�uent ammonia load
 nitri�ca�

tion
 and hydrolysis and growth of biomass are more signi�cant
 and at

least one of these three processes is always active� The process could be

modelled without any estimation of the related parameter ktransport�NH�
�

by using the actual volume holding
 V
 and describing the process as a

purely deterministic process� This is
 however
 inconsistent with the con�

cept of statistical identi�cation of the process for two reasons� Firstly
 the

hydraulic e�ects when switching �ow patterns have not been su�ciently de�

scribed and secondly
 the assumption of ideal mixing of the aeration tanks

may prove wrong� Due to the insigni�cance of the process
 omission of

the process rate in the �t�expression ������ will have little in�uence on the

other processes a�ecting the ammonia concentration�

��� Modelling in the sample time domain  data set No�� ���

For the time series of nitrate concentrations the nutrient transport process

is identi�ed� From the curves of the nitrate measurements the process is

mainly identi�ed during aerobic periods
 when the nitri�cation becomes

slow due to low concentrations of ammonia
 i�e� the nitrate concentration

eventually decreases because more nitrate is transported from the tank

than produced by the nitri�cation process� Furthermore
 the nitrate con�

centration is on average twice as high as the ammonia concentration in T�


thereby making the transport process of nitrate twice as signi�cant as the

transport process of ammonia�

The transport of nitrate into and from T� is modelled as follows�

rtransport�NO�
�

�t  
���������

ktransport�NO�
�

�SI
NO�
�

�t��
� SNO�

�

�t��� �Q

outlet valve open

�ktransport�NO�
�

� SNO�
�

�t�� �Q
inlet valve open

������

where SI
NO�
�

�t��
is replaced by the nitrate measurement in T� half an op�

eration cycle ago
 and SNO�
�

�t�� is replaced by the optimal estimator of

the true nitrate concentration in T�
 bmt��jt��
 which is the mean of the

posterior distribution for mt� It is found
 that bktransport�NO�
�

 	�		�� l��

�	�� � �	�
�
 which under the assumption of ideal mixing in the aeration

tanks and little hydraulic e�ect from switching �ow patterns corresponds

to a volume holding of ��� l �	
��
�� and a hydraulic retention time of ��	 h�

These estimates are close to the actual physical parameter values �Th  ���

h and V  �		 l�
 but the fact that bktransport�NO�
�

is larger than the ac�

tual physical parameter value slightly indicates that the aeration tank T�

may not be ideally mixed
 i�e� there are di�erent nitrate concentrations in

di�erent parts of the tank� However
 this hypothesis is based on an esti�

mate from one of the less signi�cant processes
 and further investigation is

required if it should be concluded whether the aeration tanks at the pilot

scale plant are ideally mixed� It is
 however
 of minor importance for the

total process�

� �
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����� Hydrolysis and growth of biomass

The hydrolysis and growth of biomass process is graphically identi�ed at

the bottom curves of the ammonia measurements
 but it is assumed to be

active at a constant rate throughout one operation cycle� The rate of the

process is best described as being proportional to the inlet load rate ������


rload�NH�
�

�t
 with the inlet valve open
 i�e�

rhydrolysis�NH�
�

�t  khydrolysis�NH�
�

� kload�NH�
�

�f �Q ������

This is based on the fact that ammonia and organic loads are correlated�

It is found
 that in average 	��� mg NH	

 �N�l�h �	�	�� on weekdays and

	��� mg NH	

 �N�l�h �	�	�� on weekends is produced from this process

during the sampling period of data set No��� The variations of the hydrol�

ysis and growth of biomass process rate are enforced by the model for the

variations of kload�NH�
�

�f 
 which are graphically illustrated in Figure ����

The hydrolysis and growth of biomass process rate is lower for this data

set compared to the results given in Section ������ This is due to the fact

that data set No�� covers an over�average loaded day with high loads of

hydrolysable compounds
 while data set No�� covers a longer period with a

mix of high� and low�loaded days� Thus
 the rate of hydrolysis and growth

of biomass estimated for data set No�� is more representative of the overall

process rate�

����� The nitri
cation process

Following the discussion in Section ����� a practical identi�cation of KO�

in ������ and ������ is not feasible
 but the oxygen measurements are used

to distinguish aerobic periods from anoxic and anaerobic periods when the

measurements of the oxygen concentration exceeds 	�� mg O��l� Measure�

ments of the suspended solids concentration are not available
 but it is

maintained constant through removal of excess sludge and because the pi�

lot plant is not exposed to hydraulic loads of rainwater� Thus
 reduced

��� Modelling in the sample time domain  data set No�� ���

Parameter Unit Ammonia Nitrate

knit�max�� mg N�l�h �	�� ���bKNH�
�

mg NH	

 �N�l 	��� �	�	�� 	��� �	�	��

Table ���� Parameter estimates from modelling the nitri�cation process on

data set No���

models of the grey box models for the nitri�cation process in ������ and

������ are identi�ed for the ammonia concentrations

rnit�NH�
�

�t  
��� �knit�max�NH�

�

�f �

S
NH

�
�

�t��

S
NH

�
�

�t��
	K
NH

�
�

aerobic conditions

	 anoxic�anaerobic conditions

������

and for the nitrate concentrations

rnit�NO�
�

�t  
��� knit�max�NO�

�

�f �

S
NH

�
�

�t��

S
NH

�
�

�t��
	K
NH

�
�

aerobic conditions

	 anoxic�anaerobic conditions

������

where models for the variation of knit�max�NH�
�

�f and knit�max�NO�
�

�f in

the operation cycle time domain are given in the subsequent section� The

mean of the posterior distribution for mt is used as the optimal estimator

of the true ammonia concentration in T�
 i�e� SNH�
�

�t�� is replaced by the

Kalman update bmt��jt�� in ������ and ������� The results of estimating

the nitri�cation process on data set No�� in the sample time domain are

given in Table ����

The estimates of the average maximumnitri�cation rate given in Table ���

are larger than the estimate found in Section �����
 due to higher estimates

of the half�saturation constant KNH�
�

� However
 the estimates found in

� �
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Table ��� are more reliable
 because data set No�� covers a longer period

of time with a great number of ammonia measurements above and below

the estimated half�saturation constants� A likelihood ratio test has proven

that bKNH�
�

 	��	 mg NH	

 �N�l is a su�cient estimate for both time series


and as a result the standard deviations of the estimates in Table ��� are

likely too small� Given the estimates of KNH�
�

based on all observations

from the two time series
 estimates of knit�max�NH�
�

�f and knit�max�NO�
�

�f

are obtained using the observations from one operation cycle
 f 
 and the

estimators ������ and ������� These estimates are used for updating the

models of the maximum nitri�cation rate in the operation cycle time do�

main�

The estimates of the half�saturation constant and the estimates related to

the model of the maximumnitri�cation rate
 knit�max�NH�
�

�f which is given

in Section �����
 are naturally more internally correlated compared to the

other estimates
 but the correlation is found to be statistically insigni�cant�

Thus
 it can be concluded that a practical identi�cation of Monod�kinetic

expressions is feasible
 if an extensive data set is available�

����� The denitri
cation process

Examination of data has shown that the dependency of readily biodegrad�

able substrate used for the denitri�cation process can be described by a

Monod�kinetic expression of the in�uent ammonia load rate� Assuming

that the non�monitored suspended solids concentration is maintained con�

stant the following expression can be identi�ed �see also �������

��� Modelling in the sample time domain  data set No�� ���
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������

where the two maximum denitri�cation parameters are assumed to have

the following relationship
k�denit�max�f  k�denit�max�f � � ������

where � � 	 is a constant parameter� Assuming the two maximum deni�

tri�cation parameters to be proportional did not give a better description

of data� Thus
 k�denit�max�f and k�denit�max�f show identical variations in

the operation cycle time domain but shifted by the value of �� The reason

for modelling k�denit�max�f as a function of k
�

denit�max�f is
 that k
�

denit�max�f

cannot be modelled as a self�contained process in the operation cycle time

domain� The mean of the posterior distribution for mt is used as the op�

timal estimator of the true nitrate concentration in T�
 i�e� SNO�
�

�t�� is

replaced by the Kalman update bmt��jt�� in ������� The estimated load

parameter of the previous operation cycle
 bkload�NH�
�

�f��
 is used in the

second Monod�kinetic term in �������

The average maximumdenitri�cation rate in periods with no in�uent load


k
�

denit�max�f 
 and in periods with in�uent load
 k
�

denit�max�f 
 are estimated to

���� mg NO�
� �N�l�h and ���� mg NO
�

� �N�l�h
 respectively
 while the half�

saturation constant bKNO�
�

 	��	 mg NO�
� �N�l �	�	��� Estimating the

correlated Monod�expression for the dependency of readily bio�degradable

substrate in ������
 it is found that bKload  	��� mg NH
	


 �N�l�h �	�	��


i�e� with a load of 	��� mg NH	

 �N�l�h to the aeration tanks the deni�

tri�cation rate is only half the maximum attainable
 k�denit�max�f 
 under

� �
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the assumption that SNO�
�

�t � KNO�
�

� Assuming that all the readily bio�

degradable substrate for denitri�cation comes from the raw wastewater and

the COD to ammonia ratio in the wastewater entering the aeration tank

is �� mg COD�mg NH	

 �N �using Table ��� and Table ��� for moderately

loaded wastewater�
 this estimate corresponds to bKS  ���	 mg COD�l

������� Henze et al� ����	� suggest that KS is in the range �	��	 mg

COD�l when using raw wastewater as the carbon source�

The estimates above are more reliable than those obtained in the previ�

ous section
 because data set No�� covers a longer period of time with a

larger variation in loads
 and because the model estimated on this data set

includes a term which is capable of describing some of the dependency of

readily bio�degradable substrate� Given the estimates of KNO�
�

and Kload

based on all observations from the time series
 estimates of k�denit�max�f are

obtained using the observations from one operation cycle
 f 
 and ������

as estimator� These estimates are used for updating the models of the

maximum denitri�cation rate in the operation cycle time domain�

��� Modelling in the operation cycle time do�

main � data set No��

The alternating operation mode of the Lundtofte pilot scale plant intro�

duces break�points into the time series
 such that some of the parameters

given in the previous section may be modelled in the operation cycle time

domain� The interaction of the two time domains and exchange of infor�

mation is illustrated in Figure ����

In the last section estimators based on data from one operation cycle
 f 


of kload�NH�
�

�f 
 knit�max�NH�
�

�f 
 knit�max�NO�
�

�f 
 and k�denit�max�f were for�

mulated� The data set contains ��� operation cycles of approximately �	

samples covering more than �� days� Thus
 ��� observations in the oper�

ation cycle time domain are available for modelling the in�uent load rate

��� Modelling in the operation cycle time domain ���

of ammonia
 the maximum nitri�cation rate
 and the maximum denitri��

cation rate� It might be argued that these parameters vary within a total

operation cycle
 but these variations are relatively small and treated as

stochastic �uctuations
 which is modelled using the AR�term in �������

Each of the estimates of kload�NH�
�

�f 
 knit�max�NH�
�

�f 
 knit�max�NO�
�

�f 
 and

k�denit�max�f is encumbered with some uncertainty as described in Section

����� from the observation equations of the four processes �indicated by

��process��f � and the process equation of the four processes �indicated by

e�process��f �� Thus
 each of the four models in the operation cycle time do�

main are put into state space forms
 which is handled by the Kalman �lter�

However
 the variances of the ��process��f �terms are found to be insigni��

cant relative to the variances of the e�process��f �terms
 i�e� 	�	��process�  	

for all the four mentioned processes� This is mainly due to a poor per�

formance of the models in the operation cycle time domain given by the

process equations�

����� In	uent load rate of ammonia

The modelling of kload�NH�
�

�f corresponds to describing the variations of the

in�uent concentration of ammonia to T� when applying the approximation

������� Hence
 a multiplicative seasonal AR�model of the type ������ is

found adequate

��� �loadB��� � �load�SB
S ��kload�NH�

�

�f � �load�NH�
�

�f �  eload�NH�
�

�f

����	�

where eload�NH�
�

�f is NID with zero mean and variance 	
�

e�load�NH�
�


 and

�load�NH�
�

�f  
�

�weekday�NH�
�

if operation cycle f is on a weekday

�weekend�NH�
�

if operation cycle f is on a weekend
������

� �
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and S denotes the number of operation cycles in a day� However
 S is not

a �xed parameter
 because the number of operation cycles in a day may

vary� Thus
 when estimating this process it is crucial to keep track of the

number of operation cycles in the last �� hours such that BSkload�NH�
�

�f

always denotes the kload�NH�
�

�value �� hours back in time�

The estimated parameters of ������ correspond to average in�uent ammo�

nia concentrations �i�e� the ammonia concentration in the outlet of the

anaerobic pretreatment column� of �	�� mg NH	

 �N�l �	���� on weekdays

and ��� NH	

 �N�l �	���� on weekends� Assuming a vanishing ammonia

concentration in the returned sludge
 estimates of the ammonia concentra�

tion in the raw wastewater are found by multiplying the estimated in�uent

ammonia concentrations by two� Surprisingly
 the AR�parameter for the

diurnal variation
 �load�S 
 in ����	� turned out to be insigni�cant
 whileb�load  	��� �	�	���

The estimated in�uent concentrations of ammonia from each operation

cycle and the one�step predictions of ����	� with �load�S  	 are shown

in Figure ���� The measured ammonia concentration from the outlet of

the pretreatment column covering the same period of time are shown in

Figure ���� These measurements have not been used for modelling the

ammonia concentration in T�� The dynamics of the estimated �Figure

���� and the measured ammonia concentration �Figure ���� in the outlet of

the pretreatment column are very similar� This estimation method nearly

reveals all existing dynamic in the measured values
 however the scaling of

the curves is slightly di�erent� This is due to a combination of two reasons�

Firstly
 the approximation ������ yields a lower biased estimate of Ci�NH�
�




because the exponential curve in Figure ��� is linearized and the concentra�

tion in T� at time of opening the inlet valve
 C
 is neglected� Linearizing

the exponential curve result in an error of the magnitude 	��" of the es�

timate with the given hydraulic retention time and lengths of the phases

with in�uent load� Neglecting C is in the range 	�	�	�� mg NH
	


 �N�l for

the majority of operation cycles
 except for a few peak loads
 where the

ammonia concentration is in the range 	������ mg NH	

 �N�l when the inlet

valve to T� is opened�

��� Modelling in the operation cycle time domain ���
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Figure ���� Estimated �solid curve� and one
step predictions �dotted curve�

of in�uent ammonia concentrations to T�� The lower solid curve indicates

weekdays and weekends�
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Figure ���� Measured ammonia concentration from outlet of pretreatment

column� One operation cycle approximately covers �� samples from the

outlet of the pretreatment column �few observations are missing��
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Secondly
 in the models of the sampling time domain it is assumed that

approximately ��" of the increase in ammonia concentration during the

anoxic phase with in�uent load is produced by the hydrolysis and growth

of biomass� However
 the assumption of a constant positive net hydrolysis

rate could very well be wrong� There are strong reasons to believe that

the net hydrolysis process rate is actually zero or below zero in the anoxic

periods with in�uent load
 i�e� the ammonia uptake of the biomass is equal

to or above the production of ammonia by hydrolysis� If the additional

amount of ammonia required due to the higher denitri�cation in anoxic pe�

riods with in�uent load is taken into account
 the estimates of the ammonia

concentration in the outlet of the pretreatment column would be approx�

imately �" higher� Furthermore
 the storage of ammonia in the biomass

may be signi�cantly larger in periods with in�uent load�

The curves in Figure ��� reveals an important phenomenon for the mod�

elling of the in�uent load rate � rainy weather� Rainfall events give a high

�ow rate to the Lundtofte municipality plant
 while the �ow rate to the pi�

lot scale plant remains constant� On the other hand
 rainfall events result in

a low ammonia concentration of the raw wastewater
 which is loaded to the

pilot plant� Unfortunately
 information on the �ow rate to the Lundtofte

municipality plant for the analyzed period has not been obtainable for the

given period in a reasonable form
 but the rainy weather periods are clearly

recognized on Figure ��� where the estimated inlet concentration drops be�

low � mg NH	

 �N�l� However
 these rainfall events cannot be predicted due

to lack of information on the �ow rate to the municipality plant� The rainy

weather periods of the time series also interrupt the diurnal pattern of in�

�uent ammonia concentrations
 resulting in the parameter for the diurnal

variation
 �load�S 
 being insigni�cant� Thus
 if �ow rates to the Lundtofte

municipality plant were to be incorporated into ����	�
 the model of the

in�uent ammonia load rate would be improved and �load�S would most

likely become signi�cant� This would also improve the variance of the error

terms in the process equation
 	�
e�load�NH�
�


 signi�cantly� For the present

model
 the standard deviation of eload�NH�
�

�f is found to correspond to ���

mg NH	

 �N�l for the estimated in�uent concentration of ammonia�

��� Modelling in the operation cycle time domain ���

Parameter Unit Ammonia Nitrate

�nit � 	��� �	�	�� 	��� �	�	��b�nit�max�� mg N�l�h �	�� �	���� ��� �	�	��bKNH�
�

mg NH	

 �N�l 	��� �	�	�� 	��� �	�	��b	e�nit�� mg N�l�h 	��� 	���

Table ���� Parameter estimates from modelling the maximum nitri�cation

process rate on data set No���

����� Maximum nitri
cation rate

In the sample time domain
 estimators of knit�max�NH�
�

�f and knit�max�NO�
�

�f

based on data from one operation cycle were derived by using ������ and

������ with the half�saturation constant KNH�
�

estimated on all available

observation in the data set� Due to lack of information on explanatory

variables which could describe some of the variations of knit�max�NH�
�

�f and

knit�max�NO�
�

�f �e�g� temperature
 C�N�ratio
 composition of wastewater�


a �rst order autoregressive model is proposed�

��� �nitB��knit�max���f � �nit�max���  enit�max���f ������

where �nit�max�� is the mean maximum nitri�cation rate estimated sep�

arately for the time series of ammonia and nitrate concentrations
 and

enit�max���f is NID with zero mean and variance 	�e�nit��� In case infor�

mation on explanatory variables in�uencing knit�max���f becomes available


�nit�max�� may be modelled as a function of those ������� The estimates of

this process are given in Table ���� A likelihood ratio test has shown
 that

the mean of the estimates from the two time series
 �nit�max  �	��� mg

N�l�h and KNH�
�

 	��	 mg NH	

 �N�l
 are reasonable estimates for both�

The estimated maximum nitri�cation rates
 bknit�max���f 
 for each operation

cycle on observations of ammonia and nitrate concentrations are shown

in Figure ��� and Figure ���	 as solid curves
 respectively� Estimates of

� �
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Figure ���� Estimated �solid curve� and one
step predictions �dotted curve�

of the maximum nitri�cation rate based on observations of ammonia con


centrations�

knit�max���f based on less than four observations in the sample time domain

have been rejected
 since the estimators ������ and ������ would not yield

reliable estimates on three or less observations� These estimates are treated

as missing values in the operation cycle time series indicated by the gaps

in the solid curves� The estimates related to the two series correspond

reasonably with each other except for a possible slight drift in the scaling

of one of the two FIA�analyzers�

As indicated on Figure ���
 the one�step predictions of ������ are used as

parameter values in the sample time domain for the subsequent operation

cycle� The one�step predictions are given as dotted curves on Figure ���

and Figure ���	� Thus the dotted should to some extend re�ect the dy�

namic of the solid curves� However
 the simple structure of ������ and

the estimated values of �nit compared to the dynamics of the estimated

maximum nitri�cation rates on the �gures indicate that ������ is not ap�

propriate for long�term predictions of knit�max���f 
 because the model in fact

does not contain any physical knowledge� This is easily incorporated into

��� Modelling in the operation cycle time domain ���

0 25 50 75 100 125 150

7.0

8.0

9.0

10.0

11.0

12.0

13.0

Operation cycles

M
ax

im
um

 n
itr

at
e 

fo
rm

at
ion

 ra
te

 (m
g 

N/
l/h

)

