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Preface

This thesis has been written during my work as a Ph.D. student at
the Department of Wind Energy and Atmospheric Physics, Risg Na-
tional Laboratory and the Department of Informatics and Mathematical
Modelling, Technical University of Denmark in partial fulfillment of the
requirements for acquiring the Ph.D. degree in Engineering.

The aim of the Ph.D. study has been to develop short-term wind power
prediction models, and to implement these models in an on-line software
application. In the model development the emphasis is on combining
physical knowledge and statistical models and methods. As the models
are to be implemented in an on-line application, the focus is on solutions
which are reliable and practically feasible.

The thesis consists of a summary report and a collection of 10 research
papers written during the period 1997-2002, and elsewhere published.

Lyngby, May 2002

Alfred Joensen






Acknowledgements

In carrying out the work described in this thesis I have received impor-
tant assistance from many people. First of all I want to address my
sincere gratitude to my two supervisors, supervisor Prof. Henrik Madsen
from the Department of Mathematical Modelling, Technical University
of Denmark and co-supervisor Ph.D. Lars Landberg from the Depart-
ment of Wind Power Meteorology, Risg National Laboratory. Thanks
for your invaluable help and guidance.

Thanks are also due to my colleagues and the administrative staff at
the above mentioned departments for their invaluable cooperation, help,
and discussions. Especially, I would like to thank the Ph.D. students
Gregor Giebel, Peter Thyregod, Klaus Andersen, Harpa Jonsdottir and
Henrik Oejlund, with whom I have shared office during longer and shorter
periods during the course of my Ph.D.

I wish to thank Torben Skov Nielsen and Henrik Aalborg Nielsen, both
working at the Department of Mathematical Modelling. Several of the
papers in this thesis have been prepared in cooperation with them, and
this has provided many interesting and invaluable discussions.

Also I wish to thank Prof. Edgar O’Hair, and the rest of the staff at
the Department of Electrical Engineering, Texas Tech University, where
I spent six months as visiting researcher. Thanks for making this period
such a pleasent one.



vi Acknowledgements

Furthermore, I am truly indebted to the Danish Research Academy, for
supporting my work financially.

Finally, a huge thanks goes to my wife, Oluva, our two daugthers, Beinta
and Anna, and our son, Andreas, for putting up with a husband and
father, who spent most of the last three years in a book or in front of a
computer, and still provided an endless amount of love and patience.



Papers included in the thesis

[A]

[B]

Alfred Karstin Joensen, Henrik Madsen, Henrik Aalborg Nielsen and
Torben Skov Nielsen. Tracking time-varying parameters with local
regression. Automatica, Vol 36, pages 1199-1204. 2000.

Henrik Aalborg Nielsen, Torben Skov Nielsen, Alfred Karstin
Joensen, Henrik Madsen and Jan Holst. Tracking time-varying
coefficient-functions. Int. J. of Adaptive Control and Signal Pro-
cessing, 2000. Accepted.

Torben Skov Nielsen, Alfred Karstin Joensen, Henrik Madsen, Lars
Landberg and Gregor Giebel. A new reference for wind power fore-
casting. Wind Energy, Vol 1, pages 29-34, 1999.

Alfred Karstin Joensen, Torben Skov Nielsen and Henrik Madsen.
Statistical methods for predicting wind power. In Wind Energy for
the Next Millenium, European Wind Energy Conference, pages 784—
788, Dublin, Ireland, October 1997.

Alfred Karstin Joensen, Gregor Giebel, Lars Landberg, Henrik Mad-
sen and Henrik Aalborg Nielsen. Model output statistics applied to
wind power prediction. In Wind Energy for the Next Millenium,
European Wind Energy Conference, pages 1157-1161, Nice, France,
March 1999.



viii

[F]

Lars Landberg and Alfred Karstin Joensen. A model to predict the
output from wind farms — an update. In proceedings from BWEA
20, British Wind Energy Conference, pages 127-132, Cardiff, UK,
1998.

Lars Landberg, Alfred Karstin Joensen, Gregor Giebel, Henrik Mad-
sen and Torben Skov Nielsen. Short-term Prediction towards the
21st Century. In proceedings from BWEA 21, British Wind Energy
Conference, pages 127-136, UK, 2000.

Lars Landberg, Alfred Joensen, Gregor Giebel, Simon Watson, Hen-
rik Madsen, Torben Nielsen, Leif Laursen, J. U. Jgrgensen, Dimitrios
Lalas, Maria Trombou, S. Pesmajoglou, John Tgfting, Hans Ravn,
Ed MacCarty, Earl Davis and Jamis Chapman. Implementation of
Short-term Prediction. In Wind Energy for the Next Millennium, Eu-
ropean Wind Energy Conference, pages 52-57, Nice, France, March
1999.

Alfred Joensen. HIRLAM - Analysis of vertical model levels. Sub-
mitted for publication.

Simon J. Watson, Gregor Giebel and Alfred Joensen. The Economic
Value of Accurate Wind Power Forecasting to Utilities. In Wind En-
ergy for the Next Millennium, European Wind Energy Conference,
pages 1009-1012, Nice, France, March 1999.



Summary

The present thesis consists of 10 research papers published during the
period 1997-2002 together with a summary report. The objective of the
work described in the thesis is to develop models and methods for calcu-
lation of high accuracy predictions of wind power generated electricity,
and to implement these models and methods in an on-line software ap-
plication. The economical value of having predictions available is also
briefly considered.

The summary report outlines the background and motivation for devel-
oping wind power prediction models. The meteorological theory which
is relevant for the thesis is outlined and the background for the models
and methods which are proposed in the various papers is described. The
software system, Zephyr, which has been developed is also described in
the summary report.

The main part of the papers have been written in conjunction with two
research projects where the Department of Informatics and Mathemat-
ical Modelling and the Department of Wind Energy and Atmospheric
Physics have been two major participants. The first project entitled
'Implementing Short-term Prediction at Utilities’, founded by the Euro-
pean Commission under the JOULE programme. The second project is
founded by the Danish Ministry of Energy under the Energy Research
Programme, and is entitled (in Danish) 'Vindmelleparks Produktions
Prediktor’. Both projects have now finished.



X Summary

The papers A and B are related to general issues in modelling and esti-
mation. Paper A considers on—line estimation of linear models, where the
parameters to be estimated exhibit smooth time variations. An estima-
tion method derived from local polynomial regression is suggested, using
local polynomials in the direction of time to approximate the parameters
locally. The results presented in the paper indicate that the method is
superior to the classical Recursive Least Squares (RLS) method, if the
parameter variations are smooth. In paper B a method for on-line and
adaptive estimation of Conditionally Parametric Auto-Regressive eXtra-
neous (CPARX) models is derived, and some of the properties of the
method are analyzed. This method can be interpreted as recursive local
regression. Essentially it is a combination of the RLS method with ex-
ponential forgetting and local polynomial regression. Furthermore, the
paper suggests a modification of the exponential forgetting scheme of the
RLS method, to cope with the added complexity, which is introduced by
allowing the parameters to be functions of other variables than just time.

The Papers C to I are all related to short-term prediction of wind power.
In Paper C a new reference for short-term prediction models is proposed,
and it is argued that the new reference model is more suitable than the
often used persistence predictor, especially if the prediction horizon is
above a few hours. The new reference model is almost as simple as
the persistence predictor, basically, it is a prediction horizon dependent
weighting between the persistence and the mean of the power, where
the weighting is determined by the auto-correlation of the wind power
time series. In Paper D conditional parametric models estimated using
local regression are used to identify important explanatory variables in
short-term prediction models. These models are estimated using off-line
techniques. In paper E similar models are considered, but in this paper
the new recursive estimation method described in Paper B is used to
estimate the functional shapes of the coefficient functions in the condi-
tionally parametric models. This paper also presents some models where
physical relations are incorporated in the models, and the performance of
these models is compared to the performance of models where no direct
physical relations are used. The result from this comparison is that it is
not advantageous to use the physical relations. Paper I compares wind
speed predicted by the numerical weather prediction model HIRLAM, to
measured wind speeds at different heights. The purpose of this compar-
ison is to analyse the influence of the turbulence intensity and how the
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turbulence is handled by HIRLAM.

Paper F gives an overview of the short-term prediction system, Prediktor,
developed at Risg National Laboratory. Some simple statistical correc-
tion models are tested, which correct the predictions from the physical
relations used by the Risg system. In this paper a change in the prop-
erties of the predictions from the numerical weather prediction model is
observed. Usually prediction performance is measured by e.g. the Root
Mean Square error (RMS). This paper gives a more direct picture of the
performance, by using combined time series plots of measurements and
corresponding predictions. From these plots it can be verified that the
overall flow is predicted well by the numerical weather prediction model.

Paper G briefly outlines the reason for considering combined statisti-
cal and physical models. The architecture of the software application,
Zephyr, is also briefly outlined. This paper also proposes models for
the purpose of calculating short-term predictions covering a larger area.
The background for the models which are proposed, is that it is expected
that power measurements from a larger area covering several wind farms,
will be smoother than the measurements from a single wind farm, due
to spatial averaging effects. The models have not been tested, as no
measurements of total wind power have been available for this work.

Paper H describes the results from the 'Implementing Short-term Pre-
diction at Utilities’ project. In this paper both the prediction system de-
veloped at The Department of Informatics and Mathematical Modelling
and the system developed at Risg National Laboratory are outlined, and
the performance of the systems is evaluated. Experience from the use of
these two systems at utilities is also provided, and the utilities find that
both systems are very useful.

The last paper addresses the economical value of short-term predictions.
Predictions from several prediction models are used as input to a model of
the England /Wales electrical grid, and it is found that for low penetration
of wind energy, predictions have little value. As the penetration increases
the predictions and their accuracy of the become more important, and it
is also shown that confidence limits for the predictions can increase the
economical value of the predictions.






Resumeé

Nearvaerende afhandling bestar af ti forskningsartikler publiceret i peri-
oden 1997-2002, samt af et sammendrag heraf.

Formaélet med arbejdet, der er beskrevet i denne afhandling, har veeret
at udvikle modeller og metoder til beregning af kortfristede prognoser
af vindmglleproduceret elektricitet. Derudover har det veeret at im-
plementere de udviklede modeller og metoder i en on-line softwareap-
plikation. Den gkonomiske vaerdi af disse forudsigelser er ogsé blevet
undersggt.

Afhandlingen indeholder en resumé rapport, der beskriver baggrunden
og motivationen for at udvikle prognosemodeller for vindenergi. Den
meteorologiske teori, der er relevant for afhandlingen, er beskrevet og
baggrunden for de modeller og metoder der er foreslaet i artiklerne, er
gennemgaet. Softwareapplikationen, Zephyr, der er udviklet som en del
af projektforlgbet, er ogsa beskrevet.

Hovedparten af artiklerne er skrevet i forbindelse med to forskningspro-
jekter, hvor Institut for Informatik og Matematiske Modellering, samt
Afdelingen for Vindenergi og Atmosfaerefysik har veeret de stgrste delt-
agere. Det fgrste projekt, kaldet 'Implementing Short-term Predictions
at Utilities’, er finansieret af Europa Kommissionen, under JOULE pro-
grammet. Det andet projekt er finansieret af det danske energimin-
isterium under energiforskningsprogrammet og kaldes ’Vindmglleparks
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Produktions Prediktor’. Begge projekter er nu afsluttede.

Artiklerne A og B omhandler generelle forhold i forbindelse med model-
lering og estimation. Artiklen A omhandler on—line estimation af linesere
modeller, hvor de estimerede parametre udviser langsomme tidsvaria-
tioner. En estimationsmetode, udledt fra lokal polynomieregression er
foreslaet, der anvender lokale polynomier i retning af tidsvariablen til
lokal tilngermelse af parametrene. Resultaterne praesenteret i artiklen in-
dikerer, at denne metode giver bedre resultater end den klassiske adap-
tive rekursive mindste kvadraters metode (RLS), forudsat at parameter-
variationerne er glatte. I artiklen B undersgges en metode til on-line og
adaptiv estimation af betingede parametriske autoregressive modeller,
hvor der indgar eksterne forklarende variable. Derudover er nogle af
metodens egenskaber undersggt. Denne metode kan fortolkes som rekur-
siv lokal regression, specielt som en kombination af den klassiske mindste
kvadraters metode med eksponentiel glemsel og lokal polynomie regres-
sion. Endvidere foreslas der i artiklen, at den eksponentielle veegtfunk-
tion i den traditionelle adaptive mindste kvadraters metode modificeres.
Dette for at handtere den ggede kompleksitet, der introduceres ved at
parametrene tillades at veere funktioner af flere variable end tidsvari-
ablen.

Artiklerne C til I omhandler alle kortfristede prognoser af vindenergi.
I artikel C praesenteres en ny referencemodel for kortfristede prognose-
modeller, og der argumenteres for, at den nye referencemodel er mere
velegnet end den ofte anvendte persistent-prediktor. Dette specielt i sit-
uationer, hvor prediktionshorisonten er over et par timer. Den nye refer-
encemodel er naesten lige sa enkel som den hyppigt anvendte persistent-
prediktior. I princippet bestar den nye referencemodel af en veegtning
mellem persistent-prediktor og gennemsnitsveerdien af energien, hvor
vaegtningen for en given prediktionshorisont bestemmes af autokorrela-
tionen i den givne vindenergitidsserie. I artiklen D er betingede parame-
triske modeller, estimeret ved lokal regression, anvendt til at identificere
de vigtigste forklarende variable i kortfristede prognosemodeller. Disse
modeller er estimeret med off-line metoder. I artiklen E undersgges lig-
nende modeller, men her estimeres disse ved anvendelse af de rekursive
metoder beskrevet i artikel B. Denne artikel praesenterer ogsa mod-
eller, der indeholder fysiske relationer, og resultaterne ved anvendelse
af disse modeller sammenlignes med de statistiske modeller. Resultatet
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af sammenligninger viser i dette tilfeelde, at det ikke er en fordel at
anvende fysiske relationer. Artikel I sammenligner prognoser af vind-
hastigheder fra en numerisk vejrprognosemodel, HIRLAM, med malte
vindhastigheder fra forskellige hgjder. Formalet med denne sammenlign-
ing er at undersgge indflydelsen af turbulens intensiteten, og hvorledes
denne handteres i HIRLAM.

Artikel F gennemgar det kortfristede prognosesystem, Prediktor, er ud-
viklet pa Risg. Modeller, hvor der er foretaget enkle statistiske korrek-
tioner af prognoserne fra de fysiske relationer, er afprgvede. 1 denne
artikel er der vist, at prognoserne fra den numeriske vejrprognosemodel
@ndrer egenskaber. Typisk males kvaliteten af prognoser ved statistiske
mal, s& som summen af afvigelseskvadraterne. I denne artikel er disse
mal suppleret med en direkte sammenligning af méalte og predikterede
tidsserier. Af disse sammenligninger fremgar det klart, at den numeriske
vejrprognosemodel 1 hgj grad er i stand til at prediktere det generelle
flow i atmosfeeren.

Artikel G beskriver kort arsagen til at der udvikles modeller, der byg-
ger pa en kombination af statistik og fysik. Arkitekturen i opbygningen
af softwareapplikationen, Zephyr, er ogsa gennemgaet. Denne artikel
foreslar ogsa modeller til beregning af prognoser af vindenergi produc-
eret 1 stgrre geografiske omrader. Baggrunden for disse modeller er, at
det forventes at variationen i malingerne fra et stgrre omrade, vil veere
mindre end variationerne i malingerne fra en enkelt vindmgllepark. Dette
som fplge af spatielle udligningseffekter. Modellerne er ikke afprgvede,
idet der ikke har veeret malinger af den samlede produktion fra et stgrre
omrade til radighed for dette projekt.

Artikel H beskriver resultaterne fra projektet 'Implementing Short-term
Predictions af Utilites’. T denne artikel beskrives prognosesystemet ud-
viklet ved Institut for Informatik og Matematisk modellering, samt prog-
nosesystemet, udviklet pa Risg. Desuden er kvaliteten af disse systemer
evalueret. Erfaringer fra anvendelse af begge systemer hos el-selskaber
viser, at begge systemer er anvendelige.

Den sidste artikel omhandler den gkonomiske veerdi af kortfristede prog-
nosemodeller. Prognoser fra flere prognosemodeller bruges som inddata
til en model for det elektriske netveerk i England og Wales. Resultaterne
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viser, at ved lave penetrationer af vind energi har prognoserne ingen
eller lille veerdi, men i takt med at penetrationen stiger, bliver prog-
noserne vigtigere. Desuden vises at, konfidensintervaller for prognoserne
kan veere med til at gge veerdien.
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CHAPTER 1

Introduction

This thesis deals with the issue of making short-term predictions of wind-
power-generated electricity. The first section describes the background
for the thesis and the motivation for developing short-term prediction
models for wind power. Section 1.2 contains bibliographic notes to pre-
vious research within the field of short-term prediction of wind power.
Section 1.3 describes the objectives of the study and in Section 1.4 a
brief outline of this summary report is provided.

1.1 Background and motivation

Electrical utilities all over the world are beginning to realize the need for
reliable wind power predictions, as the penetration of electricity gener-
ated by wind farms in the electrical grids is increasing. As the industry is
approaching maturity, the market is shifting from heavily subsidised tech-
nology demonstration plant to capital-driven shareholder value. From
the description in the following sections it will become apparent, that in
order for the wind power industry to survive in the future, new methods
that facilitate the reliability of wind power are necessary.
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1.1.1 Increasing penetration

Figure 1.1 shows the development in the penetration of electricity pro-
duced by wind farms. The numbers shown are from Denmark. In 1999
the raw share of electricity from wind power is close to 9 %, for the nor-
malized wind production values the share is more than 10 %. The values
are from (Krohn 2000).

0,12

o
=
|

0,08 -

0,06 -

0,04

Share of Wind Energy

0,02 -

1980 1985 1990 1995 2000

Year

Figure 1.1: Share of electricity produced by wind energy in Denmark.
Rectangles correspond to values where the wind power production has
been normalized to an average wind year.

If the exponential growth in the share seen in Figure 1.1 continues, one
could be lead to expect that all electricity will come from wind power
after only a few years. This is not the case. It is important to note
that the share value shown in the figure is not the same as savings in
fossil fuels used by conventional power plants. This is illustrated in the
following example.

An example — A storm coincides with low load
In Paper H the power production set-up in the Western part of Denmark

s outlined. The power production set-up consists of 6 primary stations
with a total capacity of 4.3 GW, a large number of local CHP (Combined
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Heat and Power) units with a total capacity of 1.4 GW and, finally,
wind turbines with a total rated capacity of approximately 1 GW. The
production from the local CHP units and the wind turbines is treated as
priority production, which means that this production has to be accepted
in the electrical grid. The annual variation in the load in the Western
part of Denmark is in the range 1.2-8.7 GW.

From these numbers it is seen that if a storm coincides with a low load
situation, then the wind turbines alone will be able to cover the demand,
resulting in overproduction of power if the primary power plants are not
shut down. This could be the case if the storm peaks during the night-
hours where the load is particulary low. On the other hand, if the storm
is predicted, actions can be taken in due time to e.g. shut down pri-
mary power plants. As demonstrated by this example, wind power pre-
dictions are necessary for optimal dispatch and scheduling of the total
power production, and the importance of the predictions increases as the
penetration from wind power increases.

In the worst case, this means that if the wind power is completely unpre-
dictable, it will not save any fossil fuels at all. In principle there are three
ways to prevent this. Accumulation of wind energy, e.g. using batteries,
wind power predictions and/or spatial distribution of wind turbines. The
first method is evident, but has not yet proved practically feasible, the
second method is the subject of this thesis. Predictions can be used for
creating an optimal combination of wind power production with other
power sources, like hydro power and/or fossile fuel power plants. The
final method is a feature of the atmosphere. More specifically, from the
assumption that the wind always blows somewhere, distributing the wind
turbines over a larger area stabilises the wind power production.

Germany, Spain and Denmark are the leading countries in Europe with
regard to installed wind power capacity. In the beginning of 2001 the
installed wind power capacity in Europe was close to 13000 MW, in
Germany 6100 MW, in Spain 2400 MW and in Denmark 2300 MW.
This means that the three leading countries account for more than 83 %
of the installed capacity in Europe. Only two other countries have wind
power capacities that are in the same order of magnitude as the leading
countries in Europe, these are USA with an installed capacity of 2500
MW and India with an installed capacity of 1200 MW.
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The global installed capacity in the beginning of 2001 was 17700 MW,
which means that the 5 countries mentioned above account for approxi-
mately 82 % of the world wide installed wind power capacity.

1.1.2 Liberalization

The electricity sector is currently subject to liberalization, and as a con-
sequence of this, a new structure is emerging. The sector is being divided
into three independent groups, which are production, transmission and
distribution.

The production companies are both the owners and operators of the con-
ventional power plants and some of the wind farms. The transmission
companies are the owners and operators of the high voltage transmis-
sion network, and the distribution companies are responsible for the low
voltage distribution network supplying the individual consumers.

In this set-up, when fully implemented, the dealings between the opera-
tors will be based on short-term contracts, typically day to day contracts.
Any deviations from the reported demand or production will be subject
to economic penalty. This means that operators with a considerable
amount of wind power will be highly dependent on wind power predic-
tions.

The same is the case for the players in emerging energy trade markets.
Nord Pool, The Nordic Power Exchange, is an energy trade marked estab-
lished in Norway in 1993. In 1995 the national authorities in Denmark,
Finland and Sweden agreed to establish a common Nordic energy trade
marked. As a result of this, Sweden joined Nord Pool in 1996, Finland
in 1998, and, finally, Denmark joined the marked in 1999.

On this marked the value of wind power depends on the availability and
accuracy of wind power predictions, as in this market the dealings of
power is also based on short-term contracts. One of the key concepts of
the short-term contracts, is that the dealings of power for the following
day have to be settled at noon the day before. This means that the wind
power prediction horizon has to be between 12-36 hours in order to be
useful for trading on Nord Pool.



1.2 Previous research 5

1.2 Previous research

Developing models for short-term prediction of wind power production
is by no means a trivial task, as the underlying system covers everything
from the large scale atmospheric flow, influence by local topography, veg-
etation and atmospheric conditions, the wind farm layout and the single
turbine. This system, including each single component, is by nature
non-linear and non-stationary.

Short-term prediction of wind farm power production has already been
the subject of extensive research prior to this study. The approach used
in this research can be distinguished by the type of input-data used in the
prediction models. In principle there are three categories; models based
on local measurements, models based on numerical weather predictions,
and finally, models based on a combination of both local measurements
and numerical weather predictions. The following sections provide an
overview of these types of models and bibliographic notes.