Figure ���	� Estimated �solid curve� and one
step predictions �dotted curve�

of the maximum nitri�cation rate based on observations of nitrate concen


trations�

the model
 if information on explanatory variables in�uencing knit�max���f

is available as described previously� In this case
 the estimates of �nit and

the variances of the prediction error
 	�e�nit�� will become smaller�

Assuming that the suspended solids concentration and the oxygen con�

centration in the aerobic periods are maintained constant
 the activity of

autotrophic biomass is assessed applying the approximations ������ and

������� Inspecting the �gures
 it is seen
 that the activity of the autotro�

phic biomass may change by �	��	" within a few days� This e�ect cannot

be accounted for solely by the removal of excess sludge and the change in

the fraction of nitri�ers� Also
 it appears that some of the rainfall events

identi�ed from Figure ��� causes the maximum nitri�cation rate to drop

subsequently
 and high�low loads of ammonia causes the maximum nitri�

�cation rate to increase�decrease
 respectively� The rainy weather periods

might lower the overall temperature in the activated sludge causing the

� �
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Parameter Unit Nitrate

�denit � 	��� �	�	��b�denit�max mg NO�
� �N�l�h ��� �	����bKNO�

�

mg NO�
� �N�l 	��	 �	�	��bKload mg NH	


 �N�l�h 	��� �	�	��b	e�denit mg NO�
� �N�l�h 	���

Table ���� Parameter estimates from modelling the maximum denitri�ca


tion process rate on data set No���

activity of the bacteria to decrease
 while the in�uence of the in�uent am�

monia load on the maximum nitri�cation rate is investigated in Chapter

��
����� Maximum denitri
cation rate

In the sample time domain an estimator of kdenit�max�f based on data from

one operation cycle was obtained by using ������ with the half�saturation

constants KNO�
�

and Kload estimated on the entire time series of nitrate

concentrations� A �rst order autoregressive model for describing the vari�

ations of kdenit�max�f is proposed�

��� �denitB��kdenit�max�f � �denit�max�  edenit�max�f ������

where �denit�max is the mean maximumdenitri�cation rate and edenit�max�f

is NID with zero mean and variance 	�e�denit� Due to lack of informa�

tion on external variables capable of explaining some of the variations in

kdenit�max�f 
 the mean maximum denitri�cation rate
 �denit�max
 is mod�

elled as a constant parameter� The estimates of this process are given in

Table ����

��� Modelling in the operation cycle time domain ���
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Figure ����� Estimated �solid curve� and one
step predictions �dotted curve�

of the maximum denitri�cation rate�

The estimated maximum denitri�cation rates
 bkdenit�max�f 
 for each opera�

tion cycle are shown in Figure ���� with the one�step predictions of �������

Estimates of kdenit�max�f based on less than four observations have been

rejected
 since the estimator ������ would not yield reliable estimates on

fewer than four observations� These estimates are treated as missing values

in the operation cycle time domain
 which is indicated by the gaps of the

solid curve in Figure �����

Incorporating explanatory variables in ������ will most likely improve the

model and thereby reduce the variance of the prediction error
 	�e�denit�

The trends of the curve �the slow dynamic� could be described by some

explanatory variables�

Assuming that the suspended solids concentration is maintained constant


the activity of the heterotrophic biomass is assessed applying the approxi�

mation ������� Similar to the variations of the maximum nitri�cation rate


the maximum denitri�cation rate appears to be in�uenced by the rainfall

events and the load of ammonia� However
 due to the assumption of using

� �
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kload�NH�
�

�f � Q as a correlated measure of the readily bio�degradable sub�

strate concentration in the aeration tank
 some of the �uctuations in Figure

���� are very likely caused by a change in the raw wastewater composition�

Comparing the trends of the maximum nitri�cation rate in Figure ��� and

���	 with the trend of the maximum denitri�cation rate in Figure ����
 it

appears that knit�max���f and kdenit�max�f to some extend have similar vari�

ations� These similar variations may very well be due to external in�uence

of e�g� the temperature or C�N�ratio�

��	 Conclusion

In this chapter the grey box models described in Chapter � have been

applied to two di�erent data sets from the Lundtofte pilot scale plant� The

�rst data set covers a single day and was primarily used in the developing

stage of the grey box models� The time series of ammonia
 nitrate
 and

phosphate concentrations in this data set are only modelled in the sample

time domain� The second data set covers more than a �� days period


and grey box models in both the sample time domain and operation cycle

time domain are estimated� However
 due to unreliable measurements
 the

phosphate concentrations has not been modelled for the second data set�

The measurement cycle at the pilot plant introduces a correlated noise

structure
 which has to be modelled in order to make the error terms of

the grey box models normal and independent distributed such that the

model may be estimated by use of the prediction error decomposition and

the Kalman �lter
 as described in Chapter �� Some of the variances of the

error terms in the grey box models are time�varying and modelled using

autoregressive models with conditional heteroscedasticity� Furthermore
 it

is found that the convergence of the maximumlikelihood estimation routine

is sensitive to correlation of the error terms� Thus
 inadequacy of describ�

ing this correlation may result in di�culties of obtaining the maximum

likelihood estimates�

��� Conclusion ���

Estimates Estimates

Parameter Unit data set No�� data set No�� Literature

Ci�NH�
�

mg N�l ���� ��� �

knit�max�NH�
�

mg N�l�h ��� �	�� �

knit�max�NO�
�

mg N�l�h ��� ��� �bKNH�
�

mg N�l 	��� 	��� 	���	��

mg N�l � 	��� 	���	��

kdenit�max mg N�l�h ��	 ��� �bKNO�
�

mg N�l 	��� 	��	 	���	��

kP�uptake�max mg P�l�h �	�� � �bKPO��
�

mg P�l ���� � 	���	��

Table ���� Selected parameter estimates from grey box modelling of data

from the Lundtofte pilot scale plant� The suggested values from the litera


ture are found in Henze et al� �����

A practical identi�cation of Monod�kinetic expressions is feasible
 if an

extensive data set is available� Selected estimates of the grey box models

for the two data sets are summarized in Table ��� with suggested values

from the literature of the kinetic parameters� The estimates obtained from

data set No�� are more representative
 because this data set covers a longer

period of time with highly varying loads of materials� The estimated half�

saturation constants of data set No�� are all within the range given by Henze

et al� ����	�
 while the estimated half�saturation constants of data set No��

di�er signi�cantly
 mainly due to model de�ciencies and the characteristics

of the available data used for modelling� However
 it should be stressed

that o�set errors in the calibration of the FIA�analyzers will displace the

half�saturation constants�

Biased estimates of the in�uent concentrations of ammonia and phosphate

to the aeration tanks are obtained from estimating the in�uent load pro�

cesses of ammonia and phosphate� However
 the estimates are biased

yielding lower estimates of the measured values from the outlet of the

� �
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pretreatment column� The estimated rate expression for the net in�uent

phosphate load consists of the rates of two distinct simultaneous processes


which cannot be separately identi�ed� These are the in�uent phosphate

load and the phosphate uptake during anoxic conditions� An estimate of

the phosphate uptake rate during anoxic conditions may be obtained by

combining the estimated net in�uent phosphate load with the measured

phosphate concentrations of the outlet of the pretreatment column� The

estimates of the ammonia load process is used as a correlated measure of

the readily bio�degradable substrate load for modelling the denitri�cation

process�

The activity of the autotrophic and heterotrophic biomass is assessed from

estimates of the nitri�cation and denitri�cation process in the operation

cycle time domain� However
 the models used to describe the variations

of this activity su�er from lack of information on the temperature
 C�N�

ratio
 wastewater composition
 and other explanatory variables having a

major in�uence on the biomass activity� The grey box models may be

improved if better data are available
 and some of the assumptions implied

in this chapter may be tested as well� Due to the constant throughput

of the pilot plant
 the in�uence of di�erent hydraulic loads has not been

investigated� This e�ect will be examined in the following chapter� Finally


it should be stressed that the interpretation of the estimates of the grey

box models should be done cautiously
 always keeping the standard error

of the estimates in mind�

Chapter �

Case � The Aalborg West

wastewater treatment

plant

This chapter deals with the estimation of grey box models on data from

the Aalborg West WWTP
 which is a well�monitored plant� The data from

the plant was made available in the last stage of this research project
 and

the models of this chapter represent a further re�nement of the models

estimated on data set No�� in Chapter �� Compared to the models of the

pilot scale plant the models of this chapter have two interesting aspects in

addition� Firstly
 the �ow rate to the plant is time�varying
 and secondly


the Aalborg West WWTP is a full�scale plant which in particular has an

impact on the hydraulic processes
 due to the large volume holding of the

aeration tanks� In addition
 the measurement system at the Aalborg West

WWTP does not introduce the same strong correlation in the measure�

ment noise sequence
 which makes it easier to model� The �rst section of

this chapter gives an introduction of the plant and the measurements avail�

able
 while the second and third section describes the estimated grey box

���

� �
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models in the sample time domain and the operation cycle time domain


respectively� Some of the results of this chapter are also documented in

Carstensen et al� ������� It should be emphasized that the models pre�

sented in this chapter are derived by statistical methods from the class of

grey box models in Chapter � giving the best �t of data�

	�� Introduction

The Aalborg West WWTP serves the Danish city of Aalborg with approx�

imately ��	
			 inhabitants� Figure ��� shows an aerial photograph of the

plant
 which was inaugurated in ����� It is designed for ���
			 PE �Person

Equivalent� with the purpose of treating the wastewater from the western

and central part of the city which formerly was discharged untreated to the

recipient
 a sound with brackish water� In the catchment area of the plant

a brewery
 abattoirs
 dairies
 and �sh processing industries produce some

high strength wastewater comprising at least two thirds of the organic load

to the plant� The design loads of the plant are given in Table ���
 and Ein�

feldt ������ describes the implementation of biological nutrient removal on

the plant� The e�uent standards for the plant are �� mg BOD�l
 � mg to�

tal N�l �six months of summer�
 � mg total N�l �six months of winter�
 and

��� mg total P�l� The plant has an excellent performance
 and compliance

with the e�uent standard have been obtained from start of operation�

The wastewater handling facility of the plant consists of an inlet pumping

station
 � primary clari�ers
 an intermediate pumping station
 � anaerobic

pretreatment tanks �each subdivided into � separate anaerobic tanks in

series�
 � oxidation ditches
 and �� secondary clari�ers
 which is schemat�

ically shown in Figure ���� The WWTP is operated according to the

BIO�DENIPHO process� However
 a major part of the phosphate in the

wastewater is chemically precipitated by adding ferrosulphate�

The six oxidation ditches are operated in three parallel lines of two al�

ternating aeration tanks� Two of the oxidation ditches �denoted LT� and

��� Introduction ���

Figure ���� Aerial view of the Aalborg West WWTP� The aeration tanks

are located in the far end of the plant�

LT�� have been equipped with sensors for monitoring of ammonia and ni�

trate concentrations �both tanks�
 phosphate concentrations �only LT��


oxygen concentrations �two sensors in each tank�
 and suspended solids

concentrations �only LT��� The sampling points for some of the on�line

measurements are sketched in Figure ���
 where the aeration tanks are

numbered from LT� to LT� starting from the bottom of the �gure� The

�ow rate to the biological part of the plant is also monitored� Furthermore


settings of the inlet and outlet weirs of the aeration tanks and the oxygen

supply rate �OSR� are registered� The oxygen supply rate is found from

the number of aeration rotors
 that has been switched on in the given aer�

ation tank for the last �ve minutes� Table ��� summarizes the monitored

� �
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Flow Average Maximum

dry weather ��
�		 m��day �	
			 m��day

�
�		 m��h

rainy weather
 to plant ��
			 m��h

to biology �
�		 m��h

Pollution

BOD ��
�		 kg�day ��
�		 kg�day

SS ��
�		 kg�day ��
			 kg�day

Total�N �
��	 kg�day �
�		 kg�day

Total�P ��	 kg�day ��	 kg�day

Table ���� Design loads for the Aalborg West WWTP� Data from Einfeldt

�����

2

3

1

4

1

2 3

1

Suspended Solids

Turbidity

Sludge blanket

Ammonia  and Nitrate

5 Phosphate

Ret urn Sludge

Primary Clarif iers

An-
aerobic 
Tanks

Secondary Clarif iers

Raw Wast ewat er

Secondary Clarif iers

Plant  Ef f luent

Aerat ions t anks

LT6

LT5

LT4

LT3

LT2

LT1

4

4

5

On-line Measurements :

Figure ���� Schematic diagram of the wastewater treatment facility at the

Aalborg West WWTP�

��� Introduction ���

Variable Unit

Weir �inlet LT�� Wi�LT��t 	�� �closed�open�

Weir �inlet LT�� Wi�LT��t 	�� �closed�open�

Weir �outlet LT�� Wo�LT��t 	�� �closed�open�

Weir �outlet LT�� Wo�LT��t 	�� �closed�open�

Oxygen Supply Rate LT� OSRLT��t g O��h�m
�

Oxygen Supply Rate LT� OSRLT��t g O��h�m
�

Oxygen concentration LT�
 sensor � SO� �LT����t mg O��l

Oxygen concentration LT�
 sensor � SO� �LT����t mg O��l

Oxygen concentration LT�
 sensor � SO� �LT����t mg O��l

Oxygen concentration LT�
 sensor � SO� �LT����t mg O��l

Ammonia concentration LT� SNH
�LT��t mg NH��N�l

Ammonia concentration LT� SNH
�LT��t mg NH��N�l

Nitrate concentration LT� SNO��LT��t mg NO��N�l

Nitrate concentration LT� SNO��LT��t mg NO��N�l

Phosphate concentration LT� SPO
�LT��t mg PO��N�l

SS concentration LT� XSS�LT��t g�l

Flow biological part of plant Qbio�t m��h

Table ���� Summary of available measurements and registered controlling

signals�

variables
 which have been used for modelling in this chapter with the ex�

ception
 that grey box models of the phosphate concentrations have not

been estimated on data from the Aalborg West WWTP
 because the time

series of phosphate concentrations do not re�ect much biological activity

due to chemical precipitation� The measurements of ammonia and nitrate

are the dependent variables to be modelled using past information from all

the variables listed in Table ����

The plant has been equipped with a SCADA system �Supervision
 Control


And Data Acquisition� called STAR �Superior Tuning And Reporting�

system
 see Nielsen  Lynggaard�Jensen �������
 where the measurements

of Table ��� are used as input for control of setpoints in the SCADA system�

� �
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The controlling system is based on a set of rules combined with criteria func�

tions from empirical and mathematical expressions� The sensors used for

monitoring of nutrient salt concentrations have been chosen according to

an investigation in Thomsen  Nielsen ������
 such that su�cient stability

and low maintenance cost of the sensors are ensured�

From October
 ��th to November
 ��th ���� a data set of ��	� observations

without large interrupts in the sampling was obtained� The time between

samples is four minutes
 and a few outliers and measurements taken during

calibration of the sensors has been removed from the data set and replaced

with missing values
 which are accordingly handled by the Kalman �lter�

The time of an average operation cycle is approximately � hours
 but it

may vary within the range from ��� to ��� hours
 due to the operation

strategies in the STAR�system� The total number of operation cycles in

the data set is ���� Hence
 there are su�cient observations for modelling

in the operation cycle time domain�

Some of the explanatory variables in Table ��� have large �uctuations due

to measurement noise� Thus
 in order to make use of these variables in

the grey box models
 a �ltering is required �e�g� a low�pass �ltering�� A

weighted moving average �lter with the �lter weights given below is found

adequate for these variables�

SO��LT��t  ��SO��LT����t � �SO� �LT����t� �SO� �LT����t��

��SO� �LT����t��� SO� �LT����t��� SO� �LT����t������ �����

SO��LT��t  ��SO��LT����t � �SO� �LT����t� �SO� �LT����t��

��SO� �LT����t��� SO� �LT����t��� SO� �LT����t������ �����

OSRLT��t  �OSRLT��t � OSRLT��t��� OSRLT��t����� �����

OSRLT��t  �OSRLT��t � OSRLT��t��� OSRLT��t����� �����

XSS�t  �XSS�LT��t �XSS�LT��t�� �XSS�LT��t����� �����

Qbio�t  �Qbio�t � Qbio�t��� Qbio�t����� �����

��� Modelling in the sample time domain ���

Alternatively
 the �lter weights could be designed from a frequency anal�

ysis of the esplanatory variables
 but applying such �lters in the grey box

models have very little e�ect on the description of data� The suspended

solids concentration in LT� is also assumed to be representative for the

suspended solids concentration in LT�� In order to determine which biolo�

gical processes are active at a given time
 the measurements of the oxygen

concentrations are used to divide the time series into aerobic and anoxic

periods using a hysteresis setting� Examination of data has shown that a

reasonable hysteresis setting is to change from aerobic to anoxic conditions

when the oxygen concentration drops below 	�� mg O��l and to change

from anoxic to aerobic conditions when the oxygen concentration exceeds

��	 mg O��l� Employing the low�pass �ltered oxygen concentration with

the hysteresis setting
 distinct periods of aerobic and anoxic conditions are

determined �i�e� only one anoxic and one aerobic period in one operation

cycle�� Anaerobic periods rarely occur in the aeration tanks
 and for the

modelling of ammonia and nitrate concentrations anaerobic conditions have

little interest�

	�� Modelling in the sample time domain

For modelling the time series of ammonia and nitrate concentrations at the

Aalborg West WWTP
 four hydraulic and biochemical processes may be

identi�ed�

� In�uent ammonia load�

� Transport of nutrients

� The nitri�cation process

� The denitri�cation process

The hydrolysis and growth of biomass process cannot be identi�ed for the

given data set
 because the anoxic periods of the time series without in�u�

ent load to the aeration tanks �i�e� the periods where the hydrolysis and

� �
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growth of biomass normally is the most signi�cant process for the ammonia

concentration� are few and short� Secondly
 attempts to estimate the rate

of hydrolysis and growth of biomass process in these periods failed
 due to

statistical insigni�cance�

The rate expressions for the signi�cant processes above are more exten�

sive compared to the rate expressions for the processes at the Lundtofte

pilot scale plant given in Chapter �� This is due to the monitoring of

the suspended solids concentration and the use of di�erent oxygen set�

points during the aerobic phases� With this information available
 grey

box models almost identical to those presented in Section ��� are formu�

lated� Furthermore
 the monitoring of ammonia and nitrate concentrations

in both LT� and LT� give rise to double estimates of the same processes�

Hence
 the validity of the grey box models is investigated by comparing the

estimates from the two tanks�

One major di�erence between the models of the previous chapter and the

models of this chapter is the variable �ow rate to the biological part of

Aalborg West WWTP� The diurnal �ow rate of a typical dry weather day

is depicted in Figure ��� �see page �	�
 while the total daily �ow for the

�� days period is depicted in Figure ���� The highly varying �ow rate to

the plant give rise to strong variations in the dynamics of the wastewater

processes
 especially during peak hydraulic loads caused by rainy weather�

However
 information obtained from measurements of the �ow rate to the

plant is used to detect the occurrences of rainfall events and the conse�

quently low in�uent ammonia concentration� Recalling the discussion in

Section �����
 the lack of information on rainfall events at the pilot scale

plant is an evident de�ciency of the model for the in�uent load rate of

ammonia in the operation cycle time domain ����	��

The observation equation for the time series of ammonia and nitrate are


as usual
 given by

yt  mt � �t �����

��� Modelling in the sample time domain ���

where mt is the true concentration of ammonia or nitrate and �t is Normal

and Independent Distributed �NID� with zero mean and variance given by

an ARCH�structure �Tong ����	��
 i�e�

	���t  	��� � ���
�

t�� �����

where �t�� in ����� is replaced by the prediction error
 vt��
 for practical

applications
 and �� is a parameter�

The process equation for each of the four time series of ammoniaand nitrate

concentrations is found to be adequately modelled using

��� �B��!mt � �t�  �Tut � et �����

where et is NID with zero mean and a variance which is found to be con�

ditional on the previous concentration level
 i�e�

	�e�t  	�e� � �em
�

t�� ����	�

where 	�e� and �e are parameters� Hence
 the process equation ����� is

better at modelling low level concentrations than high level concentrations�

Two explanations for this phenomenon are given� Firstly
 the steps of

the concentration gradient
 !mt
 are larger for high level concentrations

resulting in larger error terms
 et� Secondly
 switching from aerobic to

anoxic conditions and reverse introduces some noise into the processes


which is partly modelled as transient phenomena� The switching from

aerobic to anoxic conditions and reverse cannot be clearly de�ned by simply

choosing an oxygen concentration threshold dividing aerobic and anoxic

periods� Therefore
 the ammonia and nitrate concentrations on top of

the time series curves are more unpredictable� The mean of the posterior

distribution
 bmt��jt��
 is used as the optimal estimator of mt�� in ����	��

The AR�parameter estimates
 b�
 are in the range 	����	��� �	�	��
 which is

somewhat larger than those estimated on data set No�� from the pilot plant�

� �
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This implies that the mean process rate
 �t
 does not give as persistent an

estimate of the concentration gradient for the models of this chapter�

����� In	uent ammonia load in dry weather

The ammonia load to AalborgWest WWTP is modelled according to ������

during dry weather periods with kload�NH�
�

being a time�varying parameter

of the operation cycle time domain �see following section�
 i�e�

rload�NH�
�

�t  
�

kload�NH�
�

�f �Q
�

bio�t�� inlet weir open

	 inlet weir closed

������

where Q
�

bio�t�� is the �ltered �ow rate of wastewater and returned sludge

entering the BIO�DENIPHO line consisting of LT� and LT�� The �ow rate

to the biological part of the plant
 Qbio�t
 is equally mixed with returned

sludge and then divided into three parallel lines of alternating aeration

tanks� Thus


Q
�

bio�t��  
�Qbio�t��

�

������

The rate of the returned sludge may vary slightly below the in�uent �ow

rate
 but this does not a�ect the applicability of the model� Using the data

from one operation cycle an estimate of kload�NH�
�

�f is obtained from ������

which can be used for updating the models of the in�uent ammonia load

rate in the operation cycle time domain� An estimate of the in�uent ammo�

nia concentration to the aeration tanks is obtained from the approximation

������
 but the estimator will be biased as discussed in Section ������ The

ammonia load rate
 kload�NH�
�

�f �Q
�

bio�t��
 is also used as a correlated mea�

sure for the load of readily bio�degradable substrate
 which is employed for

modelling of the denitri�cation process�

��� Modelling in the sample time domain ���

����� In	uent ammonia load with rainy weather peri�

ods

A rainfall event in the catchment area is typically characterized by a large

volume of low loaded wastewater entering the WWTP
 due to the mixing

of wastewater produced by households and industries
 and rainwater� How�

ever
 when modelling a rainfall event some allowances for the large bu�er

of wastewater in the sewerage should be made� In Figure ��� an ideal�

ized picture of a typical rainfall event is sketched� This illustration is used

to derive a simpli�ed model for the ammonia load rate in rainy weather

periods�

When rain starts falling in the catchment area
 the �ow of rainwater and

produced wastewater into the sewerage increases momentarily� The ammo�

nia concentration of the mixed rainwater and produced wastewater conse�

quently drops to a lower concentration
 which in this simpli�ed model is

assumed to be constant� When the rainfall event subsequently stops only

wastewater from households and industries is �ushed into the sewer� Conse�

quently
 the �ow rate and ammonia concentration of the wastewater return

to the dry weather levels� At the WWTP the �ow rate increases shortly

after the rain has started falling� However
 due to a large bu�er of highly

loaded wastewater in the sewerage
 the in�uent ammonia concentration of

the raw wastewater to the plant slowly decreases towards the low ammo�

nia concentration of produced wastewater mixed with rainwater running

into the sewer� Similarly
 when the rain stops falling the �ow rate to the

plant decreases rather fast after a short period of time
 while the in�uent

ammonia concentration to the plant slowly increases towards the ammonia

concentration level of produced wastewater
 due to the large bu�er of low

loaded wastewater in the sewerage�

The rainy weather periods are detected from the measurements of the �ow

rate to the biological part of the plant
 despite the fact that during rain�

falls a signi�cant part of the raw wastewater is bypassed
 i�e� all the raw

wastewater is mechanically processed and a fraction of this wastewater is

led to the e�uent of the plant without biological treatment� The start of a

� �
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��������������������������
��������������
������������
�����������
����������
����������
�����������
������������
����������������
��������������������

Flow

������������������������������������������������������������������������������������������������������������������������������������������������

tstoptstart

To WWTP�

To sewerage�

Ammonia conc�

Flow

Ammonia conc�

Figure ���� Illustration of the dynamics in the sewerage during a rainy

weather period� The two points in time� tstart and tstop� show the length of

the rainy weather period determined by the measured �ow rate to the plant�

rainfall event is de�ned as Qbio�t exceeding �			 m
��h
 and it is considered

to be �nished when Qbio�t has been below ��		 m
��h for two hours� The

starting and stopping time of a rainfall event are denoted tstart and tstop

as indicated on Figure ���
 and the length of the rainy weather period is

given by tstop � tstart�

The large bu�er volume of the sewerage
 primary clari�ers
 and anaerobic

pretreatment tanks that the wastewater has to pass before entering the

aeration tanks
 can neither be considered as one big ideally mixed tank nor

as one large pipe without mixing� In particular
 partially mixing occur in

��� Modelling in the sample time domain ���

the sewerage due to varying hydraulic retention times of the di�erent sub�

sewerages and the geographical movement of the precipitation� In order

to describe the partial mixing of produced wastewater with rainwater in

the large bu�er volume of the sewerage
 primary clari�ers
 and anaerobic

pretreatment tanks
 a simple model of N ideally mixed tanks with identical

volume holdings in series is found adequate�

The response of a step�function load on N identical ideally mixed tanks in

series is obtained by successively applying ����� with the response of the

n�th tank being the input to the n � ��th tank �n 
 N �� The response is

most conveniently found by applying the Laplace transformation�

Ct  Ci��� e
� t
Th �

t
Th
e
� t
Th � � � ��

tN��

�N � ��)TN��

h

e
� t
Th � ������

where Ci is the in�uent concentration to the �rst tank and Th is the

hydraulic retention time of the individual ideally mixed tanks� The concen�

tration in all N tanks at the starting time of the step�function is assumed

to be constant and Ct is the deviation from this steady state level�

Thus
 in order to incorporate the e�ects of rainy weather on the in�uent

ammonia load rate
 ������ needs to be modi�ed�

rload�NH�
�

�t  
�

k
�

load�NH�
�

�f�t
�Q

�
bio�t�� inlet weir open

	 inlet weir close

������

where
k
�

load�NH�
�

�f�t
 kload�NH�

�

�f � �kload�NH�
�

�f � krain� � �N �t � tstop�

� �krain � kload�NH�
�

�f � � �N �t� tstart� ������

and

� �
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Figure ���� Response of a step
function load on N �N  �� �� �� �� ���	��		�

identical ideally mixed tanks in series� The response approximates a pipe

with no mixing for N �� as indicated by the dotted line�

�N �t�  
�

�� e
� t
Th � t

Th
e
� t
Th � � � �� tN��

�N����TN��

h

e
� t
Th t � 	

	 t 
 	

������

Figure ��� shows �N �t� for di�erent values of N and a constant total hy�

draulic retention time
 Th�total  N �Th� For t� tstart and t� tstop �i�e� no

rain for a while� the load process ������ approximates the dry weather in�u�

ent load rate given in ������� Hence
 ������ is a more general rate expression

for the in�uent ammonia load which handles both dry and rainy weather

periods
 while ������ is used to produce estimates of kload�NH�
�

�f for updat�

ing the model of the in�uent ammonia load rate in the operation cycle time

domain� Consequently
 using the approximation ������
 k
�

load�NH�
�

�f�t
de�

scribes the variations of the in�uent ammonia concentration to the aeration

tanks and kload�NH�
�

�f describes the variation of the ammonia concentra�

tion in the wastewater produced by households and industries� Estimating

��� Modelling in the sample time domain ���

Parameter Unit LT� LT�

Ci mg NH	

 �N�l ��� ��	bCrain mg NH	


 �N�l ��� �	��� ��� �	���bTh�rain�total h ��� �	��� ��� �	���

Table ���� Parameter estimates from modelling the in�uent ammonia load

process in rainy and dry weather�

krain yields an estimate of the average in�uent ammonia concentration to

the aeration tanks
 when it has been raining for a long while� However
 it

should be stressed that the estimates of kload�NH�
�

�f are not used for up�

dating the models of the operation cycle time domain during rainy weather

periods and the �rst operation cycle after the rainy period� The purpose of

dividing the wastewater into the two categories
 rainwater and wastewater

from households and industries
 is to obtain a simple and better model for

the in�uent ammonia load process of households and industries�

Modelling the sewerage
 the primary clari�ers
 and the anaerobic pretreat�

ment tanks as N  � ideallymixed tanks in series with a hydraulic retention

time of approximately ��� hours gave the best �tting of the two time se�

ries of ammonia concentrations considered in this chapter� However
 using

N  � ideally mixed tanks in series with an hydraulic retention time of

approximately 	�� hour
 a �t nearly as good as using N  � is obtained�

The estimates from employing N  � is given in Table ���
 where bCrain is

the asymptotic in�uent ammonia concentration to LT� and LT� during a

rainfall event� Ci is the average of the estimated in�uent ammonia concen�

trations
 based on the estimates of kload�Nh�
�

�f for all operation cycles� The

estimates of the in�uent ammonia concentration in Table ��� are smaller

for LT� than LT�� This will be explained later�

� �
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����� Nutrient transport of the aeration tanks

Incorporating the mass balance of nutrients is important but not crucial for

obtaining interpretable estimates of the remaining wastewater processes�

Fortunately
 both aeration tanks at Aalborg West WWTP are equipped

with on�line sensors of ammonia and nitrate concentrations� Thus
 for the

transport of ammonia

rtransport�NH�
�

�t  
�����

ktransport�NH�
�

�SI
NH�
�

�t��
� SNH�

�

�t��� �Qt��

outlet weir open

	 otherwise

������

and for the transport of nitrate

rtransport�NO�
�

�t  
���������

ktransport�NO�
�

�SI
NO�
�

�t��
� SNO�

�

�t��� �Qt��

inlet weir closed and outlet weir open

�ktransport�NO�
�

� SNO�
�

�t�� �Qt�� inlet weir open

	 otherwise

������

where SI
NH�
�

�t��
and SI
NO�
�

�t��
are the ammonia and nitrate concentrations

of the alternating tank� SI
NH�
�

�t��
and SI
NO�
�

�t��
are replaced by the mea�

surements of the ammonia and nitrate concentrations in the alternating

tank
 while SNH�
�

�t�� and SNO�
�

�t�� are replaced by the optimal estimates

of the true ammonia and nitrate concentration
 bmt��jt��� The estimated

parameters of the model are given in Table ����

The estimates of k��
transport�� are larger than the actual physical holding

volumes of the aeration tanks ���		 m��� This is mainly due to lack of

information on the hydraulic e�ects when switching �ow patterns
 i�e� the

wastewater levels in the two alternating tanks are di�erent
 and switching

the in�uent and e�uent �ow between the two tanks will gradually result

��� Modelling in the sample time domain ���

ktransport�� Unit LT� LT�

Ammonia �	�
m�� ��	� �	�	�� ���� �	�	��

Nitrate �	�
m�� ���� �	�	�� ���� �	�	��

k��
transport�� Unit LT� LT�

Ammonia m� ���	 �	������ ��		 �	�
���

Nitrate m� ��		 �	������ ��		 �	���

�

Table ���� Parameter estimates from modelling the nutrient transport of

the aeration tanks�

in a change of �ow between the two tanks� This will make the estimates of

ktransport�� smaller�

����� The nitri
cation process

The monitoring of ammonia and nitrate concentrations in both LT� and

LT�
 permits the identi�cation of the nitri�cation process from four dif�

ferent time series� Thus
 if the estimates from the four time series show

consistency
 this will validate the general model structure� In the considered

period of time the plant has been operated with di�erent oxygen setpoints


where the employment of two oxygen sensors in each tank combined with

the �ltering ����� and ����� has made the identi�cation of a Monod�kinetic

term for the dependency of the oxygen concentration possible� Further�

more
 due to the monitoring of the suspended solids concentration
 expres�

sions like ������ and ������ are identi�ed� However
 during high loads at

the Aalborg West WWTP the rotors must have been turned on for a while

before the oxygen concentration reaches its setpoint� This period of time is

considered anoxic because of the low oxygen concentration
 but ammonia

is in fact nitri�ed due to an excessive amount of oxygen being aerated into

the aeration tanks� Fortunately
 the oxygen supply rate is registered and it

is assumed that nitri�cation rate is proportional to OSRt�� in this period�

Thus
 for the time series of ammonia concentrations

� �
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rnit�NH�
�

�t  
�������

�knit�max�NH�
�

�

S
NH
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�
�

�

SO��t��

SO��t��	KO�

�XSS�t��
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�kOSR�NH�
�

�OSRt�� anoxic�anaerobic conditions

������

and for the time series of nitrate concentrations

rnit�NO�
�

�t  
�������

knit�max�NO�
�

�

S
NH

�
�

�t��

S
NH

�
�

�t��
	K
NH

�
�

�

SO��t��

SO� �t��	KO�

�XSS�t��

aerobic conditions

kOSR�NO�
�

�OSRt�� anoxic�anaerobic conditions

����	�

where SO� �t��
 XSS�t��
 and OSRt�� are replaced with the �ltered values

given in ��������� for the practical identi�cation� The mean of the posterior

distribution for mt�� is used as the optimal estimator of the true ammo�

nia concentration in the aeration tanks
 i�e� SNH�
�

�t�� is replaced by the

Kalman update bmt��jt�� in ������ and ����	�� The results of estimating

the nitri�cation process on data from Aalborg West WWTP are given in

Table ����

Fortunately
 there is a consistency between the estimates of the nitri�ca�

tion process obtained from the four time series in Table ���
 validating the

general grey box model structure for the nitri�cation process� Though


the estimates from the time series of ammonia concentrations in LT� di�er

slightly� The reason for this is explained in the subsequent section� Henze

et al� ����	� suggest thatKNH�
�

should lie in the range 	���	��mgNH	

 �N�l

and KO�

should lie in the range 	�����	 mg O��l� Thus
 all the estimated

half�saturation parameters values are in the suggested range
 except forbKNH�
�

estimated on measurements of the ammonia concentration in LT��

However
 due to the discrete time formulation of the Monod�kinetic ex�

pressions the grey box models will yield biased and larger estimates of the

half�saturation constants in continuous time as discussed in Section ������

��� Modelling in the sample time domain ���

Parameter Unit LT� LT�

Ammonia knit�max�NH�
�

mg N�h�g SS ��	� ����bKNH�
�

mg N�l 	��� �	�	�� 	��� �	�	��bKO�

mg O��l 	��� �	�	�� 	��� �	�	��bkOSR�NH�
�

mg N�g O� ���� �	��� ���� �	���

Nitrate knit�max�NO�
�

mg N�h�g SS ���	 ����bKNH�
�

mg N�l 	��	 �	�	�� 	��� �	�	��bKO�

mg O��l 	��� �	�	�� 	��� �	�	��bkOSR�NO�
�

mg N�g O� ���� ����� ���� �����

Table ���� Parameter estimates from modelling the nitri�cation process on

data from Aalborg West WWTP�

The estimates of knit�max�NO�
�

�f are less biased estimates of the maximum

nitri�cation rate than knit�max�NH�
�

�f 
 because the hydrolysis and growth of

biomass process is not incorporated in the grey box models of the Aalborg

West WWTP� Hence
 knit�max�NH�
�

�f is an estimator of the net maximum

nitri�cation rate
 which includes the simultaneous removal of ammonia by

nitri�cation and growth of biomass
 and production of ammonia by hy�

drolysis� This is also re�ected in the lower estimates of knit�max�NH�
�

�f and

kOSR�NH�
�

in Table ���� In fact
 in the anoxic periods with the rotors turned

on
 twice as much nitrate is produced as ammonia removed� The e�ect of

aerating during anoxic conditions on the denitri�cation rate is neglected


but it is a topic for future research� Comparing the stoichiometric coe��

cient of ����	� with the estimates of kOSR��
 it is seen that �	���" of the

oxygen supplied by the rotors in the anoxic period is used for nitri�cation


while the rest of the oxygen supplied is used for heterotrophic respiration

and
 in particular
 raising the overall oxygen concentration in the aeration

tank to the setpoint value� Given the values of bKNH�
�

and bKO�

estimated

on the entire data set
 estimates of knit�max���f are obtained from the data

of operation cycle f �

� �
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����� The denitri
cation process