As mentioned previously, the research presented in this thesis has been
performed in a collaboration between the Department of Informatics and
Mathematical Modelling at the Technical University of Denmark and the
Research Programme Wind Power Meteorology at Risg National Labora-
tory. These departments have been working within the short-term wind
power prediction field for a long time, Risg since 1989 and the Techni-
cal University of Denmark since 1992. Both departments have partici-
pated, and still do, in international research projects related to this field.
This research has resulted in two on-line software prediction systems, im-
plementing short-term prediction models which today are considered as
state-of-the-art.

1.2.1 Local measurements

The methodologies that have been applied to local measurements are
within the field of time series analysis, regression analysis and neural
networks. One of the easiest prediction models is the persistence model.
In this model, the prediction for all prediction horizons is set to the most
recent measurement value. This means, by definition, that the error for
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the now cast, i.e. zero prediction horizon, is zero. Furthermore, for
short prediction horizons, i.e. on the order of minutes or a few hours,
the error is relatively small compared to the errors for predictions from
numerical weather prediction models or more sophisticated time series
models. This is because the atmosphere is quasi-stationary, the time
scales in the atmosphere are in the order of days (at least in Europe).
It takes about one to three days for a low-pressure system to cross the
continent, high-pressure systems can be more stationary. As the pressure
systems are the driving force for the wind, the changes in the wind have
time scales of the same order. Therefore, the persistence model has been
used as a comparative model for other prediction models. For longer
prediction horizons, i.e. more than a few hours, the persistence model
is not adequate as a comparative model. In Paper C it is shown that a
first order auto-regressive model is more adequate.

In the research described by (Bossanyi 1985) a Kalman Filter with the
last 6 values (1 minute averaged data) as input is used to predict the
next step. This gave 10 % improvement in the RMS error compared
to the error of the persistent predictions for the next time step. This
improvement decreased for longer averages, and disappeared completely
for 1-hourly averages.

In (Dutton, Kariniotakis, Halliday & Nogaret 1999) an autoregressive
model and an adaptive fuzzy logic based model for the cases of Crete
and Shetland showed minor improvements over persistence for 2-hour
horizons. For longer horizons significant improvements were found, i.e.
for the 8 hour horizon an 20 % improvement in the RMS error was found.
However, as described in Paper C, the persistence model is not adequate
as reference for these horizons. Furthermore, the fact that most of the
likely wind speeds were contained in the 95 % confidence band for the
longer horizons, means that using the mean value for all times as the
predictand would provide almost the same RMS error results compared
to the models in this paper.

The early models (Madsen 1996) developed at the Department of Infor-
matics and Mathematical Modelling, were based on local measurements
only. Like the models described above, these models did not perform
well for prediction horizons above 6—12 hours.
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In (Beyer, Degner, Hausmann, Hoffmann & Rujén 1994) neural networks
are used for next-step prediction of either 1-minute or 10-minute aver-
aged data. In both cases they find 10 % improvement over the persistence
model. This is achieved with a rather simple topology, while more com-
plex neural network structures did not improve the results further. In
(Tande & Landberg 1993) it is found that neural networks used to predict
10-second values using 1-second averages perform only marginally better
than the persistence model. In (Bechrakis & Sparis 1998) neural net-
works are used to utilise wind direction information, but no performance
measures over persistence are presented.

1.2.2 Measurements and Numerical Weather Predictions

Based on the methodology developed for the European Wind Atlas (Troen
& Petersen 1989), Risp National Laboratory has developed short-term
prediction models based on physical reasoning (Landberg 1999, Landberg
& Watson 1994). These models are primarily based on numerical weather
predictions as input, and are more thoroughly described in Chapter 2.

The University of Oldenburg (Beyer, Heinemann, Mellinghoff, Ménnich
& Waldl 1999) has developed models similar to those developed at Risg.
The main difference is that the models developed at Oldenburg use nu-
merical weather predictions from the Deutschlandmodell of the German

Weather Service DWD instead of HIRLAM.

Vitec AB from Sweden is working on a model based on meteorological
forecasts from Swedish Meteorological and Hydrological Institute SMHI.
So far, nothing is published (Giebel 2000).

In (Martin, Zubiaur, Moreno, Rodriguez, Cabre, Casanova, Hormigo &
Alonso 1993) a prediction tool for the rather special case of Tarifa/Spain
is described. Due to the special topological situation for the wind farms in
Strait of Gibraltar, they could predict the power output from the pressure
difference between measurements at Jerez and Malaga airports, with the
additional use of Spanish HIRLAM. The founding for this project was
stopped, and the project therefore ended half way through.

As mentioned previously, the early models developed at the Department
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of Informatics and Mathematical Modelling, were only taking local mea-
surements as input. Therefore, models which included meteorological
forecast were developed (Nielsen & Madsen 1996), and it is a statistical
model which takes both measurements and meteorological forecasts as
input, which is implemented in the on-line prediction system, WPPT
(Wind Power Prediction Tool), developed at this department. This sys-
tem is briefly outlined in Paper H.

The models developed at Risg National Laboratory, also make use of local
measurements. This is mainly for calibration purposes, also described as
MOS (Model Output Statistics) (Landberg & Joensen 1998). Therefore
it is important to note that on-line measurements are not used in this
model to calculate the actual predictions.

EWind is an US-American model by TrueWind, Inc (Bailey, Brower
& Zack 1999). Instead of using a once-and-forall parameterization for
the local effects, like the Risg approach does with WAsP, they run the
ForeWind numerical weather model as a meso-scale model using bound-
ary conditions from a regional weather model. Due to the enhanced
resolution in the meso-scale model more physical processes are captured,
and the predictions can be better tailored to the local site. Nevertheless,
they use adaptive statistics to remove the final systematic errors. No
performance results are presented.

In (Shuhui, Wunsch, O’Hair & Giesselmann 2001) regression and neu-
ral network methodology is compared in the aim of modelling the wind
turbine power curve. From the models tested it is concluded that the
neural network approach is superior to regression. The power curve is es-
timated using local measurements of meteorological variables and power.
This power curve is then supposed to be used for the transformation of
numerical weather predictions to predictions of the power production.
This approach is not sound as the properties of the numerical weather
prediction are not necessarily the same as the properties of the measure-
ments, i.e. properties like the statistical metrics mean and variance. This
problem is further described in (Jonsson 1994), which argues that if er-
rors are present in the regressors the use of the true system for prediction
will not result in optimal predictions. No results from using numerical
weather predictions are presented in this paper.
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1.3 Objectives

The main objective of the research presented in this thesis has been to de-
velop models and methods for short-term prediction of wind farm power
production. As described in the previous section, short-term prediction
has already been the subject of extensive research. The purpose of the
research described in this thesis, is different in the way that the purpose
has been to find out how the physical and statistical approaches taken
previously, can be combined and further refined in order to improve the
prediction quality.

Furthermore, the emphasis has been on the development of practically
applicable models and methods, as the final objective has been to develop
an on-line software application, which implements the developed models
and methods.

All considered models are taking numerical weather predictions as input,
i.e. the objective of the thesis has not been to develop models for the
description of the large scale atmospheric flow. The maximum prediction
horizon which has been considered is 36 hours. The horizon is limited
by the prediction horizon of the weather forecasts from the numerical
weather prediction model.

An issue which is closely related to predictions is the economical value
of the predictions, and specifically how the economic value depends on
the accuracy of the predictions. This issue is also briefly considered in
this thesis.

1.4 Brief outline

The thesis consists of 10 research papers, which have been written during
the Ph.D study, and a summary report.

The purpose of the summary report is to give an overview of the included
papers, and to give a description of the theoretical background for the
thesis. The summary report also includes description of work which has
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not been published elsewhere.

Chapter 2 outlines some of the meteorological theory which is relevant
for the thesis. In Section 2.2 the numerical weather prediction model,
HIRLAM, which has provided input variables to all the considered pre-
diction models, is briefly described. A somewhat more detailed descrip-
tion of the equations and physical parameterizations used in HIRLAM is
outlined in Appendix A. In Section 2.3 the short-term prediction system
developed by the Department of Wind Energy and Atmospheric Physics
at Risg National Laboratory, and the physical models applied in this
system are described. Chapter 3 briefly describes the statistical models
and methods that have been considered in this research, and provides
bibliographic notes.

Chapter 4 links the included papers together, and the goal of this chapter
is to give a unified view of the obtained results and bring the papers into
context. Some of the topics addressed in the various papers are described
in more detail, and some general remarks on the statistical models and
methods considered in the papers will be provided.

In Chapter 5 the developed on-line software application, called Zephyr,
will be described.

Finally, in Chapter 6, the overall conclusions of the thesis are stated.



CHAPTER 2

Meteorology

This chapter gives a brief introduction to meteorology in general, and
secondly it goes into some more detail about the meteorological theory
which is relevant for the thesis.

2.1 Basic concepts

Air flow, or wind, can be divided into three broad categories: mean
wind, turbulence and waves. Each can exist separately or super-imposed
onto each other. Transport of quantities such as moisture, heat and
momentum is dominated in the horizontal by the mean wind, and in the
vertical by turbulence. A large number of phenomena can be observed
in the atmosphere, which are driven by highly complex processes, and,
consequently, the theory which exists to describe these phenomena is
very comprehensive and complex. This chapter can therefore only give
a brief introduction to meteorology, and the emphasis is on phenomena,
which are relevant for the objectives of this thesis.
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2.1.1 Basic equations

The behaviour of the atmosphere is well described by seven variables:
pressure, temperature, density, moisture, two horizontal velocity compo-
nents, and the vertical velocity; all functions of time and position. The
behaviour of these seven variables is governed by seven equations: the
equation of state, the first law of thermodynamics, three components of
Newton’s second law and the continuity equations for mass and water
substance. Motions in the atmosphere are slow enough compared to the
speed of light that the Galilean/Newtonian paradigm of classical physics
applies. These equations, collectively known as the equations of motion,
contain time and space derivatives that require initial and boundary con-
ditions for their solution.

The complete set of equations is so complex that no analytical solu-
tion is known. In a particular meteorological field or application, like
boundary-layer meteorology or in a numerical weather prediction model,
these equations are simplified and parameterizations and approximations
are utilized which are valid in the particular field.

2.1.2 Turbulence

Turbulence, the gustiness super-imposed on the mean wind can be vi-
sualized as consisting of irregular swirls of motion called eddies. Usu-
ally turbulence consists of many different sized eddies super-imposed on
each other. Much of the turbulence is generated by forcings from the
ground. For example, solar heating of the ground during sunny days
causes thermals of warmer air to rise. These thermals are just large
eddies. Frictional drag on the air flowing over the ground causes wind
shears to develop which generates turbulence (Kelvin-Helmholtz waves).
The largest size eddies can be 100-3000m in diameter, these are the
most intense eddies because they are produced directly by the forcings
described previously. Smaller size eddies are apparent in the swirls of
leaves and in the wavy motions of the grass. These eddies feed on the
larger ones. The small eddies, on the order of a few millimeters in size,
are very weak because of the dissipating effects of molecular viscosity.
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2.1.3 Turbulent flow

Although the equations mentioned in Section 2.1.1 could be applied di-
rectly to turbulent flow, this is not possible in practice. The scales of
motion in the atmosphere cover the range from thousands of kilometers
down to the scale of the smallest eddies described in the previous section,
therefore, direct application of the equations would require observations
with one millimeter spatial and a fraction of a second temporal resolu-
tion.

Instead, some cut-off scale is selected below which the influence of turbu-
lence is only treated statistically. The selected cut-off scale depends on
the current application, in a numerical weather prediction model the cut-
off is on the order of 10 to 100km, while for some boundary-layer models
known as large eddy simulation models the cut-off is on the order of
100m (Stull 1988).