Assuming that the load rate of ammonia is highly correlated with the aver�

age concentration of readily bio�degradable substrate in the aeration tanks

during the anoxic phase with in�uent load
 the following expression is iden�

ti�ed�

rdenit�t  
�����������
	 anoxic conditions and no in�uent load

�kdenit�max�f

S
NO
�

�

�t��

S
NO
�

�

�t��
	K
NO
�

�

�

k
load�NH

�
�

�f��
�Qt��

k
load�NH

�
�

�f��
�Qt��	Kload
XSS�t��

anoxic conditions and in�uent load

	 aerobic�anaerobic conditions

������

where Qt�� andXSS�t�� are replaced with the �ltered values given in ������

and ����� for the practical identi�cation of ������� The mean of the posterior

distribution for mt�� is used as the optimal estimator of the true nitrate

concentration in the aeration tank
 i�e� SNO�
�

�t�� is replaced by the Kalman

update bmt��jt�� in ������� The estimated ammonia load parameter of

the previous operation cycle in both dry and rainy weather
 bk�
load�NH�
�

�f��

given by ������
 is used in the second Monod�kinetic term in ������� It

should be stressed that the rate of the denitri�cation process during anoxic

conditions without in�uent load is found to be insigni�cant
 mainly due to

lack of readily bio�degradable substrate in LT� and LT� after the aerobic

phase� This result corresponds to the similarly very low and insigni�cant

hydrolysis and growth of biomass process rate� The results of estimating

the denitri�cation process on data from Aalborg West WWTP are given

in Table ����

Similar to the estimates of the nitri�cation process
 the estimates in Ta�

ble ��� are consistent for the two time series� Though
 the estimates of

KNO�
�

are somewhat higher than the suggested values of the literature

�Henze et al� ����	� suggest KNO�
�

lies in the range 	���	�� mg NO�
� �N�l��

This may be due to de�ciencies in� �� the assumption of high correlation

��� Modelling in the sample time domain ���

Parameter Unit LT� LT�

kdenit�max mg N�h�g SS ���	 ����bKNO�
�

mg N�l 	��� �	�	�� ��	� �	����bKload mg N�l�h ���� �	�	�� ���� �	����

Table ���� Parameter estimates from modelling the denitri�cation process

on data from Aalborg West WWTP�

between the ammonia load rate and the load of readily bio�degradable ma�

terial
 and �� the assumption of a constant in�uent load rate of organic

materials resulting in a constant concentration of readily bio�degradable

substrate� However
 in the absence of sensors for monitoring the readily

bio�degradable substrate on�line
 the denitri�cation process is more ade�

quately described in ������ than leaving the second Monod�kinetic term

out� Using the design loads in Table ��� for the Aalborg West WWTP

and applying three assumptions
 the estimates of Kload are interpreted in

terms of BOD� First assumption is
 that the in�uent concentrations of am�

monia and BOD are left unaltered by passage of the pretreatment tanks�

Secondly
 it is assumed that �	" of the total nitrogen to the plant is in

the form of ammonia using Table ��� for moderately loaded wastewater�

Thirdly
 BOD in returned sludge is not used for denitri�cation� Based

on these assumptions the estimates of Kload corresponds to bKS  ��� mg

BOD�l �	��� for LT� and bKS  ��� mg BOD�l �	��� for LT�� Finally


using the COD�BOD�ratio for moderately loaded wastewater in Table ���


the estimates of KS are found to lie in the range �	��	 mg COD�l
 as

suggested by Henze et al� ����	��

Given the estimates of KNO�
�

and Kload based on the entire time series

of measurements of nitrate concentrations
 estimates of kdenit�max�f are

obtained from the observations of operation cycle f � These estimates are

used for updating the model of the maximum denitri�cation rate in the

operation cycle time domain�

� �
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	�� Modelling in the operation cycle time do�

main

Some of the essential parameters for modelling wastewater processes in

the sample time domain are known to be time�varying and estimators of

these parameters based on observations from a single operation cycle were

derived in the previous section� Thus
 for updating the models of the

operation cycle time domain
 ��� estimates of the in�uent ammonia load

rate
 the maximumnitri�cation rate
 and the maximumdenitri�cation rate

are available�

����� In	uent load rate of ammonia

In Section �����
 an estimator of kload�NH�
�

�f was derived and making use

of the approximation ������
 bkload�NH�
�

�f corresponds to an estimate of the

in�uent ammonia concentration to the aeration tanks� The estimates of

the in�uent ammonia concentration in LT� and LT� are shown in Figure

��� and Figure ��� as solid curves� Estimated in�uent ammonia load rates

based on less than four observations are considered as missing values
 as

indicated by the gaps for the solid curves�

The two curves for LT� and LT� should correspond well with each other

since both are determined by the same process
 the ammonia concentration

of the raw wastewater� Due to the time�wise displacement of the periods

with in�uent load to LT� and LT� and changing ammonia concentrations

in the raw wastewater
 the dynamics of the two curves may di�er slightly�

However
 the two curves only appear to agree for the last half of the op�

eration cycles� This is caused by a drift in the ammonia sensor in LT�


which was re�calibrated on November
 �th� At the time of calibration


which correspond to the ���th operation cycle �f ����
 the sensor was

measuring more than ��" below the actual value� Thus
 gradually scal�

ing the estimated in�uent concentration of ammonia in Figure ��� from

��� Modelling in the operation cycle time domain ���
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of in�uent ammonia concentrations to LT�� The lower solid curve indicates

the rainy weather periods�
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f  	 to ��� yields a dynamic similar to that of Figure ���� The mis�

calibration of the ammonia sensor in LT� also explains the low estimates of

the average in�uent ammonia concentration in Table ��� and the average

maximumnitri�cation rate in Table ���
 when estimated on data from LT��

The ammonia concentration of the raw wastewater is approximately twice

the estimated in�uent ammonia concentration
 because the raw wastewater

is equally mixed with returned sludge with a vanishing ammonia concen�

tration� Though
 in the discussion of Section ����� it was found that the

estimator kload�NH�
�

�f yields lower biased estimates of the actual in�uent

ammonia load rate� Hence
 the ammonia concentration of the raw waste�

water is presumably more than twice the estimated curves of Figure ���

and ����

The in�uent load rate of ammonia to the WWTP arising from households

and industries show typical diurnal and weekly patterns due to human

behaviour� Thus
 formulating a model for kload�NH�
�

�f these basic human

activities are sought captured�

�� � �loadB��kload�NH�
�

�f � �load�NH�
�

�t�  eload�NH�
�

�f ������

where eload�NH�
�

�f is NID with zero mean and variance 	�
e�load�NH�
�


 and

�load�NH�
�

�f describes the diurnal variation using a second�order Fourier

expansion and type�of�day e�ects

�load�NH�
�

�t  
�

�weekday�NH�
�

� �t if operation cycle f is on a weekday

�weekend�NH�
�

� �t if operation cycle f is on a weekend

������

and

�t  � � �� cos
��t

S

� � sin
��t

S

� �� cos
��t

S

� � sin
��t

S

������

��� Modelling in the operation cycle time domain ���

where S  ��	 is the number of samples in a day� The diurnal pro�le
 �t


is assumed to be identical on weekdays and weekends� The AR����process

in ������ describes the correlated deviations from the average mean load

of ammonia
 �load�NH�
�

�t
 from one operation cycle to another
 i�e� if the

ammonia load of the last operation cycle was lower than the mean load

of ammonia at the given time ������
 it is likely that the ammonia load of

the present operation cycle will also be lower� The one�step predictions of

������ are shown as dotted curves in Figure ��� and Figure ��� for LT� and

LT�
 respectively�

In the rainy periods which are indicated by the lower curves on Figure

��� and ���
 the model ������ is not updated with the estimated ammonia

load rates
 because ������ describes the ammonia load of households and

industries� Therefore
 during the rainfall events the one�step predictions of

kload�NH�
�

�f will approach �load�NH�
�

�t
 while the actual ammonia load rate

is modelled by ������ in the sample time domain� Besides the rainy weather

periods
 the one�step predictions of ������ corresponds to the estimated

in�uent ammonia load rate except for short term peak loads
 which are

di�cult to predict as they cannot be described as simple diurnal variations

and they have not been found correlated with other measurements at the

WWTP�

The estimates of kload�NH�
�

�f obtained from the data of one operation cycle

are encumbered with some uncertainty

bkload�NH�
�

�f  kload�NH�
�

�f � �load�NH�
�

�f ������

where �load�Nh�
�

�f is NID with zero mean and variance 	
�

	�load�NH�
�

�

The process equation ������ and observation equation ������ for the in�uent

ammonia load rate process has a state space representation which can be

handled by applying the Kalman �lter� Hence
 the variances of the error

terms can be estimated by the maximumlikelihood approach
 if appropriate

weights for the prediction errors in the sample time domain relative to the

prediction errors in the operation cycle time domain are supplied in the

� �
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calculation of the likelihood function� Alternatively
 if the variance of the

prediction error in the operation cycle time domain is assumed to be time�

invariant ����	�
 estimates of 	�
e�load�NH�
�

and 	�
	�load�NH�
�

are obtained by

estimating the constant Kalman gain Kload�NH�
�

and the variance of the

prediction error Rload�NH�
�

� This will be shown in the following� Due to

the simple form of ������
 all the variables for the Kalman �lter are scalar�

From the sequence of prediction errors of the in�uent ammonia load process


vload�f 
 f  �� � � � � ���
 an estimate of the variance of the predictions errors

is obtained
 bRload�NH�
�

� Thus
 with the estimated Kalman gain and ������

where c � is scalar
bPload�NH�

�

 bKload�NH�
�

� bRload�NH�
�

������

The estimates of the variances of the error terms in ������ and ������

are found applying the prediction equation of bPload�NH�
�

to ������ andbRload�NH�
�

to ������
b	�
e�load�NH�
�

 bPload�NH�
�

��� b��load� ������

and

b	�
	�load�NH�
�

 bRload�NH�
�

� bPload�NH�
�

������

The estimates of the in�uent ammonia load process are given in Table ���


where the standard deviations of the error terms and the average mean

in�uent ammonia loads are listed using the equivalent in�uent ammonia

concentrations�

The estimates of �load in Table ��� are somewhat smaller than the estimates

obtained from data set No�� at the pilot plant
 due to the incorporation of

a rainy weather ammonia load model� The estimates of the mean in�uent

ammonia concentration and the standard deviations of the error terms in

��� Modelling in the operation cycle time domain ���

Parameter Unit LT� LT�b�weekday�NH�
�

mg N�l ��	 �	��� ��� �	���b�weekday�NH�
�

mg N�l ��� �	��� ��� �	���b�load � 	��� �	�	�� 	��	 �	�	��b	e�load mg N�l ��� ���b		�load mg N�l ��� ���

Table ���� Parameter estimates from modelling the in�uent ammonia load

rate process in the operation cycle time domain�

the LT� column are too low due to the bad calibration of the ammonia

sensor in LT�
 as mentioned previously� The standard deviations of the

error terms are
 in general
 rather high showing that the model ������ will

predict the in�uent ammonia concentration within an interval of ��	 mg

NH	

 �N�l with a probability of ��"� This is mainly due to bad model per�

formance of predicting peak in�uent ammonia concentration� The in Table

��� estimates could be improved by applying a robust estimation procedure


where the peak loads have a relative small weight in the calculation of the

likelihood function and the estimation of the variance of the prediction er�

ror
 Rload�NH�
�

� However
 a large number of the peak loads are caused by

dewatering of excess sludge as a part of the plant operation� Thus
 it is

preferable to incorporate knowledge on the times of the excess sludge de�

watering into the model
 if such information can be obtained� Disregarding

the peak loads in Figure ��� and ��� the standard deviations of eload�NH�
�

�f

graphically appears to be much lower�

����� Maximum nitri
cation rate

From the slopes of ammonia and nitrate curves during the aerobic phase of

the operation cycle
 estimates of knit�max���f are obtained given the values

of KNH�
�

and KO�

estimated on all available observations� These estimates

are naturally encumbered with some uncertainty

� �
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Figure ���� Estimated �solid curve� and one
step predictions �dotted curve�

of maximum nitri�cation rates based on ammonia concentrations from aer


ation tank LT��

bknit�max���f  knit�max���f � �nit�max���f ������

where �nit�max���f is NID with zero mean and variance 	�	�nit��
 and the in�

dexed period indicates that ������ is valid for the modellingof knit�max�NH�
�

�f

and knit�max�NO�
�

�f on data from both aeration tanks� Thus
 four sets of

estimates from this process are obtained� The estimated maximum nitri�

�cation rates from the four considered time series
 bknit�max���f
 for each

operation cycle are shown in Figure �������	 by the solid curves� Estimates

of knit�max���f based on less than four observations in the sample time do�

main are rejected due to unreliable estimates�

The variations of the maximumnitri�cation rate are modelled using a �rst�

order AR�process

�� � �nitB��knit�max���f � �nit�max���f�  enit�max���f ����	�

��� Modelling in the operation cycle time domain ���
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Figure ���	� Estimated �solid curve� and one
step predictions �dotted curve�

of maximum nitri�cation rates based on nitrate concentrations from aera


tion tank LT��

where enit�max���f is NID with zero mean and variance 	�e�nit��
 and �nit�max���f

is the mean maximum nitri�cation rate for operation cycle f � Correlation

between the estimates of knit�max���f and past values of the ammonia load

rate has been found
 and this correlation is formulated as a linear relation�

ship

�nit�max���f  �nit�max�� � � � kload�NH�
�

�f�� �Q
�

bio�f�� ������

where Q
�

bio�f�� is the average �ow rate to LT� and LT� for the operation

cycle f � � and
 �nit�max�� and � are parameters� In practice
 when esti�

mating ������ kload�NH�
�

�f is replaced by the Kalman update of ������ in

dry weather periods and bk�
load�NH�
�

�f
given in ������ in rainy weather peri�

ods� The parameter estimates of ����������� are found in Table ���� The

variances of the error terms in ������ and ����	� are found applying similar

equations of ������
 ������
 and ������� The linear relationship proposed

��� Modelling in the operation cycle time domain ���

Parameter Unit LT� LT�

Ammonia b�
nit�max�NH�
�

mg N�h�g SS ���	 �	�	�� ���� �	�	��b� � 	��� �	�	�� 	��� �	�	��b�nit � 	��� �	�	�� ��		 �	�	��b	e�nit�NH�
�

mg N�h�g SS 	�	� 	�	�b		�nit�NH�
�

mg N�h�g SS 	��� 	���

Nitrate b�
nit�max�NO�
�

mg N�h�g SS ���� �	�	�� ���� �	����b� � 	��	 �	�	�� 	��� �	�	��b�nit � 	��� �	�	�� 	��� �	�	��b	e�nit�NO�
�

mg N�h�g SS 	��� 	��	b		�nit�NO�
�

mg N�h�g SS 	�	� 	���

Table ���� Parameter estimates from modelling the maximum nitri�cation

process in the operation cycle time domain�

in ������ is rather empirical and further investigations lies ahead in order

to determine a more appropriate relationship
 if it exists� The one�step

predictions of ����	� are shown in Figure �������	 as dotted curves�

In general
 the trends of the estimated maximum nitri�cation rate in the

four �gures correspond well
 except for the �rst ��� estimates in Figure ���


which are in�uenced by the mis�calibration ammonia sensor in LT�� Sim�

ilarly
 the estimates in Table ��� show a consistency which is interpreted

as an approval of the model structure for the nitri�cation process in the

sample time domain� The nitri�cation rates estimated on nitrate concen�

tration are less biased than the rates estimated on ammonia concentrations


because ammonia is produced by hydrolysis simultaneously with the nitri�

�cation process and
 the hydrolysis and growth of biomass process cannot

be identi�ed from the given data set� This is re�ected in larger estimates

of knit�max�NO�
�

�f in Figure ��� and Figure ���	� The high �nit�estimates

indicate some slow variations in the maximum nitri�cation rate
 which are

not contained in ������� In fact
 the AR����process in ����	� is instationary

for the ammonia concentrations of LT�� As a result
 �nit�max���f is not an

� �
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unbiased estimator of knit�max�NH�
�

�f which is also clearly seen by compar�

ing the values of knit�max�NH�
�

�f in Table ��� with the estimates related to

�nit�max���f in Table ���� Due to the high �nit�values based on ammonia con�

centrations
 the estimates related to �nit�max�NH�
�

�f are merely estimates

of the maximum nitri�cation rate in the beginning of the time series
 and

the slow variations of knit�max�NH�
�

�f are contained in the AR����process

����	�
 which for the modelling of the maximumnitri�cation rates based on

ammonia concentrations in LT� actually is a random walk �refer to �������

The ��parameter in ������ only describes a short term dependency of the

previous in�uent ammonia load rate
 since the in�uent ammonia load rate

does not contain much of the trend of the maximum nitri�cation rate� In

Figure �������	
 this may be recognized as a diurnal variation�

The uncertainty of the estimates based on nitrate concentrations in Table

��� and in Table ��� is larger than the uncertainty of the of the estimates

based on ammonia concentrations� This is due to a built�in �ltering of the

ammonia concentration sensors
 such that the uncertainty of the ammonia

measurements in general is smaller� However
 the �ltering also removes

some of the dynamics of the ammonia concentration in the tank
 thereby

making the estimates based on measurements of ammonia concentrations

more biased� The built�in �ltering will likely yield somewhat higher esti�

mates of the half�saturation constants
 KNH�
�

and KO�
� Furthermore
 the

larger uncertainty on nitrate measurements results in larger variances of

the error terms for the maximum nitri�cation rate in the operation cycle

time domain in Table ����

Using the approximations ������ and ������ the activity of the autotrophic

biomass may be assessed� The variations of Figure �������	 are larger than

the removal of excess sludge can account for� Some of the rainfall events

causes a subsequent drop in the autotrophic biomass activity
 while some

do not appear to have any e�ect� This might indicate a signi�cant e�ect of

the temperature in the activated sludge
 which is lowered by a large amount

of cold rainwater� Thus
 in order to describe some of the slow variations in

the autotrophic biomass activity
 explanatory variables such as tempera�

ture and wastewater composition must be incorporated into ������� Figure

��� Modelling in the operation cycle time domain ���

���� show measurements of temperature �marked by triangles� and sludge

volume index �marked by squares� from the considered period� The mea�

surements are performed on a daily basis �Monday through Friday� for the

temperature with occasionally observations of the sludge volume index�

The observations have been synchronized with the operation cycle time


such that the measurements are plotted at the operation cycle number of

the sample performance� Unfortunately
 these explanatory variables are

monitored too inconsistently to be used in the grey box models
 but there

appears to be a correlation between the slow variations of the estimated

maximum nitri�cation rate and both the measured temperature �positive

correlation� and sludge volume index �negative correlation�� Formulating

the correlation between the maximumnitri�cation rate and the sludge vol�

ume index as a functional relation in ������ would result in misleading

conclusions
 because the variation in both variables is most likely caused

by another common factor
 e�g� the wastewater composition� Hence
 on�

line monitoring of temperature and wastewater composition will improve

the performance of the model for the maximumnitri�cation rate ����	� and

the parameter estimates of the operation cycle time domain�

����� Maximum denitri
cation rate

Given the estimators of kdenit�max�f derived in Section ����� based on the

values of KNO�
�

and Kload in Table ���
 ��� observations of the maximum

denitri�cation rate in LT� and LT� may be used for modelling in the op�

eration cycle time domain� The estimates of kdenit�max�f are encumbered

with some uncertainty

bkdenit�max�f  kdenit�max�f � �denit�max�f ������

where �denit�max�f is NID with zero mean and variance 	�	�denit� The es�

timated maximum denitri�cation rates in LT� and LT�
 bkdenit�max�f 
 are

shown in Figure ���� and Figure ����
 respectively� Estimates of kdenit�max�f

� �
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Figure ����� Measurements of temperature �triangles� and sludge volume

index �squares� during the considered period� The sample time points of

the measurements are depicted in the operation cycle time domain�

based on less than four observations are discarded due to unreliable esti�

mates�

The variations of the maximumdenitri�cation rate is modelled as an AR����

process
��� �denitB��kdenit�max�f � �denit�max�  edenit�max�f ������

where edenit�max�f is NID with zero mean and variance 	�e�denit
 and �denit�max

is the mean maximum denitri�cation rate� Attempts to model �denit�max

as a function of the in�uent ammonia load rate have not been made for

two reasons� Firstly
 the estimated maximum denitri�cation rates in Fig�

ure ���� and ���� do not re�ect the same strong correlation to the in�uent

ammonia load rate as the maximumnitri�cation rate does� This is typically

illustrated by a weaker diurnal variation in the �gures� Also
 the incentive

��� Modelling in the operation cycle time domain ���
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Figure ����� Estimated �solid curve� and one
step predictions �dotted curve�

of maximum denitri�cation rates based on nitrate concentrations from aer
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Parameter Unit LT� LT�b�denit�max mg N�h�g SS ���� �	�	�� ���� �	�	�b�denit � 	��� �	�	�� 	��� �	�	��b	e�denit mg N�h�g SS 	��� 	���b		�denit mg N�h�g SS 	�		 	�		

Table ���� Parameter estimates from modelling the maximum denitri�ca


tion process in the operation cycle time domain�

for modelling the maximum denitri�cation rate as a function of the in�u�

ent ammonia load rate is much smaller
 because the heterotrophic biomass

does not heavily depend on the availability of nitrate� Secondly
 there is

a large risk that Kload and the parameters used for modelling such a rela�

tionship will be strongly correlated and thus
 these parameters are likely to

be biased and lose their interpretability� The one�step predictions of ������

are shown in Figure ���� and ���� as dotted curves
 and the parameter

estimates of ������ and ������ are shown in Table ���� The variances of

the error terms in ������ and ������ are found applying similar equations

of ������
 ������
 and �������

The trends of the estimated maximum denitri�cation rates in Figure ����

and Figure ���� correspond reasonably� The estimates of �denit show that

the slow variations of the maximumdenitri�cation rate are not as signi�cant

as those obtained for the maximumnitri�cation rate� However
 some of the

variations in the maximumdenitri�cation rate are similar to the variations

of the maximum nitri�cation rate
 thus indicating some kind of common

external in�uence on the overall biomass performance �e�g� temperature

and wastewater composition�� A major part of the fast �uctuations is

likely due to changes in the readily bio�degradable substrate concentration

of the raw wastewater relative to the in�uent ammonia load rate� For

example
 the peak maximum denitri�cation rate at operation cycle f  �	

in Figure ���� and Figure ���� is presumably due to a high load of readily

bio�degradable substrate relative to the ammonia load� If these short�term

�uctuations are disregarded the estimated maximum denitri�cation rates

��� Conclusion ���

are more stable �in the range ��	����mgNO�
� �N�h�g SS� than the estimated

maximum nitri�cation rates �in the range ��	���	 mg N�h�g SS��

Finally
 the estimated half�saturation constants are large compared to the

suggested values in the literature as discussed in Section �����
 but the

general experience with estimating grey box models is that inadequate or

misspeci�ed models of Monod�kinetics often result in larger biased esti�

mates of the half�saturation constants� Thus
 the high estimates of KNO�
�

and Kload could be due to inadequacy of modelling the dependency of

readily bio�degradable substrate�

	�� Conclusion

The Aalborg West WWTP is a well�monitored plant
 where measurements

of ammonia and nitrate concentrations are obtained from two alternating

aeration tanks� Furthermore
 measurements of �ow rates
 oxygen supply

rates
 oxygen concentrations
 and suspended solids concentrations in the

aeration tanks are available� Measurements of phosphate concentrations in

one of the aeration tanks are also monitored but not modelled
 because a

major part of the phosphate is chemically precipitated� In this chapter a

data set covering a �� days period has been used for estimating the grey

box models presented in Chapter � in the sample time and operation cycle

time domain�

The considered data set contains several rainy weather periods
 typically

characterized by a high �ow rate to the plant and low loads of materials�

However
 some allowances should be made for the large bu�er capacity of

the sewerage� For modelling purposes
 it is convenient to divide the raw

wastewater volume into wastewater arising from households and industries


and rainwater� The in�uent ammonia load to the plant is modelled ac�

cording to human behaviour �i�e� diurnal and weekly patterns�
 while the

ammonia load during a rainfall event is modelled using a simpli�ed model

of two identical ideally mixed tanks in series with a total hydraulic reten�

tion time of approximately ��� hours� This estimate corresponds to the

� �
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hydraulic retention times of the sewerage
 primary clari�ers
 and anaerobic

pretreatment tanks during rainy weather�

A practical identi�cation of Monod�kinetic expressions is feasible
 because

the data set is extensive� Selected parameter estimates of the grey box mo�

dels estimated on data from Aalborg West WWTP are shown in Table ���	

with suggested values from the literature of the kinetic parameters� The

estimates in Table ���	 show consistency
 which validates the general grey

box model structure� All of the estimated half�saturation constants of the

nitri�cation process are within the range given by Henze et al� ����	�
 ex�

cept for KNH�
�

estimated on ammonia concentrations in the aeration tank

labelled LT�� However
 the ammonia sensor in LT� was mis�calibrated for

the �rst half of this time series
 which is clearly recognized from the esti�

mated dynamics of the in�uent ammonia concentrations� Unfortunately


the estimated half�saturation constants for the denitri�cation process are

too large compared to the values of the literature� This is mainly due to

some inadequacy of modelling the dependency of readily bio�degradable

substrate by the correlated in�uent ammonia load rate� Though
 it should

be stressed that the estimates of the half�saturation constants in general

are biased yielding slightly too high values�

The activity of the autotrophic and heterotrophic biomass is assessed from

the estimates of the maximum nitri�cation rate and the maximum denitri�

�cation rate in the operation cycle time domain� A short term correlation

between the activity of the autotrophic biomass and the in�uent ammo�

nia load rate is found and modelled using a simple linear relationship�

The correlation is typically recognized as a diurnal variation in the auto�

trophic biomass activity� The trends of the maximum nitri�cation rates

and maximum denitri�cation rates show similar variations in the opera�

tion cycle time domain indicating some kind of common external in�uence

on the overall biomass performance� Incorporating on�line measurements

of temperature and wastewater composition will most likely improve the

performance of the grey box models�

��� Conclusion ���

Parameter Unit LT� LT� LiteraturebCi�weekday�NH�
�

mg N�l ��	 ���bCi�weekend�NH�
�

mg N�l ��� ���

knit�max�NH�
�

mg N�l�g SS ��	� ����

knit�max�NO�
�

mg N�l�g SS ���	 ����bKNH�
�

�NH	

 � mg N�l 	��� 	��� 	���	��bKNH�

�

�NO�
� � mg N�l 	��	 	��� 	���	��bKO�

�NH	

 � mg O��l 	��� 	��� 	�����	bKO�

�NO�
� � mg O��l 	��� 	��� 	�����	

kdenit�max mg N�l�g SS ���	 ����bKNO�
�

mg N�l 	��� ��	� 	���	��

Table ���	� Selected parameter estimates from grey box modelling of data

from Aalborg West WWTP� The suggested values from the literature are

found in Henze et al� �����
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Chapter �

Prediction based control

The main objective of the developing of the grey box models in the pre�

vious chapter is the employment of these models for control of WWTP�s�

The �rst section of this chapter deals with the information needed for the

development of prediction based control systems
 and some of the potential

actuators for controlling the BIO�DENITRO and BIO�DENIPHO processes

are listed� In the classical control theory
 the main concern is controlling

a system according to a given reference value �for an overview of classical

control theory applied to activated sludge processes
 see Andrews ��������

However
 this theory does not apply to the control of the alternating pro�

cesses since the control of such a type of plant cannot be associated with the

minimization of the deviations from a given reference value� Thus
 strate�

gies for control of alternating processes have to be developed
 and the grey

box models serve as a predictive tool for simulating these strategies and

calculating on�line estimates of the state of the plant� This is described

in the second and third section
 where the examples of using the grey box

models in o��line simulations and on�line model�based predictive control

are given� In the fourth section an alternating process is simulated with

data from Aalborg West WWTP and the strategies presented in the two

previous sections are evaluated� The essence of this chapter is the potential

���

� �
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application of the grey box models for control of the BIO�DENITRO and

BIO�DENIPHO processes�

��� System variables analysis

The operation of a WWTP is in general based on a number of available

measurements and actuators
 which are called the system variables� The

available measurements and actuators are very speci�c to a given plant


i�e� the system variables depend on the process design of the plant and the

installed measurements� In particular
 the control system design is largely

determined by the process design of the plant as appropriate sensors may be

installed to provide the control system with the required information� Thus


the control of the process operation of a WWTP cannot be generalized

since there are strong interactions between the process design
 the available

measurements
 and the control system design� In fact
 with the multitude

of process designs and available measurements
 a vast number of control

system design exist� Though
 in the present context the process operation

control of the BIO�DENITRO and BIO�DENIPHO type of plants are solely

considered� The interaction of the control system
 available measurements


and the process operation is illustrated in Figure ����

The following measurements are assumed to be available on the BIO�

DENITRO or BIO�DENIPHO plant�

� Flow rate to the plant�

� Oxygen concentration in the aeration tanks�

� Ammonia concentration in the aeration tanks�

� Nitrate concentration in the aeration tanks�

� Phosphate concentration in the aeration tanks�

� Suspended solids concentration in the aeration tanks�

��� System variables analysis ���

� �

�
�

�
�

�
�

Return sludge rate

Process operation

Existing ctrl� system

Optimizing ctrl� system

In�uent�

Flow

E�uent�

Oxygen setpoint

Phase lengths

Figure ���� Illustration of the interaction of the measured variables and

potential controlling actions of the BIO
DENITRO and BIO
DENIPHO

processes�

The in�uent �ow rate to the BIO�DENITRO or BIO�DENIPHO system is

assumed to be the only measure of load
 as illustrated in Figure ���
 al�

though the in�uent concentrations of nutrients and organic materials have

a major e�ect on the process operation performance� However
 a major

advantage of implementing the grey box models on�line in a control system

is
 that estimates of these concentrations are obtained from the models
 if

the load of ammonia
 phosphate
 and organic materials is assumed to be

correlated
 and the in�uent nitrate concentration is assumed to be vanish�

ing�

Lack of information from the measurements above naturally reduces the

design of the control system and the e�ectiveness of the process operation

control� In fact
 the majority of WWTP�s in Denmark are equipped with

a very limited number of the measurements listed above� However
 savings

� �
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from an expected improved process operation should always be compared

with the initial expenditures of installing such equipment and the mainte�

nance costs
 if the installing of on�line measurements is to be decided� Some

measurements which have not been used in the system analysis of Chapter

� are temperature
 redox
 wastewater composition and pH�value� Infor�

mation from these measurements may be incorporated into the grey box

models of the previous chapter
 if instruments for measuring these variables

are installed� Experiences with installing and maintenance of ammonia
 ni�

trate
 phosphate
 and suspended solids sensors are found in Thomsen 

Nielsen �������

Controlling the process operation of a BIO�DENITRO or BIO�DENIPHO

plant based on the grey box models of the previous chapter requires access

to the following control actions�

� Oxygen concentration setpoints in aerobic periods�

� Phase lengths of aerobic�anoxic periods�

� Return sludge rate�

In fact
 these three actuators are controlled by adjusting aerators
 inlet and

outlet gates of the aeration tanks
 and intensity of the return sludge pump


but they are
 however
 to some extent assumed to be perfectly controllable

�in most plants these three parameters are controlled by a PLC��

The load of nutrients and organic materials to the plant usually varies

according to a diurnal and weekly pattern
 which requires an appropriate

adjustment of the oxygen setpoint and aerobic�anoxic phase lengths� Peak

loads of nutrients and organic materials may call for the adjustment of the

return sludge rate �in this case the clari�er design must also be considered��

In the following two sections two di�erent types of control systems are con�

sidered� O�
line simulations of control strategies are based on computer

simulations of strategies which can be implemented on a plant without an

on�line updating of the grey box models
 i�e� the control system is based

��� O�line simulations of control strategies ���

on simple strategies which in most cases can be installed on a PLC� Thus


the control system does not have access to any of the stochastic features

of the grey box models
 i�e� the estimated state variables �e�g� ammonia

load
 actual nitri�cation rate
 actual denitri�cation rate�� The simulations

are performed on a computer which is not connected to the PLC
 using

the grey box models and a random number generator� On
line model
based

predictive control is assumed to be implemented on a computer with access

to the system variables� The control strategies may incorporate values of

stochastic features �e�g� estimated ammonia load
 nitri�cation rates
 and

denitri�cation rates� from the grey box models as well as available mea�

surements� The grey box models are updated on�line as new measurements

become available and updated values for the operating points of the control

strategies are found� This is exempli�ed in the last section of this chapter�

In fact
 the simple control strategies may also be implemented in an on�line

model�based predictive control system
 but the on�line updating of the grey

box models makes the implementation of more advanced control strategies

possible�

��� O��line simulations of control strategies

At present
 many WWTP�s are not equipped with a supervising system for

control or even sensors for monitoring of nutrient concentrations� However


the grey box models are applicable for control of these plants by o��line

simulations of simple control strategies which can be implemented� In this

case
 the grey box models only serve as a simulation tool to choose one

optimal strategy among several�

Computer simulation has both advantages and disadvantages to a physical

simulation of a control strategy� Considerable knowledge of the wastewater

processes can be gained from the model simulations
 but model performance

and sensitivity of speci�c parameters could also be observed� Time can be

compressed on the computer with simulations being conducted in seconds

or minutes� This is especially important for the biological processes used in

� �
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wastewater treatment where rates are relatively slow and physical experi�

mentation may require weeks or even months� Computer simulations are

done easier
 cheaper
 and faster than physical experimentation
 and in the

case of wastewater treatment it is also more hygienic� The disadvantages

are
 that the computer simulations are no better than the model and data

they are based on
 and if the model is not a reasonable representation of

the WWTP
 computer simulations result in the generation of large quanti�

ties of worthless results� In particular
 the simulation of control strategies

bringing the system into a state which has not been used for estimating the

model
 may lead to fatal conclusion regarding the control of the system� As

a general rule
 computer simulations should at �rst be used for validating

the model structure
 and secondly to choose the optimal control strategy

to be used in a physical experiment�

Assuming that the oxygen concentration and the suspended solids concen�

tration in the aeration tanks are perfectly controlled according to their

setpoints
 the grey box models of Section ��� represent a simulation tool

for o��line testing of control strategies� The required input �ow rate to the

grey box models can be simulated using a sinusoidal signal
 or a time series

of historic �ow rates may be applied� The grey box models have the advan�

tage to other models
 that the process parameters used for simulation are

estimated on actual data from the given plant� However
 there are some

limitations to the use of the grey box models in simulations� The models

may not be appropriate of simulating load situations which are not re�ected

in the data set used for estimation� Thus
 the parameter estimation of the

grey box models should be based on data with highly time�varying loads�

The control strategies proposed below are simple strategies
 which can be

implemented on a PLC without an on�line use of the grey box models�

More advanced strategies are proposed in the next section�

For the control of the oxygen concentration setpoint the following o��line

control strategies are proposed�

��� A constant oxygen concentration setpoint�

��� O�line simulations of control strategies ���

��� A sinusoidal oxygen concentration setpoint which is a linear function

of the estimated diurnal variation of the in�uent ammonia load rate

�������

and for the control of aerobic and anoxic phase lengths�

�a� Constant phase lengths�

�b� Switching o� the aeration once the ammonia concentration in the

aerobic period lies below a certain value
 e�g� ��	 mg NH	

 �N�l�

�c� The strategy �b� combined with switching of phases once the nitrate

concentration lies below a certain value
 e�g� ��	 mg NO�
� �N�l�

The strategies listed above are only examples of a vast number of strategies

that can be simulated o��line� Strategies for control of the return sludge

rate are not proposed
 because the simulation of such strategies using the

grey box models would not take the in�uence on the clari�ers into account�

Raising the return sludge rate results in higher suspended solids concentra�

tions in the aeration tanks yielding higher removal rates of nutrients
 but

it also increases the likelihood of activated sludge loss to the e�uent�

The di�erent control strategies are evaluated by a cost function
 which may

incorporate the cost of aeration
 switching of phases
 return sludge pump�

ing
 and the discharge of ammonia
 nitrate
 and phosphate to the e�uent

assuming that the concentration of dissolved nutrient salts is unchanged by

passage of the clari�er� While the costs of the operations on the plant can

be calculated in terms of money
 the discharge of nutrients does not have

an immediate cost related to it
 unless regulatory limits of discharge are

exceeded� A cost function of the type illustrated in Figure ��� may prove

appropriate
 where !� is the additional cost of discharging an additional

� mg�l below the discharge limit
 ! is the additional cost of discharging

an additional � mg�l above the discharge limit
 and  is the cost of ex�

ceeding the regulatory limit� The values of !�
 !
 and  may be chosen

according to the expected e�ects of nutrient discharge on the e�uent
 and

in lack of such knowledge appropriate values are chosen�

� �
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Figure ���� Suggested cost function for the discharge of nutrients� !� and