Therefore the dependent variables in the basic equations are expanded
into mean and turbulent (perturbation) parts, i.e. U = U + u/, where
the bar above the variable signifies that it is a mean value and the prime
signifies that it is the departure from the mean. Reynolds averaging
(Stull 1988) is then applied to get equations for the mean variables within
a turbulent flow. After this procedure the equations contain variables of
the form w/v/, which represent the turbulent motions statistically, i.e.
these variable can be interpreted as the covariance between the variables
u' and v'.

One unfortunate feature of the set of equations which are derived by this
procedure, is that it is not possible to derive as many equations as there
are unknown variables (Stull 1988), i.e. the equation system cannot be
closed. When equations for the uw/v’ covariance terms described above
are derived, these equations contain new u/v’w’ terms, and this pattern
continues when equations for u/v'w’ are derived. At some point, the
process of deriving new equations must be stopped, and the unknown
variables need to be parameterized in terms of other known variables. If
the unknown covariance or higher order statistical moments are param-
eterized using spatial derivatives of other known variables, this is called
nth-order local closure, where n is the order of the statistical moments
which are retained in the equations. These and other closure techniques




14 Chapter 2

are described in (Stull 1988). The unknown covariance of the higher or-
der statistical moments can not be neglected as these terms correspond
to energy.

2.1.4 The boundary layer

Figure 2.1 illustrates how the boundary-layer in a high pressure region
over land evolves during the day. In this case the boundary layer has a
well defined structure. The three major components of this structure are
the mixed layer, the residual layer and the stable boundary layer.

2000

Free Atmosphere

s Entrainment Znnn] Capping Inversion
\

Entrainment Zone

Residual Layer

Height (m)

Stable (MNocturnal) Boundary Layer

Surface Layer

Sunset Midnight Sunrise

Local Time

Figure 2.1: Hlustration of how the boundary layer evolves with time and
height. From (Stull 1988). For explanation see text.

The surface layer is defined as the region at the bottom of the boundary
layer where turbulent fluxes and stress vary by less than 10% of their
magnitude.

The turbulence in the mixed layer is usually convectively driven. The
convective sources include heat transfer from a warm ground surface, and
radiative cooling from the top of the cloud layer. Even when convection
is the dominant mechanism, there is usually wind shear across the top
of the mixed layer that contributes to the turbulence generation. The
mixed layer grows in height by mixing down into it the less turbulent air
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from above, and the maximum height is reached in the late afternoon.
A stable layer at the top of the mixed layer acts as a lid to the rising
thermals. It is called the entrainment zone because the entrainment into
the mixed layer occurs here. At times this layer is strong enough to
be classified as a temperature inversion, which means that the absolute
temperature increases with height.

About an half hour before sunset the thermals cease to form (in the
absence of cold air advection), allowing the turbulence intensity to decay
in the formerly well mixed layer. This layer is usually called the residual
layer because its initial mean state variables are the same as those of the
recently decayed mixed layer.

As the night progresses, the bottom portion of the residual layer is trans-
formed by its contact with the ground into a stable boundary layer. This
layer is characterized by statically stable air with weaker, sporadic tur-
bulence.

In low pressure regions the upward motions carry boundary-layer air
away from the ground to large altitudes. In this case the boundary layer
has a less well defined structure.

2.1.5 Vertical profiles

As mentioned in the introduction to this chapter the transport of at-
mospheric constituents in the vertical is mainly driven by turbulence.
Therefore, the closure techniques applied to the governing equations de-
pends on adequate parameterizations of how the vertical profiles for the
atmospheric constituents depend on the turbulence intensity. A large
number of such parameterizations have been proposed in the litterature
(Stull 1988), and some examples are shown in Appendix A. The purpose
of this section is to describe the qualitative behaviour of these parame-
terizations.

The atmospheric stability is usually classified in the range from stable,
over neutral to unstable. In the stable case there is no or only little
vertical mixing, and in this case the flow in different vertical layers is
more or less decoupled. This means that there can be large differences
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in the atmospheric state at different heights. This can lead to low wind
speeds close to the ground and high wind speed just above the ground,
i.e. low level jets. It should be noted though, that the shear between high
and low wind speed layers leads to formation of Kelvin-Helmholtz waves,
which consequently creates turbulence. Therefore, the atmosphere will
only remain stable if the wind speed is low in all vertical layers.

As the turbulence intensity increases the vertical mixing increases cor-
respondingly. This means that the difference in the atmospheric state
becomes less dependent on the height, i.e. the wind speed and other
variables are now more or less constant in the vertical.

2.2 The numerical weather prediction model

The numerical weather prediction model which has provided the weather
forecast variables, is the HIgh Resolution Limited Area Model (HIRLAM),
run by the Danish Meteorological Institute (DMI). The development of
this model was started in 1985 as a joint project between the national
meteorological institutes in Denmark, Finland, Norway, Sweden, Spain
and The Netherlands. HIRLAM is subject to continues development and
the latest news on the model can be found at www.dmi.dk

2.2.1 General features

Numerical weather prediction (NWP) can be described as the simulation
of the processes in the atmosphere on a computer, with the purpose to
predict the future state of the atmosphere based on the actual state. For
a good overview of the historical development of numerical weather pre-
diction models see (Kalnay, Lord & McPherson 1998). The assessment
of the state of the atmosphere is called data assimilation and is of crucial
importance for the accuracy of the predictions. The state is estimated
from measurements from synoptic stations all over the world and satel-
lites. The data assimilation procedure validates the measurements, dis-
cards erroneous observations and fills in the gaps between the stations
(e.g. over the oceans). The last step is accomplished by multivariate
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statistics in HIRLAM. A description of the 3-dimensional data assimila-
tion system used in HIRLAM can be found in (Lorenc 1981, Lonnberg
& Shaw 1987).

A somewhat detailed description of the equations used to simulate the
atmosphere in HIRLAM is given in Appendix A, where the emphasis is
on how the turbulence is taken into account. A thorough description of
HIRLAM is given in (Sass, Nielsen, Jgrgensen & Amstrup 1999), where
also the numerical methods for the integration of the model and how the
boundary conditions are applied is described.

Theoretical estimates limit the predictability of the weather by NWP
to about 72 hours; this demands however, that the model domain is
global (Haltiner & Williams 1970). Early chaos theory predicts a total
divergence of weather patterns from virtually identical starting points
after 14-20 days (Lorenz 1963). Using ensemble forecasts, this limit can
be extended somewhat, since the ensemble members have some of the
possible variation already built in (Kalnay et al. 1998).

2.2.2 Integration domains

HIRLAM is a limited area model (LAM), which means that lateral
boundary conditions have to be specified. DMI is running four nested
HIRLAM models with individual integration areas illustrated in Fig-
ure 2.2. The lateral boundary conditions for the model applied to the
largest area, denoted by ’G’ in Figure 2.2, are supplied by ECMWF (The
European Center for Medium Range Weather Forecasting). The 'N” and
"E’ models use lateral boundary conditions from the ’G’ model, while the
very high resolution model ’'D’ around Denmark, uses boundary condi-
tions from the "E’ model.

The numerical weather predictions which have been used in this thesis
are from the 'D’ model. The horizontal resolution used in this model is
5.5 km. The time step used in the model integration is 36 s, and the
influence of the physical parameterizations is applied every third time
step.
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Figure 2.2: The operational setup of the HIRLAM model. From (Sass
1998).
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2.2.3 The data

The variables which have been available from HIRLAM for use in this
study are the following:

At the surface:

e The u and v components of the wind at 10 m agl.

e Surface friction velocity w..

e Sensible heat flux Hj.

e Latent heat flux Hy,.

e Pressure p,

At the vertical model levels [ = 31,...,25 (I = 31 is the lowest):

e The u; and v; components of the wind.

e The U; and V; components of the geostrophic wind.

e Temperature 7.

e Height above mean sea level h;.

The model run frequency of HIRLAM has not been constant. In one
period the predictions were received twice a day, corresponding to the
initial times 00:00 and 12:00 (UTC). While in a second period the pre-
dictions were received four times a day, at 00:00, 06:00, 12:00 and 18:00
(UTC). The predicted variables are given in 3 hourly steps 36 hours
ahead.

The HIRLAM levels [ correspond to constant pressure surfaces, therefore
the levels do not correspond to a fixed height above the surface. A

more detailed description of the individual variables and how they are
calculated can be found in Appendix A.
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2.3 The Risg system

This chapter describes the physical models, which the short-term pre-
diction model developed by the Department of Wind Energy and Atmo-
spheric Physics at Risg National Laboratory, is constructed from.

In Paper F the procedure for the calculation of the power predictions is
illustrated. The input wind is taken from a numerical weather prediction
model. Due to the resolution of the numerical weather prediction model,
the predictions from the model does not include local effects, i.e. on
scales less than 5-10 km. Therefore, a model layer is selected at which
the wind is assumed to be approximately geostrophic. The geostrophic
drag law is then used to calculate the surface stress u,, which subse-
quently is used as input to the logarithmic wind profile to calculate the
wind at the hub height of the turbines. To take the effects of the local
topography into account the results from a WAsP (Mortensen, Land-
berg, Troen & Petersen 1993) analysis of the particular site is used to
correct the wind calculated from the logarithmic wind profile. Finally,
the WAsP corrected wind is folded through the wind farm power curve
determined by the PARK (Sanderhoff 1993) application, using empirical
power curves supplied by the manufacturer.

In the following sections the steps and sub-models used in the above
procedure will be described. In the last section the sub-models will be
analyzed in some detail. The purpose of the analysis is to find out how
the physical models can be used in combined statistical and physical
models, and if it at all is possible to develop such combined models.

2.3.1 The geostrophic drag law

The geostrophic drag law is a result of merging the wind in two layers in
the atmosphere. In the derivation the atmosphere is divided into three
vertical layers: the free atmosphere, the mixed layer and the surface layer
(see Figure 2.1).

A derivation of the geostrophic law is provided in (Landberg 1994), and
for neutral atmospheric conditions the law is given by the following set
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of equations

and

where f = 2Qsin ¢ is the Coriolis parameter, {2 the angular velocity of
the Earth, ¢ is the latitude, u, is the surface friction velocity, x = 0.4 +
0.01 is the von Karman constant, G is the magnitude of the geostrophic
wind, zq is the surface roughness length, and « is the angle between the
geostrophic and surface wind direction. A and B are empirical constants.
A great deal of experiments have been carried out to determine the values
of these constants, and there is quite some scatter in the values which
have been proposed. In the Risg system (Landberg 1994) A = 1.8 and
B = 4.5 is used.

For non-neutral conditions a large variety of geostrophic draw laws have
been proposed and derived (Landberg 1994). Common for these deriva-
tions, is that the dependency is modeled by letting the parameters A
and B be functions of a stability parameter . In (Landberg 1994) pu
is defined as u = ku,/fL, where L = u?/k|Bg| is the Monin-Obukhov
length, and B; is the near-surface value of the vertical buoyancy flux,
defined as

sy g 608911
Cpp Lep
where 3 = ¢/6 is the buoyancy parameter, Hy is the sensible heat flux,
cp the heat capacity of air at constant pressure, p the density of the air,
g the gravitational acceleration, Hy, the latent heat flux, L. the latent
heat of vaporization, and 6 is the potential temperature.

Bs:ﬂ

(2.3)

As the Risg system only uses the neutral geostrophic drag law, the func-
tional shapes of A and B are not provided here.