! are the additional costs per volume of discharging an additional � mg�l

below and above the regulatory discharge limit�

O��line simulations of the grey box models may also be applied to WWTP�s

without on�line sensors permanently installed
 if data can be sampled from

the plant in a representative period using a mobile measuring equipment�

These data are used to estimate the grey box models for the given plant
 and

o��line simulations of strategies which are possible
 based on the perma�

nently available information at the plant
 are performed� This optimization

of the existing control system applies to smaller plants
 where the costs of

installing on�line sensors may exceed the bene�ts of improved operation�

��� Online modelbased predictive control ���

The grey box models also represent a tool which can be used for assess�

ing the e�ect of operational strategies regarding the biomass activity �both

autotrophic and heterotrophic�� If an extensive data set is monitored dur�

ing the physical experiment of improving the overall biomass activity
 the

parameter estimates of the maximum nitri�cation rate and maximum de�

nitri�cation rate are statistics by means of which an improvement can be

recognized
 assuming that external variables in�uencing the biomass activ�

ity �e�g� temperature
 wastewater composition
 pH�value� are constant or

somehow compensated for� For instance
 the e�ect of adding ferrosulphate

and other iron salts for chemical precipitation on the biomass activity may

be assessed�

��� On�line model�based predictive control

Assuming that the WWTP is equipped with a SCADA�system �Supervi�

sion
 Control
 And Data Acquisition� such that a data�interchange between

the on�line measurements
 an on�line model
 and the actuators is possible�

In this case
 the grey box models of Section ��� provide an optimal on�line

estimation ��ltering� of the monitored nutrient concentrations using the

Kalman �lter
 and on�line predictions of nutrient concentrations are ob�

tained which can be used for prediction based control� Employing on�line

predictions in the operation control is advantageous
 because the on�line

measurements of nitrate
 phosphate
 and especially ammonia concentra�

tions are associated with time delays due to the �ltering of the sample and

the composition analysis� At present
 the time delays in the commercial

monitoring systems of nutrient salt concentrations are of the magnitude ��

�� minutes
 while the time delay of the monitoring systems for oxygen and

suspended solids concentrations are considerably less� This means that the

operation control strategies can be e�ectuated more precisely when predic�

tions are applied
 thereby resulting in an improved operation performance�

Furthermore
 on�line updating gives access to the stochastic features of

the grey box models �e�g� estimated ammonia loads
 nitri�cation rates


denitri�cation rates�
 which can be used for developing control strategies�

� �
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The implementation of a control strategy in an on�line model�based pre�

dictive control system di�ers signi�cantly from the implementation of an

o��line simulated control strategy in the way the controlling actions are

e�ectuated� While the methods of the previous section are associated with

the assessment of the measured values �e�g� switching o� the aeration when

the measured ammonia concentration lies below ��	 mg NH	

 �N�l�
 the con�

trolling actions of a model�based predictive control system are associated

with the assessment of the predictions and estimates using their distribu�

tions �e�g� switching o� the aeration when the ���minutes ahead prediction

of the ammonia concentration lies below 	�� mg NH	

 �N�l with a probabil�

ity of �	"�� In the following the control strategies
 which are presented


are based on predictions at time of operation
 i�e� the time delays of the

sensors are incorporated in the predictions�

The information obtained from the grey box models can be used to develop

more advanced controlling strategies in addition to those proposed in the

previous section� For the control of the oxygen concentration setpoint the

following additional on�line strategy is proposed�

��� An adjustment of the oxygen concentration setpoint proportional to

the predicted nitri�cation rate �brnit�NH�
�

�t or brnit�NO�
�

�t� at time of

operation�

and for the control of the aerobic and anoxic periods�

�d� Switching from the aerobic to the anoxic phase when brnit���t 
 �


where � is an appropriately chosen constant and rnit���t is the pre�

dicted nitri�cation rate at time of operation� This strategy corre�

sponds in principle to strategy �b� with the major di�erence being


that this strategy uses a stochastic feature from the grey box models

in the evaluation of the plant operation�

�e� Switching from the aerobic to the anoxic phase when brnit���t 
 brdenit�t


where brnit���t is the predicted nitri�cation rate at time of operation

and brdenit�t is the predicted denitri�cation rate obtained from the

��� Online modelbased predictive control ���
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�

Anoxic �� aerobic

Area of operation

brnit���t

brdenit�t  � brnit���t

brnit���t   brdenit�tbrdenit�t

Figure ���� Illustration of the feasibility area of operation strategy �e�� At

each time
step the operation point �brnit�t� brdenit�t� is plotted� and if it is

outside the operation area� the phases are switched� The operation of the

plant will move from lower boundary to upper boundary and reverse in an

alternating manner�

present operating conditions if the switching is performed� Simi�

larly
 switching from the anoxic phase to the aerobic phase whenbrdenit�t 
 �brnit���t
 where brdenit�t is the predicted denitri�cation rate

at time of operation and brnit���t is the predicted nitri�cation rate

obtained from the present operating conditions if the switching is

performed� Thus
 the potential removals of ammonia and nitrate are

compared at every time step using � and 
 which are appropriately

chosen constants� Figure ��� shows the feasibility area of this strategy


where the present operating conditions of the plant are maintained as

long as the operation point �brnit���t
 brdenit�t� is within the boundaries

of the operation area�

� �
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The listing above only represents examples of the innumerable possible

on�line model�based control strategies� The strategies for phase control of

the BIO�DENITRO and BIO�DENIPHO processes presented above only

include the main phases of these processes �the lengths of the aerobic and

anoxic periods in the operation cycle
 i�e� Phase A and C in Figure ��� and

Phase B in Figure ����� Including the control of in�uent and e�uent �ow

from the alternating tanks in the strategies yields many new alternatives�

Selection of the most appropriate on�line model�based predictive control

strategy is primarily performed by o��line simulations of the wastewater

processes and the plant operation evaluated by a cost function as described

in the previous section� Secondly
 a physical implementation of the control

strategy may be performed to validate the e�ect of the given strategy�

Furthermore
 implementing the grey box models on�line in the SCADA�

system
 occurrences of inhibition and toxicity may be detected by contin�

uously assessing the estimated maximum nitri�cation rate and maximum

denitri�cation rate� In this case
 the grey box models serve the function of

surveillance� In addition
 automatic strategies or alarming the personnel

are employed in order to minimize the e�ect of inhibition and toxicity� Pro�

cedures for detection of failures in the measuring equipment for nutrient

salt concentrations are also easily applied due to the grey box models� For

example
 if the last three measurements of the ammonia concentration lies

outside the ��" con�dence limits of the predicted values
 the ammonia sen�

sor is most likely mis�functioning� However
 scaling and o�set calibration

errors are more di�cult to detect unless two sets of the same measure or

estimate can be compared� For example
 if both alternating aeration tanks

are equipped with ammonia sensors
 the results of estimating the grey box

models on both time series should correspond reasonably with allowances

to the uncertainty of the estimates�

��� A simulation study ���

��� A simulation study

In order to investigate the strategies proposed in the two previous sections


the grey box models of Section ��� are used for simulating a full�scale plant

with variable loads and nitrogen removal rates� A biological nutrient re�

moval system consisting of two alternating tanks �each having a volume of

���		 m�� is simulated using parameter values
 which are estimated on a

large data set from the Aalborg West WWTP �see Chapter ��� Throughout

the simulation
 a constant suspended solids concentration of ��� g SS�l is

maintained in the aeration tanks� A total of �	 days �starting with a Mon�

day� without any excessive disturbances from rainfall events is simulated�

The load of wastewater entering the biological nutrient removal system is

simulated using a diurnal pro�le in the form of a Fourier expansion �������

This pro�le has been estimated on historic data fromAalborgWest WWTP�

The average in�uent �ow to the aeration tanks �i�e� the raw wastewater

mixed with returned activated sludge� is �			 m��h on weekdays and �		

m��h on weekends� The load of ammonia to the plant is simulated using

������ and ����������� with the parameter estimates from the last column

of Table ���� In a similar way
 the nitri�cation
 denitri�cation
 and nutrient

transport processes are simulated by use of the appropriate equations of

Section ��� with the parameter estimates found in Tables ���
 ���
 ���


and ���� All the simulations in this section are excited by the same noise

sequence for generating the innovations of the grey box models�

����� The cost function

The control strategies proposed previously �strategies ������� for control of

the oxygen setpoint concentration and strategies �a���e� for control of the

aerobic and anoxic phase lengths� are evaluated against each other using

the cost function for the discharge of nutrients sketched in Figure ��� and

a cost function of aerating the activated sludge� Furthermore
 in order to

� �
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compare the control strategies to the typical time scheduling of the BIO�

DENIPHO process at Aalborg West WWTP
 this plant operation is also

simulated and evaluated by the same cost function�

In the present example the cost of discharging ammonia and nitrate to

the recipient when e�uent concentrations are below regulatory limits
 is


respectively

!�NH�
�

 �	�	 DKK�kg NH	

 �N

!�NO�
�

 �	�	 DKK�kg NO�
� �N

The cost of discharging ammonia and nitrate to the recipient when e�uent

concentrations are above regulatory limits
 is
 respectively

!NH�
�

 �	�	 DKK�kg NH	

 �N

!NO�
�

 �	�	 DKK�kg NO�
� �N

and the cost of exceeding the regulatory limits at any time is

�NH�
�

 �	�	 DKK��			 m�

�NO�
�

 �	�	 DKK��			 m�

The regulatory discharge limits for the ammonia and total nitrogen concen�

trations are ��� mg NH	

 �N�l and ��	 mg N�l in the majority of receiving

waters in Denmark
 today� However
 since the organic nitrogen concentra�

tion in the e�uent is not known
 it is assumed that approximately ����"

of the total nitrogen in the e�uent is organicly bound� Hence
 if the com�

bined inorganic nitrogen concentration in the e�uent exceeds ��	 mg�l
 an

additional cost on the nitrate concentration can be added to the cost func�

tion� Furthermore
 it is assumed that e�uent concentrations of ammonia

and nitrate from the aeration tanks remain unchanged by passage of the

clari�er into the recipient
 i�e� there are no signi�cant nitrogen removal

processes taking place in the clari�er� Thus
 a cost function of discharging

ammonia may be formulated

��� A simulation study ���

CostNH�
�

�t  
���������������������

!�NH�
�

� SE
NH�
�

�t
�Qt

if SE
NH�
�

�t
� �limit�NH�

�

!�NH�
�

� �limit�Nh�
�

� Qt � �NH�
�

�Qt

�!NH�
�

� �SE
NH�
�

�t
� �limit�NH�

�

� �Qt

if SE
NH�
�

�t
� �limit�NH�

�

�����

where �limit�NH�
�

 ��� mg NH	

 �l
 and similarly for the discharge of ni�

trate

CostNO�
�

�t  
���������������������

!�NO�
�

� SE
NO�
�

�t
�Qt

if SE
NH�
�

�t
� SE
NO�
�

�t
� �limit�Ninorganic

!�NO�
�

� �limit�Ninorganic

� Qt � �NO�
�

�Qt

�!NO�
�

� �SE
NH�
�

�t
� SE
NO�
�

�t
� �limit�Ninorganic
� �Qt

if SE
NH�
�

�t
� SE
NO�
�

�t
� �limit�Ninorganic

�����

where �limit�Ninorganic

 ��	 mg N�l� The superscript E in ����� and �����

indicates that the e�uent concentration of ammonia and nitrate to the

recipient are equal to the ammonia and nitrate concentrations in the alter�

nating tank with e�uent �ow�

The cost parameters for discharge of nitrogen are adequately chosen with

respect to the estimated cost of removing ammonia and nitrate in a WWTP

and expected causal e�ect on the ecological system of the recipient� How�

ever
 the choice of these cost parameters for the discharge of nutrients to

the recipient should be addressed to the local authorities and the politi�

cians
 i�e� the people with the power to decide if advanced on�line control

should be implemented on the municipal plants�

� �
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The cost of aerating may be easily derived if a model for the oxygen setpoint

concentration as a function of rotor RPM and plant load is given� However


such a relationship has not been identi�ed in the present context
 but it has

been estimated at the Aalborg West WWTP
 that the cost of aerating � kg

NH	

 �N is approximately � DKK� It is assumed that the cost of aerating

is not simply related to the removal of ammonia
 but that this cost is

related to maintaining the activated sludge aerated� Thus
 the following

cost function of aerating may be appropriate

CostO� �t  � DKK�kg N � kload�NH�
�

�f �Qt � V �

O��saturation

O��saturation�O��setpoint

�����

where O��saturation  �	 mg O��l is the saturation constant for oxygen

and kload�NH�
�

�f � Qt � V is the actual mass load of ammonia to the plant

at time t� The last term in ����� describes the e�ciency of the aerating

equipment as a function of the oxygen setpoint concentration
 O��setpoint�

Hence
 the cost of aerating is assumed to be proportional to the ammonia

load of the given operation cycle and a term for aerating according to the

oxygen setpoint concentration of the control strategy� The cost function

above ����� is likely to overestimate the actual cost of aerating
 since the

cost of keeping the activated sludge aerated is lower than the cost of both

removing ammonia and keeping the activated sludge aerated� However
 in

the present simulation study ����� is only used for exemplifying the concept

of prediction based control�

In the present simulations example the total cost of operation is related to

nitrogen discharge and aeration
 which is found as follows�

Costtotal  
��X

t��
CostNH�

�

�t � CostNO�
�

�t � CostO� �t �����

The time�step in the simulation is set to � minutes which gives a total of

��		 observations�

��� A simulation study ���

The parameters values used in the cost functions above and the behavior of

the cost functions may be disputed� However
 the key issue of the present

simulation study is not addressed to the derivation of exact savings by im�

plementing on�line model�based predictive control
 but it is addressed to

an internal evaluation of the proposed control strategies and the demon�

stration of the advantages using estimated grey box models for evaluating

and improving control strategies� Thus
 if the cost functions and related

parameters could be determined more exactly �e�g� in the form of a po�

litical decision�
 better estimates on the savings of implementing advanced

control strategies can be found� Finally
 other costs related to the plant

operation such as excess sludge disposals
 the number of times the aerating

equipment is turned on
 electricity consumption for controlling gates
 etc�

may be also taking into account when the total costs of di�erent control

strategies are considered�

����� Simulation results

The typical time scheduling of the BIO�DENIPHO process at the Aalborg

West WWTP is similar to the scheme in Figure ��� with the exception

of Phase C being omitted� The total operation cycle length is normally

� hours and the duration of Phase A and Phase B are �	 minutes and

� hour �	 minutes
 respectively� Applying ����� to a ten days simulation

of this BIO�DENIPHO operation mode results in a total cost of �����

DKK� In Table ��� the total costs of simulated operations are given for

the combination of the proposed control strategies of the oxygen setpoint

concentration
 �������
 and the aerobic�anoxic phase lengths
 �a���e�� Below

the cost values in the table
 the total cost relative to the typical BIO�

DENIPHO time scheduling given above
 is listed� The operation of the

plant in the simulations has been optimized with respect to the parameters

of the control strategies� In most cases the optimization can only be done

by hand
 since the total cost function is not smooth due to the randomly

generated innovations used in the simulations� Hence
 a global optimum is

not guaranteed in all cases
 and the costs found in Table ��� act more as

possible improvements�

� �
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Control strategies for Oxygen setpoint concentration

Aalborg West WWTP strategies

Typical operation ��� Constant ��� Sinusoidal ��� Oxygen set�

����� DKK oxygen oxygen point function

�		" setpoint setpoint of brrnit�t

�a� Constant ����� DKK ��	�� DKK ��	�� DKK

phase lengths �	��" �	��" �	��"

�b� Switching o� ���	� DKK ���	� DKK ����	 DKK

aeration
 SNH�
�

�t
� �	��" �	��" �	��"

�c� Combined with ����� DKK ����� DKK ����� DKK

switching
 SNO�
�

�t
� ����" ����" ����"

�d� Aerobic � anoxic ����� DKK ����� DKK ����� DKKbrnit���t 
 � ����" ����" ����"

�e� Strategy sketched ����� DKK ���	� DKK ���	� DKK

in Figure ��� ���	" ����" ����"