2.3.2 The logarithmic wind profile

The stability dependent logarithmic wind profile is shown in Appendix A.2.
In the Risg system it is the logarithmic profile for neutral conditions
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which is used, and in this case the expression simplifies to

u(z) = Zln (’Z> : (2.4)

K 20

where z is the height above the surface. It is seen that the surface friction
velocity u, can be used in this expression to calculate the wind at height
z.

2.3.3 WAsP

The Wind Atlas Application and Analysis Program WAsP (Mortensen
et al. 1993) is a program to make wind atlases. A wind atlas is a gen-
eralized wind climate for an area. The idea behind the program is to
take measurements from a specific site (e.g. a meteorological mast at an
airport) and calculate the sector-wise distribution (Weibull) of the wind.
This distribution is then ’'cleaned’ for local effects in the following order:

e Shelter from obstacles in the vicinity of the site.
e Changes in the roughness of the surface.
e Orography.

This procedure correspond to the upwards arrow in Figure 2.3. The cor-
rected distribution is called a wind atlas, and corresponds to the sector-
wise wind speed distribution of an area which is completely flat, where
the surface is smooth and there are no obstacles. This atlas can now be
extrapolated horizontally to other locations within the area, and used to
calculate the expected wind climate at another location. This is done
by applying the procedure described above in the reverse order, corre-
sponding to the downwards arrow in Figure 2.3, using data describing
the obstacles, roughness and orography at the new site.

To accomplice these tasks WAsP uses three sub-models, and it is assumed
that the effect of these models can be applied independently of each other
(Mortensen et al. 1993).

To take the effect of the orography into account, WAsP uses a simplified
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Figure 2.3: Illustration of the steps used in WAsP, for explanation see
text.
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analytical solution to the same governing equations which the numerical
weather prediction model is based on. When the solution for these equa-
tions is derived, the atmosphere is assumed neutral and it is assumed
that flow separation does not occur. The last assumption implies that
the model is only valid for gentle to medium complex terrain, i.e. cor-
responding to a maximum terrain slope of 0.3. For the derivation see
(Landberg 1994) Chapter 5. The result of applying this model to a spe-
cific site, which is then extrapolated to a site nearby, is that the wind at
the new site can be written as (Mortensen et al. 1993)

Ws = Qcg,Wr, 95 = 97" + bc,Gw (25)

where subscript r refers to the reference site, i.e. the site which the
wind atlas is generated from, and s refers to the site which the atlas is
extrapolated to, w and 6 is wind speed and direction, respectively, and
acp,, bep, are wind direction dependent constants.

Similarly, the effect of the roughness and obstacles leads to the following
corrections (Mortensen et al. 1993)

Ws = Az 0, Wr, 0s = 0r + bzﬁr (26)
for the roughness, and
Ws = o0, Wr, 0s =0 + bo,Gr (27)

for the effect of obstacles. Thus the total correction from WASsP can be
written as

ws = agp,wr, Os =0+ by, (2.8)
where
a0, = Gc,0,0z0,00,0, (2.9)
and
big, = beo, +b0, +bog,- (2.10)

Subscript t refers to the total correction, ¢ to the correction due to orog-
raphy, z to the roughness correction and o to the correction due to obsta-
cles. For a derivation of the relations used to take the effect of roughness
and obstacle into account see (Landberg 1994).

Note that the constants described above are also functions of the height
above the surface. This has not explicitly been pointed out here, because
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when these constants are used in the Risg system, the height is fixed at
the wind turbine hub height. Furthermore, WAsP uses a special vertical
wind profile to transfer the wind between different heights. This feature is
not used in the Risg prediction system, which uses its own vertical profile.
The profile which is used in WAsP takes the effect of the stability into
account in a mean sense, i.e. the effect of the stability on the annual mean
of the wind speed is modeled by this profile (Troen & Petersen 1989b).
This profile can not be used in the Risg prediction system, as this system
predicts instantaneous values.

2.3.4 PARK

The PARK program (Sanderhoff 1993) is calculating a mean efficiency for
the wind turbines in a wind farm. It models the the reduction of the wind
speed behind the turbines due to wake effects. The wake propagation is
illustrated in Figure 2.4.
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Figure 2.4: Illustration of the wind turbine wake calculation use in
PARK.

The model is based on the assumption that the wake expands linearly
behind the turbine. The only parameters in the models are the initial
velocity deficit at the start, and the wake decay constant describing the
expansion of the wake.

The necessary input to the program is therefore the coordinates of the
turbines, the power and thrust curves, the hub height and the rotor
diameter and meteorological data for the site. The program is limited
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to wind farms consisting of identical turbines and identical wind turbine
hub heights.

2.3.5 From input to output

Now we are ready to take a closer look at what is happening in the
relation which are used in the Risg system, especially what the shape of
the resulting relation looks like, when all the relations described in the
previous section have been applied in the order described in Paper F.
Note that the analysis is this section is closely related to the analysis
described in (Landberg 1999a).

First let us take a look at the geostrophic drag law. The relations shown
in Section 2.3.1 are not in a closed form. This means that the surface fric-
tion velocity u, and the difference between the geostrophic wind direction
and the wind direction in the surface layer have to be found by numerical
methods. Furthermore, note that the roughness length zy = 2¢(0) is a
function of the wind direction, 6, in the surface layer. This leaves three
coupled equations which have to be solved by a combined iterative and
root solving method.

In Figure 2.5 the value of the surface wind speed wy as a function of the
geostrophic wind speed G, and various values of the roughness length is
shown.

The figure has been constructed by solving the above mentioned equa-
tions for u,, where for simplicity the roughness has been assumed uniform
for all wind directions. Subsequently, the wind speed has been extrap-
olated to 30 m above ground level using the neutral logarithmic wind
profile.

From this figure it is seen, that to a very close approximation, the wind
at a given height in the surface layer is linearly related to the geostrophic
wind speed, for a given roughness length. If this linearity is utilized and
the effect of the corrections from the WAsP analysis are added, it is seen
that the wind speed at the wind turbine hub-height can be written as

wp, = a(0s)G (2.11)



The Risg system 27

20

15

10

-1
u30m [mS ]

T T T T T T T T T T T T T T
0 5 10 15 20 25 30 35

G [ms™

Figure 2.5: Surface wind speed (30 m agl) as a function of geostrophic
wind speed and various roughness lengths.

where 0 is the surface wind direction calculated from (2.2). The wind
direction dependency used in the Risg system is given by a(6s) = ayg,, i.e.
a wind direction dependent constant. This is accomplished by dividing
the circular direction into a number of sectors of equal size. The standard
size used in WAsP is 30 Deg (Mortensen et al. 1993).

The relation for calculating the wind direction in the surface layer from
the geostrophic drag law, is slightly more complicated. This relation is
shown in Figure 2.6 and it is seen that the surface wind direction depends
non-linearly on the roughness and the magnitude of the geostrophic wind.

It is seen that the curvature is most substantial for low geostrophic wind
speeds, G < 5ms~!, and especially where low speeds coincide with rough
surfaces zy > 0.8. These value are the ones which are most unlikely to be
representative for the place where a wind farm is located. A roughness
value zg > 0.8 corresponds to a very rough surface like a larger city.
Wind speeds below 5 ms™! are more or less irrelevant, as this in most
cases will result in surface wind speeds which are below the cut-in wind
speed (i.e. the speed for which the turbine starts producing power) of
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Figure 2.6: Geostrophic and surface layer (30m agl) wind direction dif-
ference as a function of roughness length and geostrophic wind speed.
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the most common wind turbines.

If these values are cut out of the relation shown in Figure 2.6, it is seen
that the remaining relation is relatively constant, i.e. —30 £ 10 Deg.
This variations should be compared to the standard resolution used in
the Risg system and the WAsSP application, which as mentioned above is
30 Deg. It can therefore be argued that the wind direction, independent
of the geostrophic wind speed, in most cases will map to the same sector.
These findings will be further commented on later when the statistical
models used will be described.

Now, the final step is to transform the wind speed to power. The wind
farm power curve which is used in the Risg system is derived by the
PARK application described in Section 2.3.4, using wind turbine power
curves supplied by the manufacturer. A typical power curve is shown in
Figure 2.7, which is seen to be highly non-linear.
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Figure 2.7: The Vestas V47 660kW wind turbine power curve. Cut-off
at 25 ms~! not shown.

The point to be noted in the analysis in this section, is that with regard
to the wind speed, there is no non-linearity in the relations used by the
Risg system, before at the final stage where wind speed is transformed
into power.
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CHAPTER 3

Statistics

The purpose of this chapter is to define the statistical models and the
basic properties of the models that have been considered in this thesis,
and to provide bibliographic notes. The considered models are also de-
scribed in the more theoretical papers in this thesis, i.e. - the Papers A
and B. These papers also describe the new recursive estimation meth-
ods that have been developed. The emphasis in this chapter is therefore
not on describing the estimation methods that have been applied, in-
stead the reader is referred to the Papers A and B and the bibliographic
notes. Furthermore, Section 3.3 outlines the considerations for the choice
of estimation methods that have been developed. As the objectives of
this project has been to develop models and methods for on-line predic-
tion, it is important that the estimation methods are suited for on-line
estimation.

3.1 Statistical models

Three types of models have been considered in this thesis. Linear, non-
linear and conditionally parametric models. The last model type is ac-
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tually a non-linear model where a special model structure has been im-
posed. This section briefly outlines these models.

The basic model which relates a response or dependent variable y; to a
vector x; of explanatory or independent variables is written

yi = f(x,0) +¢e;, i=1...N, (3.1)

where N is the number of observations and f(-, -) is some general function
of the explanatory variables and the parameters in 6. The residual g; is
assumed to be an sequence of identically distributed variables, which are
independent of x;.

In a linear model a special structure has been imposed on f(-,-) in (3.1)
yi=x!0+¢e, i=1...N, (3.2)

The definition of a non-linear model can thus be considered as model,
which can not be written in the same form as (3.2).

It should be emphasized that the term linear relates to the parameters,
i.e. — the linear model is linear in the parameters. Non-linear relations
between the explanatory variables can thus be included in the linear
model as extra variables in x; and transformations of x;.

The conditionally parametric model, also know as a varying-coefficient
model, is written

yi:wiTO(ui)—i—Ei, 1=1...N, (33)

where u; is a vector of explanatory variables. It is seen that this model
can either be interpreted as a linear model where the parameters have
been replaced by unspecified functions of some explanatory variables,
or a more general model where general functionals and linear effects
have been separated. Furthermore, notice that 6(u;) may be linear, i.e.
written in the same form as (3.2). This is illustrated in the Papers A
and B. In this case (3.3) reduces to a linear model of the same form as
(3.2).

In time series analysis the index 7 refers to a time index and the vector
of explanatory variables might contain previous values of the dependent
variable. In this case the error sequence ¢; is required to be independent.
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3.2 Multi-step prediction models

Generally, a multi-step prediction model can be considered as a model
where the prediction horizon k = 1,...,knq: is added to the vector
x; of explanatory variables in the models described in Section 3.1, and
where kjq: is the maximum prediction horizon considered. Therefore,
the multi-step prediction models are contained in the model definitions
given in Section 3.1.

In time series analysis, where the index ¢ is a time index, there are
kmae Observations at each discrete time point ¢ of the dependent and
independent variables. In this case it is convenient to write the model as

Yik = f(xi,k707 k) + €i ks i=1,....,.N, k=1,..., knaz, (3.4)

where the number of observations now is Nk,q,. In this definition y; 1 =
Yi—kk, 1 > k, i.e. the same observation of the dependent variable is used
kmae times. This is not necessarily the case for x; j, as the explanatory
variables themselves might be predictions from some other multi-step
prediction model.

The definition (3.4) of a multi-step prediction model allows for a wide
variety of parameterizations for the prediction horizon dependency. Some
examples are outlined below.

Consider the first order auto-regressive AR(1) model, using the same
notation as in (3.4)

Yil = aYi—1,1 + &1 (3.5)

The k-step prediction, ¢;, from this model is calculated recursively,
yielding
Jik = ayi11, (3.6)

and it is seen that the AR(1) model could be formulated explicitly as a
k-step model, i.e.
Yik = a"yic11 + €k, (3.7)

which is a non-linear model. Note also that this model is of the same
form as (3.3), i.e. it can be interpreted as a conditionally parametric
or varying-coefficient model. It is easily verified, although this will not
be done here, that if more general time series models, i.e. the ARMAX
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model class, were considered, then the k-step prediction model formula-
tion derived from this class would result in non-linear models, which in
general not will be of the same form as (3.3).

If a system is only approximately described by a AR(1) model, it can no
longer be assumed that the estimate of the parameter from the one-step
prediction model will be optimal for all prediction horizons. In a case
like this, it would make more sense to use the non-linear k-step model
instead, as it is more likely that the parameter function a* would yield
better predictions averaged over all prediction horizons.

As mentioned previously, it is not feasible to use non-linear models in
on-line applications. Another alternative is to consider conditionally
parametric models of the form

Yik = wfzﬁ(k) + ik, (3.8)

and use the simple parameterization @(k) = 0y, i.e. assume on set of pa-
rameters for each prediction horizon k. This approach has been adopted
in this thesis, although, in Paper E local regression is used to estimate
the prediction horizon dependency of the parameter functions.

3.3 On-line and off-line estimation

Two techniques exist for estimation of the parameters in the models out-
lined in the previous section, on-line and off-line. In the off-line method
the parameters are estimated using the full set of data, which means
that when new data becomes available, the parameters have to be re-
estimation on the full set of data, which now also includes the new data.

In the on-line method, usually referred to as recursive estimation, infor-
mation about the parameter estimates from a previous estimation step
is utilized when the parameters are to be re-estimated. Compared to off-
line techniques, this leads to considerable savings in computational effort.
Furthermore, the on-line techniques are relatively easy made adaptive,
which enables the model to track slow changes in the underlying system.

The drawback of the recursive methods is, however, that they are not
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suited for estimation in non-linear models. The reason for this is twofold,
first of all it can not be guaranteed that the parameter estimates will
converge to the true values for non-linear models. Furthermore, most
often the non-linear estimation equations have no closed form solutions,
therefore the estimates have to be found by numerical optimization.

Non-linear models have therefore only been considered briefly, an exam-
ple is demonstrated in Paper E. As the conditionally parametric models
outperformed the non-linear model, this approach was not pursued fur-
ther. Instead of using non-linear models conditionally parametric models
estimated via local regression have been considered. These models and
a recursive estimation technique is described in the Papers A and B.
In this model class the non-linearity is not explicitly parameterized, the
shape of a specific relation is determined via the estimation method.

3.4 Bibliographics notes

A general introduction to time series analysis and estimation of time
series models can be found in (Box & Jenkins 1976). An introduction
to non-linear time series models, and a description of the Kalman filter
approach applied for the non-linear model in Paper E, can be found in
(Madsen & Holst 1999).

The conditional parametric model defined in Section 3.1 is similar to
the varying-coefficient model defined in (Hastie & Tibshirani 1993). The
varying-coefficient model defined in (Hastie & Tibshirani 1993) considers
coefficients that are functions of time only, while in (3.3) the coefficients
may be functions of several variables. In (Anderson, Fang & Olkin 1994)
(3.3) is denoted a conditional parametric model, because when wu; is
constant the model reduces to an ordinary linear model as in (3.2).

The models and estimation methods described in the Papers A and B
are based on a combination of the recursive methods described in (Ljung
& Soderstrom 1983) and local regression. Early work on local regression
includes (Stone 1977, Cleveland 1979, Cleveland 1981), although, as de-
scribed by (Cleveland & Loader 1996), it dates back to the 19’th century.
A comprehensive overview of local regression can be found in (Cleveland
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& Devlin 1988, Cleveland, Devlin & Grosse 1988).

In the estimations methods used in this thesis, selection of smoothing pa-
rameters has not been a real issue. The recursive nature of the methods
implies that the data used to calculate the prediction errors is never used
in the estimation. In traditional local regression cross-validation and re-
lated methods have traditionally been used for selection of smoothing pa-
rameters (Hastie & Tibshirani 1990). Also leave-one-out cross-validation
is used, although (Breiman & Spector 1992, Shao 1993) argue that this is
not optimal. Specifically for time series (Hart 1996) considers the subject
of selection of smoothing parameters.
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Models and methods

The objective of this thesis has been to develop models for short-term
prediction of wind power, with special emphasis on the integration of
statistical and physical models and methods. Before considering such
combined models, it should first be considered what statistics and physics
is all about.

4.1 Initial considerations

Basically, a physical model and a statistical model are similar, in the
way that both models describe a relation between some input and some
output to and from a system.

The physical approach is to consider the nature of the system, and based
on which laws can be determined to govern the system, a relation is
derived. If the derivation was sound, the relation can be verified on
measurements of the input, the system states and the output from the
system.
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The statistical approach works the other way around. It starts with the
measurements, and based on what relations can be seen in the measure-
ments, a model is derived.

In reality, the distinction is not as separate as stated above. Both physi-
cists and statisticians would argue, that their approaches consists of an
iterative use of both the physical and statistical approach as stated above.
If the statistician has knowledge about which laws govern the system,
then he knows what to look for in the data. Furthermore, in practice
there is rarely an sufficient amount of data available as to describe the
system response to all combinations of input data.

In the physical approach there has to be observations at some point, oth-
erwise the physical model would just be guesswork. Also, the verification
process of a physical model typically leads to identification of week points
in the model derivation, and as a consequence of this, a modified model
is derived.

Another important issue with regard to the physical, or deductive, ap-
proach is pointed out by (Hasselmann 1981). As described in Chapter 2,
the meteorological system represents a very complex structure of coupled
subprocesses of which each subprocess represents a detailed discipline in
its own right. These subprocesses interact across a wide spectra of space
and time scales in a complicated manner, which ultimately determines
the dynamics of the complete system. If detailed models of the dynam-
ics of each subprocess existed, and the necessary computing power was
available, one could try to obtain a total model by coupling the individ-
ual subprocesses together in a very comprehensive numerical model. It
is, however, questionable whether such a deductive approach would be
successful (Hasselmann 1981)

It is argued (Hasselmann 1981) that a larger probability for finding a
useful model is obtained by the opposite approach, i.e. the inductive
approach. This approach contains an attempt to identify the governing
interactions in the system by statistical methods. Once such a model is
obtained for the most important variations, the model can be iteratively
improved by a combination of more detailed comparison with data and
use of well-established physical facts.
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These considerations are also in accordance with the findings in (Jonsson
1994), which argues that if errors are present in the regressors the use of
the true system for prediction will not result in optimal predictions.

4.2 What are the options?

The purpose of this section is to identify the most important variables in
developing prediction models for wind power, and outline ideas for how
statistics and physics can be combined. Based on the description of the
meteorological theory in the previous chapter, the variables which can
be assumed to be most important in the description of the wind speed
and consequently the power production at a given location are: the wind
speed and direction from some model level from the numerical weather
prediction model and the turbulence intensity. The energy content in
the air flow is related to the density of the air, this variable is therefore
also of importance when wind power is considered. As no measure of this
variable has been available, this dependency has not been considered.

4.2.1 Direct use of statistics in HIRLAM

The numerical weather prediction model, HIRLAM, has not been the
subject of development in this study. All developed models and methods
start from the variables which have been delivered by HIRLAM.

This does not mean, though, that statistical models could not be used
in the numerical weather prediction model. One way to include a sta-
tistical modelling approach would be to use stochastic differential equa-
tions directly in HIRLAM. Such an approach could for instance be ap-
plied to the HIRLAM soil model described in Section A.4. Stochas-
tic versions of ordinary differential equations are easily derived, see e.g.
(Melgaard 1994), while it is more difficult to work with stochastic ver-
sions of partial differential equations. Partial differential equations are
usually transformed into ordinary differential equations using the same
approach as in HIRLAM for the soil temperature prognostic equations,
where the soil is divided into three layers. These equations could there-
fore easily be replaced by stochastic versions, and statistical estimation
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methods could be used to estimate the parameters in these equations.

The potential advantage of integrating this approach in the numerical
weather prediction model is that the drag imposed on the flow in the
atmosphere is directly related to the turbulence intensity as described in
Appendix A, and the surface temperature and wetness are necessary in
the calculation of the turbulence intensity.

Stochastic versions of the soil model equations could also be used outside
the numerical weather prediction model. This approach could be used
to predict e.g. the surface temperature locally at the wind farms. The
temperature could then be used in calculation of the surfaces fluxes of the
sensible and latent heat fluxes, which in turn could be used in the stability
dependent wind speed profile. This approach has not been tested in this
thesis, the main reason is that some of the necessary variables were not
available, and that the three hour time resolution which the available
data is given in, would not be sufficient for this approach.

Another area for potential improvement of the numerical weather predic-
tions, is to consider the data assimilation procedure. The 3-dimensional
data assimilation procedure is briefly described in (Sass et al. 1999) and
in more detail in (Lorenc 1981, Lonnberg & Shaw 1987). The current as-
similation procedure used in HIRLAM consists of several steps. Bilinear
interpolation is used in the vertical, tension spline interpolation is used
in the vertical, subsequent averaging is applied followed by a covariance
dependent weighting between predicted values and corresponding obser-
vations. Nevertheless, in the description of the assimilation procedure,
there does not seem to be any feedback from the prediction errors to the
assimilation procedure. The introduction of the feedback concept in the
assimilation procedure is beyond the scope of this thesis, but is definitely
worth pointing out as an area of potential improvement.

4.2.2 Intermediate models

Potentially statistical models possess the ability to outperform any phys-
ical model in performance, but it should be noted that the development
of statistical models is based on finite data samples, and it is possible that
some relations exist which are not visible in such a sample. Generally,
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as the number of explanatory variables increases, the noise in the data
might severely contaminate the relations which are found by statistical
methods. In local regression this problem has be dubbed the ”curse of
dimensionality”, and in this context the problem is particularly difficult
to cope with, because very weak assumptions are imposed on the rela-
tion between the explanatory variables and the response. In practice this
means that one needs to select the explanatory variables which provide
the highest degree of explanation.

Therefore, it might be advantageous to incorporate known statistical re-
lations in statistical models, such relations can be viewed as intermediate
models, linking one or more explanatory variables to one single variable
which can be used as input to a subsequent relation. This approach can
therefore effectively reduce the dimension of the problem. The parame-
ters of a known relation might be estimated using statistical estimation
methods, or only a subset of the parameters could be estimated. Known
relations could also be used directly to model some parts of the relation
between the explanatory variables and the response. Physical systems
are often described by differential equations, and, from the description in
the previous section it is clear that such relations can also be combined
with statistics.

4.2.3 The Riso model

From the considerations in the previous section it is clear, that one way
to combine physics and statistics in short-term prediction models, is e.g.
to use the relations in the Risg system to calculate the wind speed at the
wind turbine hub-height.