Table ���� Lattice of control strategies evaluated by the cost function

given in the previous subsection� The typical time
scheduling of the BIO


DENIPHO process results in a total cost of ���� DKK�

Comments to the simulation results in Table ����

�a��� The time scheduling of the BIO�DENIPHO process is optimized with

respect to the phase lengths and the oxygen setpoint concentration�

In this case the length of the total operation cycle is � hours with

� minutes for Phase A and �� minutes for Phase B in Figure ����

The typical time�scheduling is �	 minutes for Phase A and � hour

�	 minutes for Phase B� The optimal oxygen setpoint concentration

is found to be ��� mg O��l
 which is lower than the typical oxygen

setpoint concentration� Thus
 a signi�cant improvement of the total

cost is obtained compared to the typical BIO�DENIPHO operation

mode
 simply by optimizing the present plant operation�

��� A simulation study ���

�a��� Phase lengths are as in �a��� The oxygen setpoint concentration is

controlled according to the ammonia load pro�le with an average

of ��� mg O��l
 and it varies within the range of ������	 mg O��l�

Compared to strategy �a��
 this strategy yields a lower oxygen con�

sumption for aeration and a slight improvement in the total cost�

�a��� Phase lengths are as in �a��� The oxygen setpoint concentration is

optimized as a suggested linear function of the present nitri�cation

rate
 i�e� O��setpoint  ��� � 	��	 � brnit�NH�
�

�t� Hence
 the oxygen

setpoint concentration is approximately within ������	 mg O��l in

the beginning of the aerobic phase whereupon it decreases towards

��� mg O��l� Compared to strategy �a�� a small improvement of the

total cost is found�

�b��� Phase lengths are as in �a�� with the aerating equipment being turned

o� in the aerobic phase once the measured ammonia concentration


SNH�
�

�t 
 	��	� The time delay on the ammonia concentration mon�

itoring equipment is �� minutes
 and the optimal oxygen setpoint

concentration is found to be ��� mg O��l� Hence
 when the aeration

is turned o� the actual ammonia concentration in the aeration tank

is approximately 	�� mg NH	

 �N�l� A signi�cant improvement of the

total cost compared to strategy �a�� is obtained� It should also be

noted that the optimal oxygen setpoint concentration is increased�

�b��� Phase lengths are as in �a�� with the aerating equipment being turned

o� in the aerobic phase once the measured ammonia concentration


SNH�
�

�t 
 	���� The optimal oxygen setpoint concentration is found

to vary within the range of ������� mg O��l according to the diurnal

pro�le of the ammonia load� However
 the total cost of this strategy

does not di�er signi�cantly from the value obtained in �b���

�b��� Phase lengths are as in �a�� with the aerating equipment being turned

o� in the aerobic phase once the measured ammonia concentration


SNH�
�

�t 
 	��	� The oxygen setpoint concentration is optimized as

a linear function of the present nitri�cation rate
 O��setpoint  ��� �

	��	 �brnit�NH�
�

�t
 but this does not give an improved total cost for this

strategy compared to �b���

� �



��� Chapter �� Prediction based control

�c��� A switch of operating conditions from the aerobic to anoxic phase

is performed when SNH�
�

�t 
 ���
 and similarly from the anoxic to

aerobic phase if SNO�
�

�t 
 ��	 or SNH�
�

�t � ���� In the simulation

of control strategy �c� a minimum aerobic phase of �� minutes is al�

ways ensured� The time delay of the nitrate concentration monitoring

equipment is � minutes and the optimal oxygen setpoint concentra�

tion is found to be ��� mg O��l� Compared to strategy �b�� a notable

improvement in the total cost of operation is achieved�

�c��� A switch of operating conditions from the aerobic to anoxic phase

is performed when SNH�
�

�t 
 ���
 and similarly from the anoxic to

aerobic phase if SNO�
�

�t 
 ��� or SNH�
�

�t � ���� The optimal oxy�

gen setpoint concentration is found to vary within the range �������

mg O��l according to the diurnal pro�le of the ammonia load� No

signi�cant further improvement of the total cost is obtained�

�c��� A switch of operating conditions from the aerobic to anoxic phase

is performed when SNH�
�

�t 
 ���
 and similarly from the anoxic to

aerobic phase if SNO�
�

�t 
 ��� or SNH�
�

�t � ���� The oxygen setpoint

concentration is optimized as O��setpoint  ���� 	��	 � brnit�NH�
�

�t� No

signi�cant improvement of the total cost is obtained�

�d��� Phase lengths are as in �a�� with the aerating equipment being turned

o� in the aerobic phase once the model�based estimate of the ni�

tri�cation rate
 brnit�NH�
�

�t 
 ���	� The optimal oxygen setpoint

concentration is found to be ��� mg O��l� This strategy compares

to �b�� in its operation behavior
 and it is clearly recognized that the

use of on�line estimates in the plant control improves the total cost

of operation�

�d��� Phase lengths are as in �a�� with the aerating equipment being turned

o� in the aerobic phase once the model�based estimate of the ni�

tri�cation rate
 brnit�NH�
�

�t 
 ���	� The optimal oxygen setpoint

concentration is found to vary within the range ������� mg O��l ac�

cording to the diurnal pro�le of the ammonia load� The total cost

of this strategy is somewhat lower than the costs of �d�� and �d��


though the reason is still unclear�

��� A simulation study ���

�d��� Phase lengths are as in �a�� with the aerating equipment being turned

o� in the aerobic phase once the model�based estimate of the nitri�

�cation rate
 brnit�NH�
�

�t 
 ���	� The oxygen setpoint concentration

is optimized as O��setpoint  ��� � 	��	 � brnit�NH�
�

�t� No signi�cant

improvement of the total cost is obtained�

�e��� The strategy is sketched in Figure ��� where switching from aerobic

to anoxic conditions is performed when brnit�NH�
�

�t 
 �����brdenit�t
 and

where switching from anoxic to aerobic conditions is performed whenbrdenit�t 
 	��	 � brnit�NH�
�

�t� The nitri�cation and denitri�cation rates

used in this strategy are on�line estimates from the grey box models�

The optimal oxygen setpoint concentration is found to be ��� mg

O��l� This strategy compares to �c�� in its operation behavior
 and

for this type of strategy it is also clearly recognized that the use of

on�line estimates in the control strategy improves the total cost of

operation�

�e��� The strategy is sketched in Figure ��� where switching from aerobic

to anoxic conditions is performed when brnit�NH�
�

�t 
 �����brdenit�t
 and

where switching from anoxic to aerobic conditions is performed whenbrdenit�t 
 	����brnit�NH�
�

�t� The optimal oxygen setpoint concentration

is found to vary within the range ������� mg O��l according to the

diurnal pro�le of the ammonia load� This control strategy yields the

minimum total cost of operation in the table�

�e��� The strategy is sketched in Figure ��� where switching from aerobic

to anoxic conditions is performed when brnit�NH�
�

�t 
 ���� � brdenit�t


and where switching from anoxic to aerobic conditions is performed

when brdenit�t 
 	��� � brnit�NH�
�

�t� The oxygen setpoint concentration

is optimized as O��setpoint  ��� � 	��� � brnit�NH�
�

�t� No signi�cant

improvement of the total cost is obtained�

The optimal parameters of the control strategies above are found by sim�

ulating a �nite number of parameter combinations in a discrete parameter

space �e�g� combinations of ������	 mg O��l with a step length of 	�� mg

O��l are performed for the oxygen setpoint concentration�� Hence
 the

� �



�		 Chapter �� Prediction based control

strategies above may be further optimized with respect to the parameters


if the sensitivity of the parameter space is increased� However
 this will

also increase the number of simulations to be performed�

����� Discussion

The total cost of plant operation seems to be almost indi�erent to the

proposed strategies for control of the oxygen setpoint concentration as the

level of complexity in the proposed strategies for control of aerobic�anoxic

phase lengths increases� At the same time
 the oxygen setpoint concentra�

tion is increased� Hence
 according to this simulation example the plant

should be operated at a high oxygen setpoint concentration with relative

short aerobic periods� Actually
 using di�erent parameter values in the

cost functions above ���������
 it is found that the optimal oxygen setpoint

concentration is determined by the cost of aerating relative to the cost of

discharging ammonia to the recipient �e�g� if the cost of discharging am�

monia is increased�decreased
 the optimal oxygen setpoint concentration is

also increased�decreased��

The phase lengths of the aerobic and anoxic periods are mainly determined

by the cost of discharging ammonia relative to discharging nitrate� How�

ever
 the simulations show that at least �	" of the operation time should

always be dedicated to denitri�cation in the more advanced control strate�

gies ��b���e�� and aerobic periods should never coincide with periods of

in�uent �ow�

The strategy minimizing the total cost of operation in Table ��� is found

to be �e��
 which yields a slightly improved total cost compared to �e���

Comparing this strategy with the typical plant operation of Aalborg West

WWTP the following average e�uent concentrations are obtained for the

ten days simulation�

��� A simulation study �	�

Typical operation Strategy �e��

S
E

NH�
�

	��� mg NH	

 �N�l 	��� mg NH	

 �N�l

S
E

NO�
�

���� mg NO�
� �N�l ���� mg NO�
� �N�l

While the average e�uent ammonia concentration is slightly increased by

applying strategy �e��
 the average e�uent nitrate concentration is almost

reduced by � mg NO�
� �N�l� Furthermore
 the simulation of the control

strategy �e�� yields ��" aerobic operation time at an average oxygen con�

centration of ��� mg O��l and ��" anoxic operation time� The typical plant

operation has �	" aerobic operation time at an oxygen concentration of

��	 mg O��l� Thus
 evaluating these two di�erent plant operations only by

the cost of aeration
 it is found
Typical operation Strategy �e��

CostO��total �	��� DKK ����� DKK

Therefore
 strategy �e�� reduces the total nitrogen discharge to the recip�

ient as well as the cost of aerating� It should be stressed that the major

improvement in the total cost function of the di�erent strategies compared

to the typical operation is obtained from the identi�cation of the nitrogen

removal processes
 while the optimization of the parameters of the control

strategy has a smaller e�ect on the total cost function�

If the cost function ����� is an adequate measure of plant performance
 a

plant operated according to the control strategy �e�� can be reduced in

size� It is found that a reduction of the volumes of the aeration tanks

in the simulation of control strategy �e�� to ���	 m� yields a total cost

of operation similar to the typical plant operation� This is a reduction

in volume of �	��"� Thus
 if control strategies for plant operation are

taken into account when designing new plants
 large savings on the cost of

construction may be obtained�

� �
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��� Conclusion

In this chapter methods are proposed which use the grey box models of the

previous chapter for control of the BIO�DENITRO and BIO�DENIPHO

processes� Applying the grey box models to a WWTP requires
 in general


that the �ow rate
 oxygen
 ammonia
 nitrate
 phosphate
 and suspended

solids concentrations are monitored and used for estimating the parameters

of the given plant� Lack of some of these measurements result in less

appropriate models and a reduced operation performance� The grey box

models may be used for control of the oxygen concentration setpoints in

aerobic periods and phase lengths of aerobic and anoxic periods� Two

di�erent approaches to the application of the grey box models in control

of WWTP�s are suggested� o��line simulations of control strategies and

on�line model�based predictive control�

In order to use the grey box models for control of plant operation
 strategies

for the given actuators needs to be developed� If these strategies and a cost

function for evaluating the strategies are supplied
 the grey box models may

serve as an o��line simulator by means of which the e�ect of the di�erent

strategies can be assessed� The cost function may incorporate the costs

of plant operation and a cost related to the discharge of nutrients to the

recipient� Furthermore
 the rates estimates of the grey box models may be

used for assessing the e�ects of physical experiments related to the biomass

activity�

Implementing the grey box models on�line in a SCADA�system provides

on�line �ltering of the monitored nutrient salts concentrations and on�line

predictions of the nutrient concentrations� Applying model predictions

to the controlling system enhances the operation performance because the

measurement system is associated with noise and some time delay
 and more

advanced control strategies may be proposed based on estimates from the

models in addition to strategies based on measured values� Furthermore


the implementation of the grey box models on�line serve as a surveillance

system for inhibition and toxicity� Failures and mis�calibrations of the

��� Conclusion �	�

measurement system can be detected
 if some kind of rule�based procedures

on the parameter estimates and model predictions are applied�

In a simulation study
 strategies for control of the oxygen concentration

setpoint and aerobic�anoxic phase lengths are evaluated by a cost function�

The grey box models with parameters estimated on data from the Aalborg

West WWTP are used for simulating the BIO�DENIPHO process� The

simulations show that a reduction in both total nitrogen discharge and

oxygen consumption is obtained by applying advanced control strategies

to the plant operation� However
 the major improvement in the total cost

function of the di�erent strategies compared to the typical operation is

obtained from the identi�cation and quanti�cation of the ammonia load


nitri�cation
 and denitri�cation processes� This may have a major impact

on the plant operation of existing plants as well as the design of new plants�

� �
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Chapter 	

Conclusion

The present thesis is addressed to the formulation of operational models for

control of wastewater treatment plants including nutrients removal� The

proposed models are from a pragmatically point of view based on the avail�

able data of the given plant being modelled� Physical insight of the system

is incorporated into the models by including terms of the hydraulic and

biological processes which can be statistically identi�ed� These terms are

discrete time approximations to the deterministic di�erential equation for�

mulations
 which have been predominant in the modelling of wastewater

processes in the last decades�

Measurements of ammonia
 nitrate
 and phosphate concentrations from

plants of the BIO�DENITRO and BIO�DENIPHO type contain a great deal

of dynamic due to the alternating operation mode� An excessive amount of

information is extracted from the large variations of these measurements


making the statistical identi�cation of rates from several hydraulic and

biological processes possible� The models in the present context include

rate expressions for

� In�uent nutrient load�

�	�
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� Nutrient transport of the aeration tanks�

� Hydrolysis and growth of biomass�

� The nitri�cation process�

� The denitri�cation process�

� Biological phosphate uptake in biomass�

� Stripping of phosphate�

The majority of parameters used for modelling these processes have the

quality of interpretability relating to the deterministic theory of the pro�

cesses� The alternating operation mode introduces natural break points in

the time series of the measurements
 which is used for modelling of three

time�varying parameters in the operation cycle time domain�

� In�uent load rate of ammonia�

� Maximum nitri�cation rate�

� Maximum denitri�cation rate�

Applying simple approximations to the three time�varying parameters above


estimates of these describe the variations of the in�uent ammonia con�

centration to the aeration tanks
 the activity of the autotrophic biomass


and the activity of the heterotrophic biomass� The three time�varying pa�

rameters are essential to the nitrogen removal performance of a biological

nutrient removal system� The models presented in this thesis are denoted

grey box models
 since they are not as detailed as the #white# determinis�

tic models and still contain some physical insight of the system as opposed

to the black box models� Data from two di�erent wastewater treatment

facilities have been used for the development of the grey box models�

Two data sets from the Lundtofte pilot scale plant have been employed for

the estimation of the grey box models� In order to use the Kalman �lter

Chapter �� Conclusion �	�

on this data
 a model for the correlation of the measurement noise has to

be formulated� It is found
 that the identi�cation of Monod�kinetic expres�

sions is practically feasible
 if an extensive data set is available� The kinetic

parameter estimates of the grey box models are consistent with the values

found in the literature� The estimated in�uent ammonia concentrations

re�ect a major part of the dynamics of the measured in�uent ammonia

concentrations
 but the estimates are biased towards lower values� The

variations of the in�uent ammonia concentrations are modelled according

to human behavior in the operation cycle time domain
 but the diurnal

and weekly patterns are interrupted by periods of rainy weather� The ac�

tivities of the autotrophic and the heterotrophic biomass are time�varying�

However
 lack of information on external variables describing some of this

variation reduces the performance of the models in the operation cycle time

domain�

At the Aalborg West wastewater treatment plant two sets of ammonia and

nitrate concentrations are monitored from the alternating aeration tanks�

The modelling of the in�uent ammonia load to the plant is divided into

two distinct situations
 dry weather periods and rainy weather periods�

The latter is based on the assumption
 that the dynamics of the sewerage


the primary clari�ers
 and anaerobic pretreatment tanks can be modelled

as two ideally mixed tanks in series with identical volume holdings� The

estimates of the kinetic parameters are consistent with the suggested val�

ues of the literature
 though several of these estimates are in�uenced by

the mis�calibration of one of the ammonia sensors� The estimated in�u�

ent ammonia concentrations show large variations which are partly due to

many rainy weather periods� The estimated autotrophic biomass activity

is found to be strongly correlated with past estimates of the ammonia load

rate� This is modelled as a short�term dependency in the operation cycle

time domain� However
 the slow dynamics of the autotrophic and the hete�

rotrophic biomass are not adequately described in the operation cycle time

domain due to lack of information on the in�uence of external variables�

A small number of irregularly samples measurements of temperature and

sludge volume index may suggest a relationship between these two variables

and the overall biomass activity�
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The models are useful for on�line surveillance and control of a wastewater

treatment plant of the BIO�DENITRO or BIO�DENIPHO type
 because

the states of the plant are quanti�ed by the physically interpretable pa�

rameters of the grey box models� In order to use the grey box models

for control
 operational strategies need to be developed� These strategies

are evaluated by a cost function which includes the cost of operation and

discharge of nutrients� Primarily
 the grey box models may be applied

to o��line simulations of the developed strategies
 and secondly
 selected

strategies may be practically implemented on the plant with or without

an on�line implementation of the grey box models� A simulation study

evaluating and optimizing several control strategies shows that a reduc�

tion in both total nitrogen discharge and oxygen consumption is obtained

by applying on�line model�based predictive control to the plant operation�

Though
 the identi�cation and quanti�cation of the wastewater processes

used in the control strategies has a larger e�ect on the plant operation

than the optimization of the parameters of the control strategies� Thus
 an

improved operation by applying advanced control should be considered on

existing plants as well as in the design of new plants�

Appendix A

Numerical considerations

The choice of numerical methods applied to the estimation of the grey box

models presented in Chapter � is crucial� The increasing complexity of the

parameterization of the structural models calls for the development of well�

suited numerical methods in order to implement the estimation algorithms

on a computer� The problems arise due to the �nite arithmetic in a com�

puter introducing rounding errors for every calculation with real numbers�

The calculations of an algorithm may have several algebraically equiva�

lent implementations with di�erent numerical properties� Thus
 for a given

estimation algorithm the selection of the appropriate numerical implemen�

tation is very important� However
 as a general rule
 the computations

should always be carried out using double precision� In the �rst section of

this appendix methods for stabilizing the Kalman �lter recursions given in

Section ��� are described
 and the second section deals with the numerical

optimization�

�	�
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A�� Kalman �lter data processing

Applying the Kalman �lter recursions ����������� to time series with many

observations often give rises to numerical problems� This is due to the

accumulation of rounding errors in the covariance matrix of the state vector
bPt
 and eventually the covariance matrix may become non�positive de�nite