In Section 2.3.5 it was shown that the wind speed wy, at the wind turbine
hub height calculated by the Risg system could be written as

wp = a(bs)G (4.1)

where G is the geostrophic wind speed and 6, is the surface wind di-
rection. It is seen that this corresponds to a conditionally parametric
model if an error term is added. In Paper E models of this type have
been examined. In this paper it is not pointed out, that in a statisti-
cal model we need to make a choice with regard to the wind direction.
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In Section 2.3.5 it was shown that the surface wind direction depends
non-linearly on the geostrophic wind speed and direction, and therefore
the surface wind direction should be calculated by the geostrophic drag
law. It turned out that it made no difference in the performance results
whether the geostrophic wind direction was used directly instead of the
calculated surface wind direction. Furthermore, the results in Paper E
indicate that the physical wind direction dependency used in the Risg
system is not optimal.

When a conditionally parametric model where the parameters are consid-
ered to be functions of the wind direction is used, it should be noted that
the wind direction dependency does not necessarily correspond to the de-
pendency found by the WAsP application. In (Troen & Petersen 1989b)
wind roses for a large number of locations in Denmark are shown, and
from these wind roses it can be verified that the average wind speed de-
pends on the wind direction, e.g. the wind speed is usually higher when
coming from South-East compared to North or West. Therefore, this
must be a feature of the overall atmospheric flow not local conditions.
As long as the predictions from the numerical weather prediction model
are not perfect, this dependency is automatically included in the con-
ditionally parametric model. This means also, that if a WAsP analysis
finds that local effects prescribe a correction of the wind which is not
in accordance with average wind direction dependency, then the WAsP
corrected wind might lead to worse performance than the uncorrected
wind.

The reason for considering the non-linear model in Paper E is also based
on the considerations in the previous sections. The non-linearity is in-
troduced at the final stage in the Risg system, where the wind speed in
transformed into power. The results from this model were also rather
disappointing, as a simple linear model, where the power curve was ap-
proximated by a polynomial in the wind speed, performed just as well.
The final conclusion of these findings is therefore that the physical rela-
tions used in the Risg system are of little use when there is data available,
and statistical models can be used. It should be noted though, that if
no data is available, then the physical relations can be used, also, the
statistical models need one to three months of data before the parameter
estimates are fully reliable, therefore the physical relations can be used
until the statistical models are fully reliable.
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4.2.4 Turbulence intensity

From the description in the previous chapter it is clear that the relation
between the wind speed at two different heights above the ground de-
pends on the turbulence intensity. If the numerical weather prediction
model handles this dependency properly, then the model level which is
closest to the wind turbine hub-height can be selected. The approach
taken here has been, first of all to find which model level gives the best
performance, the results from this examination are described in Paper I.
Secondly a closer look is taken at the winds at different model levels in
HIRLAM, and how these winds depend on the Buoyancy flux, which is
a measure of turbulence intensity. The results from this examination are
described in Paper I. The purpose of the analysis is to find out if it is nec-
essary to include the turbulence intensity dependency in the statistical
models.
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CHAPTER 5

The implementation — Zephyr

The aim of this chapter is to describe the software application Zephyr.
Zephyr is implemented in the Java’™ programming language, and it
is assumed that the reader has some basic knowledge of object oriented
programming and terms used in object oriented design. A comprehensive
description of the Java programming language and the Java Application
Programming Interface (API) is available at www.java.sun.com

The first version of Zephyr is planned to go into operation in May 2000.
This beta version will be evaluated by the two Danish utilities Elkraft
and Elsam.

The reason for choosing the Java programming language, is that pro-
grams written in this language are not limited to run on one computer
platform. Java programs can run on all platforms, which have a Java
Virtual Machine (JVM) available. The list of platforms for which the
JVM is available is long, and includes Windows95/98/NT, Linux, OS/2
and Sun.

The level of detail in this description of the Zephyr system is rather low,
as a complete description of all objects and object methods would be
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far too comprehensive. The objective of the description is to provide an
overview of the system and outline the system architecture. A description
of some of the object patterns used in the implementation of Zephyr
can be found in (Reese 1997) and a more genereal description of design
patterns can be found in (Gamma, Helm, Johnson & Vlissides 1994).

The description of the server part of the Zephyr system focuses on the
software architecture and some level of detail in the implementation.
The aim of the description of the client is to illustrate the graphical
user interface; no implementation details are provided on this part of the
system.

5.1 Requirements to the application

The requirements to the Zephyr application are based on experience
gained by the Danish utilities Elkraft, Eltra and Elsam, by the use of the
Risg and the WPPT on-line systems. These two systems are described
briefly in Paper H.

There has been no formal requirement specification to the system, al-
though, as a minimum, all the tools which are available in the applica-
tions mentioned above, need to be available in the new system. Zephyr
has been developed in a process, where project meetings with partici-
pants from the utilities has been the forum where the requirements to
the system have been formulated. The following description summarizes
the requirements obtained from this process:

e Any prediction application, which is to be a useful tool in the daily
dispatch and control in the utility control room, requires that the
application is highly automated and easily customizable.

e In general there are three sources of data to the system, numerical
weather predictions from a national weather service, measurements
of meteorological variables and power production from the wind
farm sites. The system needs to maintain a database of this data,
validate the data and update the prediction models and calculate
predictions as soon as new data becomes available.
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e One or more users will be connected to the system simultaneously,
observing the predictions. Also, the system needs to show infor-
mation related to the validity of the predictions and how the farms
connected to the system are currently operating.

e Wind farms may need to be activated/deactivated, and as new
wind farms are constructed, these farms will need to be added to
the system.

5.2 System architecture outline

Client /server is an application architecture that divides processing among
two or more processes, often on two or more machines. The idea behind
a client/server application architecture in a database application is to
provide multiple users with access to the same data, and this is exactly
what is required by the short-term prediction system. The data, which
consists of measurements from the wind farms, numerical weather pre-
dictions from the weather service, the short-term power predictions, and
so on, has to be accessible from several clients.

In a two-tier system, which is the simplest one, the processing is di-
vided into a data storage layer and a presentation layer. The short-term
prediction system is not suiteable for implementation as a two-tier sys-
tem. A middle tier which handles the business logic rules is necessary.
The system is divided into three main layers as in a three-tier system:;
the data storage, the object server and clients. The object server is the
middle-tier, and this is where the business objects reside. To allow for ex-
tra flexibility and scaling several object services can exist in the system.
This requires a naming service where the object services are registered,
which can be used by clients and /or other services to look up the object
service for a particular type of business objects. A business object in the
Zephyr system is e.g. an object which represent a wind farm or a table
which contains wind power predictions. Some of the Zephyr business
objects will be described in Section 5.4.

Some operations involve several business objects, e.g. when the predic-
tions are calculated input data is taken from several data tables, and
the results are put into some other tables. Therefore it is necessary to
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have a mechanism that groups several operations into one atomic op-
eration, which either succeeds or fails. This is handled by introducing
transactions and object locking. The locking mechanism is required in a
multi-user environment in order to avoid inconsistent object states. This
can happen if multiple users are modifying the same objects simultane-
ously.

The general framework is outlined in Figure 5.1. Due to the complex-
ity in the information flow between the services, this flow has not been
illustrated in detail in the figure.

The services shown in Figure 5.1 will be describe in more detail in the
following sections. As illustrated in the figure the Remote Method Invo-
cation (RMI) API (www.java.sun.com) is used for the communication
between objects residing in different services. The services themselves
might reside on different JVM and on different computers.

All communication from the clients to the business objects residing in
the object services goes through a special caching mechanism. Objects
residing in the clients never communicated directly with the business ob-
jects, the communication goes through the cache/proxy. Some operations
involving manipulation of the business object state might be executed in-
side the proxy, not inside the business object. The details of this concept
will be described in Section 5.4. The key point of this concept, is that
a JVM running the object service should not be burdened with to many
operations. The reason is that the business objects potentially are being
accessed by several clients and services simultaneously. Therefore this
concept increases the responsiveness of the object services.

5.3 Services

The most important services in Figure 5.1 are the object services, the
other services can be thought of as utility services, which are necessary
for performing operations on the business objects which are residing in
the object services.
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Figure 5.1: Overview of the basic components in the distributed system
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Two special services are also shown in the figure, which are the data and
the task service. These services are more or less Zephyr specific, and
the distinction between a service or a client is not so clear for these two
services. In one sense the data and the task services can be considered
as clients, as they are being served by some business objects.

5.3.1 Naming service

The naming service is simple. Each object service registers itself with
the naming service, and when this happens, the object service informs
the naming service about which business objects the object service is
serving. Clients or other services can then use the naming service to
look up the object service for a particular group of business objects.

In any well designed object oriented system an object instance should
represent a unique identity. There should never exist two or more in-
stances of an object which represent the same identity. This might seem
obvious and easy to implement, but this is not as simple as it seems.
For instance, consider an object which represents a specific wind farm.
If two instance were created of this object, and two users were making
changes to the state of these two instances, then we would end up with
two different states representing the same wind farm. Therefore, each
business object needs to be identified with a unique id. As the naming
service is the registry of all object services, the naming service has the
potential to generate unique id’s. The id is represented by a long value,
which means that there are roughly 2 - 10'” unique id’s available.

The algorithm which is used to generate id’s is simple. The naming
service does not generate the id itself, it generates seeds which are used
by the object services to generated id’s for business objects that are
created in a particular object service.

5.3.2 Object service

An object service is a business object manager. The problem with object
uniqueness was mentioned in the previous section. It is the object service
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responsibility to keep track of the business objects. If a request is made
for a business object with a particular id, this id is compared to a master
list of business object instances. If the instance is in the master list, a
reference to the business object is returned. If the id is not in the list, the
object service creates a new instance of the business object. The state of
the object is restored from the object store, the id of this object is added
to the master list and a reference to the object is returned. The object
service also manages the creation of new business objects and generation
of id’s for new business objects.

The master list is implemented as a hashtable with a special kind of weak
references to the business objects. This has to do with the Java imple-
mentation of garbage collection. In the distributed garbage collection,
the garbage collector thread has to poll the remote references which exist
to the objects in the JVM. The master list request information from the
garbage collector about references to business objects. When only one
references exist to a business object, then this must be the reference in
the master list. When this happens the object reference is removed from
the master list, and the object is now free to be garbage collected.

The reason for using this implementation has to do with performance.
There is no need to fill up memory with business objects that are not
being used, therefore, business objects which are not referenced should
be garbage collected.

The object service also has some utility methods for browsing the busi-
ness objects in the service, like information on how many objects of a
give type are in the object store and methods for retrieving references to
all objects of a given type. Furthermore, lookup queries can be executed
on the descriptor property of business objects. The matching semantics
and the descriptor property will be described in Section 5.4.

5.3.3 Security service

The role of the security service is to authenticate users. Based on a
user name and a password the security service generates a unique digital
signature. The signature is created using the SecureRandom class in the
Java API, and consist of 32 bytes.
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Users are authenticated from a user database, where the user names and
passwords are stored. A signature is only created if the user name and
password match. All access operations on business objects are validated
with the security service. As it is the security service which creates the
signatures, it is the only instance which knows the particular combination
of user name, password and signature. This concept therefore provides
a high level of security.

5.3.4 Transactions and Transaction service

As mentioned previously, there is a need to group a multitude of opera-
tions into a single atomic operation in a distributed system.