�i�e� at least one of the eigenvalues of bPt is non�positive�� Unreliable

estimates of the covariance matrix also a�ect the calculation of the Kalman

gain ������ and the variance of the prediction error ������� In the end


all the parameter estimates become unreliable and the convergence of the

estimation algorithm is endangered�

Bierman ������ suggest replacing the covariance matrix update ������ by

a stabilized covariance update

bPtjt  bPtjt���Kt
bRtjt��K
T

t �KtK
T

t �A���

which enhances the numerical stability� However
 it does not guarantee

numerical stability and positive de�niteness of bPt� Thus
 methods for up�

dating the square root of the covariance matrix have been proposed in order

to ensure that bPt is positive de�nite� Since all covariance matrices should

be symmetric and positive de�nite
 it is desirable to use their Cholesky

factorization
 e�g� the LDLT factorization �see Fletcher  Powell ��������

Assume that a n� n matrix A is known to be positive de�nite� Hence
 A

has a Cholesky decomposition form
A  LDLT �A���

where L is a lower triangular matrix and D is a diagonal matrix with the

elements of the diagonal di � 	� Suppose A is modi�ed as follows

eA  A �GDgG
T �A���

A�� Kalman �lter data processing ���

where eA is known from other considerations to be positive de�nite
 and

Dg is a diagonal matrix� Thus
 it is necessary to compute a unit lower

triangular matrix eL and a diagonal matrix eD with edi � 	 such that

eA  eL eD eLT �A���

An algorithm for solving this problem is given in Thornton  Bierman

����	� based on modi�ed Gram�Schmidt orthogonalization techniques �see

e�g� Lawson  Hanson ��������

Hence
 using the LDLT �factorization of bPt��jt��
 the prediction of the co�

variance matrix in ������ implicitly apply to the transformation �A��� and

the LDLT �factorization of bPtjt�� is found by applying the algorithm of

Thornton  Bierman ����	��

The updating equation of the covariance matrix ������ is rewritten as

bPtjt  bPtjt�� �Kt
bRtjt��K
T

t

m bPtjt  bPtjt�� � bPtjt��c
T bR��

tjt��c
bPtjt��
T

meL eD eLT  LDLT � LDLTcT bR��
tjt��c�LDL
T �T

meL eD eLT  L�D �G bR��
tjt��G
T �LT �A���

where

G  DLTcT bR��
tjt�� �A���

The expression �D �G bR��
tjt��G
T � in �A��� is of the form �A��� which can

be solved by the previously mentioned algorithm for the factors LDL

� �
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Algorithm Adds Multiplies Divides

Conventional Kalman ���n� � ���n ���n� � ���n �

Stabilized Kalman �n� � �n �n� � �n �

LDLT �factorization �n� � n ���n� � �n n

Table A��� Operation counts for the Kalman recursions� Data from Thorn�

ton  Bierman ����	��

and as a result eL LL and eD D� Thus
 with the LDLT �factorization of

the covariance matrix
 L and D are used for updating and prediction such

that the positive de�niteness of bPt is preserved� The implementation of this

algorithm for the Kalman recursions is facilitated by a routine developed

by Madsen  Melgaard �������

Table A�� lists the computation requirements of standard implementations

of the conventional Kalman �lter ������ �����
 the stabilized Kalman �lter

������� substituted by �A����
 and the LDLT �factorization method �A���

A���
 where n denotes the dimension of the state space vector xt� The

LDLT �factorization of the covariance matrix is very competitive with the

other algorithms� For the extensive data sets in Chapter � and Chapter �

used to estimate the grey box models of Section ���
 numerical instability

of the Kalman �lter was observed using the conventional Kalman �lter

and the stabilized Kalman �lter� Applying the LDLT �factorization to the

computations on the covariance matrix
 the positive de�niteness of bPt was

ensured for these large data sets�

A�� Numerical optimization

Estimating the parameters of the grey box models presented in Section

��� requires optimizing the maximum likelihood function ������� In the

actual case
 it is not possible to give a closed form expression for the es�

timates as a function of the sample values
 and the maximization has to

A�� Numerical optimization ���

be performed using a numerical procedure� The methods presented in this

context also apply for non�linear least squares estimation and other opti�

mization problems� Some parameters may be constrained to span only a

part of the vector space
 �n
 which
 in practice
 is implemented by adding

a penalizing term around the constraints� However
 only simple constraints

on the parameters * of the form �i � 	 is needed for estimating the grey

box models considered in the present context� Thus
 the problem can be

transformed into an unbounded optimization problem by estimating the

logarithmic transform of the parameter
 and hence
 the estimation of the

parameters of the grey box models is based on unconstrained optimization�

For practical reasons the negative logarithm of the likelihood ������ is con�

sidered� The object is to minimize this function
 which will have the same

properties as the likelihood function� Hence
 the general problem consid�

ered is to �nd the minimizing point of a non�linear function F � �n � �

min
x

F�x� �A���

Several methods for minimizing F are proposed in Judge et al� �������

Most of these methods are gradient methods characterized by a step length

� and a step direction h such that

F�x� �h� 
 F�x� �A���

Among optimization methods
 Newton�Raphson�s method has shown to

be exceptionally e�ective� The method uses the inverse of the Hessian to

specify the step direction in each iteration� The method is based on a

Taylor expansion of F at the search point xk up to the quadratic terms

F�x� � F�xk� � G�xk�
T �x � xk� �
�

�
�x� xk�
TH�xk��x � xk� �A���

where G�x� is the gradient and H�x� is the Hessian
 which is always sym�

metric and positive de�nite in the minimum point of F�x��

� �
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The �rst�order condition of a minimum for F is found by di�erentiating

�A��� with respect to x
G�xk� �H�xk��x � xk�  	 �A��	�

or

x  xk �H�xk�
��G�xk� �A����

and the step size h is then given by

hk  �H�xk�
��G�xk� �A����

The procedure �A���� requires the computation of the gradient and Hessian�

However
 analytical computations of the �rst and second derivative of F

cannot be provided for the estimation method considered in this context�

Thus
 a �nite�di�erence approximation g�xk� to the gradient G�xk� and

a secant approximation Bk to the Hessian H�xk� is applied� The secant

approximation is more e�ective and robust than a �nite�di�erence Hessian

approximation in the minimization� This class of secant methods are called

quasi�Newton
 and the most successful seems to be the BFGS method for

iterative Hessian approximation combined with soft line search �see Dennis

 Schnabel ��������

A���� Finite�di�erence derivatives

An obvious �nite�di�erence approximation to the gradient is the forward

di�erence approximation

gi�xk� �
F�xk � hiei� �F�xk�

hi

� i  �� � � � � n �A����

A�� Numerical optimization ���

where ei is the i�th basis vector and hi is the step�size used in the calcula�

tions� Although this forward di�erence approximation is generally accurate


the central di�erence approximation may be used for obtaining better es�

timates of the gradient�

gi�xk� �
F�xk � hiei� �F�xk � hiei�

�hi

� i  �� � � � � n �A����

However
 one disadvantage of using the central di�erence approximation is


that is requires �n rather than n evaluations of F assuming that F�xk� is

already available�

According to Dennis  Schnabel ������ the optimal choice of step size for

the forward di�erence approximation is

hi  ����xi �A����

and for the central di�erence approximation

hi  ����xi �A����

where xi is the i�th parameter of the xk�vector and � is a constant somewhat

larger than the given machine precision �e�g� �		 times larger than the

given machine precision�� If F is calculated by an iterative procedure
 �

may be much larger than the machine precision� The forward di�erence

approximation usually provides acceptable accuracy unless the gradient at

the evaluation point is small� Thus
 switching to the central di�erence

approximation at a certain stage in the procedure is recommended as the

gradient approaches zero in the neighborhood of the minimum� The switch

should be e�ectuated when there is a failure to �nd a lower point during

the linear search�

� �
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A���� BFGS�update

The method used for updating the Hessian approximationBk is the BFGS�

update given in Dennis  Schnabel ������

Bk	�  Bk �
yky
T

k

yTk sk
�
Bksks
T

kBk

sTkBksk

�A����

where yk is the di�erence between the present and the previous gradient

�i�e� yk g�xk	�� � g�xk�� and sk is the di�erence between the present

and previous parameter estimate �i�e� sk  xk	� � xk�� A necessary and

su�cient conditions for this formula to have a positive de�nite solution

Bk	� is
 that Bk is positive de�nite and

yTk sk � 	 �A����

The soft line search will meet this demand�

A���� The soft line search

The parameter updating equation �A���� is improved by applying a scalar

�k � 	 to the search direction
xk	�  xk � �khk �A����

where hk is the secant direction obtained from �A���� with the BFGS�

update of the Hessian� The parameter �k is chosen to assure that the

next iterate decreases the function value of F and the condition �A���� is

ful�lled� Often �k  � will satisfy these demands such that the soft line

search reduces to the secant method �A�����

A�� Numerical optimization ���

It can be shown that the line search will be globally convergent if each step

satis�es two simple conditions� Firstly
 the decrease in F is su�ciently

large in relation to the length of the step sk  �khk� The relation

F�xk	�� 
 F�xk� � �g�xk�
T sk �A��	�

where � is a constant in the range between zero and one
 is chosen to

ensure this condition� Secondly
 the step length must not be too short�

The equation

g�xk	��
Tsk � g�xk�
Tsk �A����

will implement this condition
 with  being a constant in the range between

zero and one� This last expression and g�xk�Tsk 
 	 imply

yTk sk  �g�xk	�� � g�xk��
T sk � � � ��g�xk�
Tsk � 	 �A����

hence the condition �A���� is full�lled�

In practice
 when using the soft line search the �rst guess is �k  �� If this �

is not admissible because it fails �A��	� then it will be decreased� The new

� is found by a cubic interpolation that �ts F�xk�
 g�xk�
 F�xk � �phk�


and g�xk��phk�
 where �p is the previous value of �� Alternatively
 if the

� value satis�es �A��	� and not �A����
 � will be increased� The new � is

found by extrapolation� After one or more repetitions of the ��transitions


an admissible �k is found
 as it can be proved that there exists an interval of

��values satisfying the condition �A��	� and �A����
 see Dennis  Schnabel

�������

An important result when applying the algorithm described above to the

maximum likelihood estimation is
 that the Bk approximation of the Hes�

sian matrix at minimum of F can be used as an estimate of Fisher�s

information matrix� Thus


� �
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V & b�' � �B��
� �A����

where � is the parameter vector of length n� The covariance matrix of the

parameter estimates is obtained from the BFGS�update of the Hessian at

minimum
B��

The implementation of this algorithm for optimization of a non�linear func�

tion given a parameter vector is facilitated by a routine developed by

Madsen  Melgaard ������� This routine has been investigated together

with another quasi�Newton algorithm
 the IMSL�routine DB�ONF �IMSL

�������� The routine by Madsen  Melgaard ������ is more robust in

the convergence
 but it also yields larger estimates in the diagonal of the

Hessian
 i�e� a smaller variance on the estimates
 if the variances of the

estimates are not well�conditioned�

A�� Summary

The choice of the numerical implementation of an algorithm has a major

impact on the result obtained due to the �nite arithmetic of a computer�

The practical implementation of two algorithms essential to the estimation

of the grey box models of Section ��� is presented� Firstly
 the application

of the conventional Kalman �lter algorithm on large data sets is unstable


potentially resulting in a non�positive de�nite covariance matrix of the state

space vector� Using the LDLT �factorization of the covariance matrix en�

sures that the covariance matrix is maintained positive de�nite throughout

the Kalman �lter recursions� Secondly
 the optimization of the likelihood

function with respect to the parameters is performed using a quasi�Newton

algorithmwith a �nite�di�erence approximation to the gradient and BFGS�

update of the Hessian� Combining the BFGS�update with a soft line search

ensures that the Hessian is positive de�nite at optimum� A very important

result is
 that an estimate of the covariance matrix of the parameter vector

estimate is obtained by evaluating the Hessian at the optimum�

Appendix B

Summary of grey box

models

This appendix summarizes the grey box models of Section ���� In the

�rst section the general form of the observation equation and the process

equation for all the time series is listed� The following sections deal with

the modelling of the mean process rate for the time series of ammonia


nitrate
 and phosphate concentrations�
���
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B�� Observation and process equations

The following observation and process equations are valid for the time series

of ammonia
 nitrate
 and phosphate�

Observation equation�

yt  mt � �
Tut � �t �B���

Process equation�

�� � ��B � � � �� �pB
p��!mt � ���t�  �Tut � et �B���

B�� Mean process rate of ammonia

The mean process rate of �B��� for the time series of ammonia concentra�

tions is given by�

�NH�
�

�t  rload�NH�
�

�t � rtransport�NH�
�

�t � rhydrolysis�NH�
�

�t � rnit�NH�
�

�t�

�B���

where
rload�NH�

�

�t  
�

kload�NH�
�

�f �Qt�� inlet gate open

	 inlet gate closed

�B���

rtransport�NH�
�

�t  
�����

ktransport�NH�
�

�SI
NH�
�

�t��
� SNH�

�

�t��� �Qt��

outlet gate open

	 outlet gate open
�B���

B�� Mean process rate of ammonia ���

rhydrolysis�NH�
�

�t  khydrolysis�NH�
�

� kload�NH�
�

�Qt�� �B���

rnit�NH�
�

�t  
�������

�knit�max�NH�
�

�f �

S
NH

�
�

�t��

S
NH

�
�

�t��
	K
NH

�
�

�

SO��t��

SO� �t��	KO�

�XSS�t��

aerobic conditions

	 anoxic�anaerobic conditions

�B���

and the following models are given in the operation cycle time domain to

describe the variations of some of the parameters above�

In�uent ammonia load rate�

$load�B��kload�NH�
�

�f � �load�NH�
�

�t�  eload�NH�
�

�f �B���

where

�load�NH�
�

�t  
���������

�weekday�NH�
�

� �t if the samples of the operation cycle are

on a weekday

�weekend�NH�
�

� �t if the samples of the operation cycle are

on a weekend

�B���

and

�t  

sX
i�
��i cos
��it

T

� i sin
��it

T

� �B��	�

Maximum nitri�cation rate�

$nit�B��knit�max�NH�
�

�f � �nit�max�NH�
�

�f �  enit�NH�
�

�f �B����

� �
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where

�nit�max�NH�
�

�f  f�T� pH� kload�NH�
�

�f��� � � �� �B����

B�� Mean process rate of nitrate

The mean process rate of �B��� for the time series of nitrate concentrations

is given by�
�NO�

�

�t  rtransport�NO�
�

�t � rnit�NO�
�

�t � rdenit�t� �B����

where

rtransport�NO�
�

�t  
�������������

ktransport�NO�
�

�SI
NO�
�

�t��
� SNO�

�

�t��� �Qt��

inlet gate closed and outlet gate open

�ktransport�NO�
�

� SNO�
�

�t�� �Qt��
inlet gate open

	 otherwise
�B����

rnit�NO�
�

�t  
�������

knit�max�NO�
�

�f �

S
NH

�
�

�t��

S
NH

�
�

�t��
	K
NH

�
�

�

SO� �t��

SO��t��	KO�

�XSS�t��

aerobic conditions

	 anoxic�anaerobic conditions

�B����

B�� Mean process rate of phosphate ���

rdenit�t  
�������

�kdenit�max�f

S
NO
�

�

�t��

S
NO
�

�

�t��
	K
NO
�

�

k
load�NH

�
�

Qt��

k
load�NH

�
�

Qt��	K
load�NH

�
�

XSS�t��

anoxic conditions

	 aerobic�anaerobic conditions

�B����

and the following models are given in the operation cycle time domain to

describe the variations of some of the parameters above�

Maximum nitri�cation rate�

$nit�B��knit�max�NO�
�

�f � �nit�max�NO�
�

�f �  enit�NO�
�

�f �B����

where

�nit�max�NO�
�

�f  f�T� pH� kload�NH�
�

�f��� � � �� �B����

Maximum denitri�cation rate�

$denit�B��kdenit�max�f � �denit�max�f�  edenit�f �B����

where

�denit�max�f  f�T� pH� kload�NH�
�

�f��� � � �� �B��	�

B�� Mean process rate of phosphate

The mean process rate of �B��� for the time series of phosphate concentra�

tions is given by�

� �
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�PO��
�

�t  rload�PO��
�

�t � rtransport�PO��
�

�t

�rhydrolysis�PO��
�

�t � rP�uptake�t� rP�strip�t �B����

where
rload�PO��

�

�t  
�

kload�PO��
�

�Qt�� inlet gate open

	 inlet gate closed

�B����

rtransport�PO��
�

�t  
�����

ktransport�PO��
�

�SI
PO��
�

�t��
� SPO��

�

�t��� �Qt��

outlet gate open

	 outlet gate open
�B����

rhydrolysis�PO��
�

�t  khydrolysis�PO��
�

� kload�PO��
�

�Qt�� �B����

rP�uptake�t  
�������������������

�kP�uptake�max �
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Appendix C

The state space form of

the grey box models

In this appendix the grey box models of Appendix A are put into the state

space form
 ������ and ������
 to be accordingly handled by the Kalman

�lter�

���

� �
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Review of the state space form

Observation equation�

yt  cxt � �
Tut � �t �C���

Process equation�

xt  Axt�� �Dut � bet �C���

State space formulation

The state space form of �B��� and �B��� is obtained by de�ning the state

vector xt with the dimension n  p��
 where p is the order of the autore�

gressive polynomial in �B����

xt  & mt�� !mt � � � 'T �C���

Thus
 the vectors of the observation equation �C��� is given by

c  & � � 	 � � � 	 'T �C���

and

�  & �� �� � � � �n '
T �C���

Similarly
 the vectors and matrices of process equation �C��� is found by

de�ning

Appendix C� The state space form of the grey box models ���

A  
�							

� � 	 	 � � � 	

	 �� � 	 � � � 	

	 �� 	 � � � � 	

���

���

���

���

� � �

���

	 �p 	 	 � � � �

	 	 	 	 � � � 	
��������

�C���

D  
�					

	 	 	 � � � 	

� �� �� � � � �l

��� 	 	 � � � 	

���

���

���

� � �

���

��p 	 	 � � � 	
������ �C���

b  & � 	 � � � 	 'T �C���

where ut in �C��� and �C��� is given by

ut  
�			


�t
u�t

���
ult

���� �C���

The vector of external variables is modi�ed to also include �t
 such that all

the information available from previous samples is contained in xt and �t�

� �
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