Three things happen when a user makes the first write request on a
business object. The first step is to create a lock on the object. The
lock is identified by the users signature, if the object is currently locked,
and the signature holding the lock is not the same as the one requesting
the lock, an exception is thrown. The next step has to do with the
transaction. The transaction contains a factory method, when a write
request is made on a business object, this transaction factory method is
called by the business object, passing on the signature of the user who
made the write request. If a transaction for the signature does not exist
a new transaction is created and this transaction asks the transaction
service to register this transaction. The transaction is responsible for
making a copy of the business object state on the storage media, before
the first write actually occurs. If the two first steps succeed, a snapshot
is taken of the business objects state.

The transaction keeps track of all modified business objects which are
being modified by a user with a particular signature. Each time a write
request is made on a business object, the business object uses the trans-
action factory method to get the transaction for this signature. The
business object then informs the transaction that the object has been
modified.

One single user might have several transactions, this is the case if the
user modifies business objects in several object services. As shown in
Figure 5.1 the transaction instances reside in the object services, and the
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transaction service holds a registry of signatures to transactions. Once
the user has finished modifying business objects, he only needs to make a
single call to the transactions service with his signature, requesting that
all his transactions should be saved.

The transactions service now calls the save methods in the transactions,
which is turn call the save methods in all the business objects which
have been modified as a part of the transactions. If the save operations
succeed, the transactions service call commit on all the transactions,
which is turn call commit on all the just save business objects.

Several things can happen during a transaction. A network error might
occur, and if the user is only half way through his operation, the safest
option is to restore the business objects back to the original state before
the operation started. The user can then call the transaction service,
requesting a roll back of his transactions. This results in a roll back or
restore of all objects which have been modified so far as a part of the
transaction.

If an error occurs between the save and commit phase of the transaction,
the transaction is responsible for restoring the copy of the business object
state on the storage media. The business object itself restore the state
from the snapshot which was taken of the object before the first write
occurred on the object.

If the user disappears, i.e. in the case of a network error, then the lock
will not be renewed and the lock takes care of asking the business objects
to restore themselves.

5.3.5 Data service

The data service is responsible for feeding data from the external sources
into business objects residing in object services. These business objects,
which in general are tables and columns, will be described later.

How the external data is provided to the data service depends on the
particular utility. The data can for instance be fetched from a ftp server.
This is how the data from the Danish Meteorological Institute is provided
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to the system, WPPT, running at the Danish utilities Elsam, Elkraft and
SEAS.

Without going into details, the data service cycle is the following: The
data service is running at specific time intervals. At each run the service
checks for new data. When new data is available, the first step is to
validate the data. Zephyr uses the validation model from the WPPT
system described in Paper G. Once the data has been validated, the
data is put into the target business objects, this happens via the business
object proxies. A task is then created which contains the necessary code
for calling update and predict methods in the affected business object
proxies. The task is then sent of to the task service which executes the
task, and the data service is ready to receive new data.

The separation of data retrieval and model calculation is important. The
measurements are receive at a rather high frequency, namely in the order
of minutes, and it can not be guaranteed that the model updates will be
finished within this time frame. Therefore, the data service cannot wait,
it has to be ready to receive new data before the model calculations are
finished. The data which is received at high frequency does not need
to trigger model updates, it is only when new weather predictions are
received that the models need to be updated, in the current setup this
is each 6 hour. This way the models can be quite complex, as they have
a considerable time to finish the calculations.

5.3.6 Task service

The task service is quite simple. It executes tasks which are handed to it
from e.g. other services or clients. A task is an object which implements
a specific interface. The interface only requires that the task object
implements a run method. The task service starts the task by calling
this run method.

When a task is handed to the task service from some source service or
client, the task service requires that the source specifies a reference to
a remote object which implements a specific interface. This interface
requires that the remote object implements a finish method. Once the
task run method has finished running in the task service, the task service
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calls the finish method in the remote object. This way the source of the
task is notified when the task has finished.

Several task services can be running on different computers, and e.g. the
data service has the option to spawn of tasks on several different com-
puters. This can be important if Zephyr is used by a large utility owing
hundreds of wind farms, as this might lead to calculation times which
cannot be performed within a reasonable time on a single computer. This
way wind farm models which do not depend on each other, can perform
their calculations simultaneously on different computers.

5.4 The business object super-classes

5.4.1 Object relations

Figure 5.2 shows a simplified overview of the relations between the vari-
ous super-classes for the business objects and the client to server mapping
between the business objects and the business object proxy. A business
object is an object which inherits from the Persistent object, the issues
related to persisting the business object and the fact that the object can
be shared by several other objects, is surfaced in the SharedServerObject
and the Persistent classes.

Each business object has two objects and one interface related to it. The
business object proxy or the ClientCache has already been mentioned in
Section 5.2. Each specific business object which inherits from Persistent
has a corresponding proxy which inherits from ClientCache. The second
object is the business object persistence handler or peer. This object
surfaces storage details for different storage media. The interface is a
remote interface, which specifies which methods in the business object
can be invoked from objects in other JVM.

The business object itself resides in the object service, but other objects
residing in e.g. - a client or in another service should never communicate
directly with the business object. This communication should be surfaces
through the proxy.
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Figure 5.2: Simplified object model for the business object super-classes
and related objects.

The state of the business object is persistent, i.e. - if the machine where
an object service is running on goes down, the business objects in that
service can all be restored. Furthermore, if a business object is not being
used by any client or other service, this object is removed from the object
service memory, and only restored when requested.

5.4.2 Distributed event model notification

A synchronization mechanism exist between the SharedServerObject and
the ClientCache. The purpose of this mechanism is to provide a conve-
nient way for a business object and the business object proxy to synchro-
nize their states. The mechanism is similar to the event model pattern
used in user interface components, but special considerations needs to
be taken into account when the event model is transferred to a fragile
network connection.

The synchronization mechanism is simple, and the reason for this has to
do with the fact that it is not feasible to use complex event semantics over
a network. The methods which are involved in the synchronization are
defined by the two interfaces RemoteObserverable and RemoteObserver
shown in Figure 5.2.
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The RemoteObserverable takes two methods addObserver and deleteOb-
server. The RemoteObserver only requires an update method to be im-
plemented. The add/delete methods manage a registry of ClientCaches
which are interested in knowing about business object state changes.
When a state change occurs in a business object, the business object no-
tifies all registered ClientCaches by calling the update method. A special
object called RemoteEvent is passed to the ClientCache via the update
method. This object describes the type of change which occurred in the
business object.

Some key points in this process are of importance. It can not be guaran-
teed that the calls to the update methods are performed chronologically,
therefore one of the property in the RemoteEvent is a sequence num-
ber. This is an ever increasing number, and it is guaranteed that the
sequence number increases between two subsequent state changes in a
business object, the sequence number can therefore be used to order the
state changes chronologically. Performance is also important, the RMI
implementation in Java implies that a remote call does not finish be-
fore the remote object method finishes. Therefore, the notification from
a business object to different proxies in different JVM is performed in
threads. Similarly, the consumption of the event in the proxy is handled
in a thread, which means the call to the proxy finishes as fast as pos-
sible. The thread which is created in the proxy, is then pushed into a
thread queue, and the treads are executed one at a time as it can not
be guaranteed that the proxy environment is thread safe. For instance
the graphical user interface API, Swing, which is a part of the Java
Foundations Classes (JFC) API is not thread safe.

5.4.3 Object locking

As shown in Figure 5.2 the persistent object inherits from the Shared-
ServerObject. This object handles the logic involved with the fact that
the object potentially is accessed by several other objects simultane-
ously. Write or update access to the business object results in a lock on
the object. Before the first write occurs on a business object, a snapshot
is taken of the object. The snapshot is not discarded before the write
accesses are explicitly committed.
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The lock is associated with a digital signature created by the security
service, which uniquely identifies the user holding the lock. If the lock is
not renewed within a fixed amount of time, the lock is released and the
object is restored back to its original state. The state is restored using
the snapshot which was taken of the object before the first write was
performed on the object.

5.4.4 Persistence

As shown in Figure 5.2 the persistent object is associated with a per-
sistence handler/peer. This handler is assigned to the business object
when a new instance is created, and a particular type of business objects
share the same handler. The type of handler which is assigned depends
on a configuration parameter in the system, and different handlers can
therefore be selected based on how the business object is actually made
persistent. In the current system flat file persistence handlers are used,
the handlers are capable of reading the state of a business object and
assigning a state to a business object; the state itself is saved/loaded
in/from a binary file. This architecture implies that the storage details
are transparent to the business object, changing the storage media means
that only the handler needs to be replaced, the business objects stay un-
changed.

5.4.5 The descriptor

All business objects are associated with a descriptor property. This prop-
erty is a simple object, which only contains fields of primitive types, i.e.
String, Integer, Long, Float, Double. The idea of this property is to
facilitate fast and easy business object searching based on intuitive crite-
ria. A descriptor object can e.g. contain fields like manufacturer, make,
model, name, etc.

A query can be executed via methods in the object service managing the
business objects of interest. The query itself is represented by a query
object, which is similar to the descriptor object, i.e. - the query object
only contains fields of primitive types. The matching semantics is the
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following:

e If a query object field is null this field is interpreted as a wildcard
and matches all fields with the same name in the descriptor object.

e If the query holds a named field not defined in the descriptor or
vice versa, these fields are ignored, i.e. do not influence the match.

e All non-null identically named fields and identical field values are
considered as a match.

This architecture implies that instances of the business objects do not
need to be created as a part of a query, only the descriptor object is
needed. Potentially this means faster query responses, and the descrip-
tor/query object information pattern can be defined in a uniform way;
several different business objects can use the same implementation of a
general descriptor object.

5.4.6 Security

All access to a business object is validated in the security service. Access
to a business object is categorized as either create, read, update, delete or
observe. A user has the privilege to perform a set of these access types on
the business objects. The security service holds a user database, where
the information on the user privileges is stored. In the case of illegal
access the business object throws an exception.

All business object implementations need to follow this convention in
the business object accessory methods. The SharedServerObject has
methods that business object implementations can use to facilitate this
convention.

5.5 Zephyr business objects

The Zephyr system is based on a hierarchical structure of a utility own-
ing several wind farms, where the wind farms are placed in a larger
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geographical area.

The objects which are outlined in the following sections are simply the
basic building block, which are used to create a software model of the
wind farm setup of a particular utility. Some objects are omitted in
this description, as they are not important for understanding the basic
structure. The overall software system is very flexible, there is no limit
on adding new types of business objects. Such objects could e.g. be
representations of primary power plants, district heating systems, models
for automated scheduling of conventional power plants and so on.

5.5.1 Region

The region corresponds to a geographical area. A region can have an
arbitrary size, and regions can be nested, i.e. - a region can contain
several other regions, which are inside the boundary of the geographical
area represented by the region. It is the utility who defines the region,
and the region is not static, it can vary in size during time.

The reason for using regions is to have a way to group wind farms geo-
graphically. The electrical utilities are interested in predictions on sev-
eral geographical levels, i.e. asking questions like what is the expected
production in the North-east of Jutland?

The way the region is implemented is quite general. Actually no geo-
graphical area checking is done by the region object, it is the responsi-
bility of user to define the regions in an consistent way.

The region object is a list of arbitrary business object references. The
implementation has methods for adding, removing and retrieving busi-
ness objects. This object can thus be used to define regions consisting
of e.g. - wind farms, prediction models calculating prediction for the
region, tables of data holding the predictions and sub-regions.
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5.5.2 Farm

The wind farm object is modeled after a general wind farm. The wind
farm is mainly a collection of references to other business objects. These
objects are tables containing the measured data at the wind farm, tables
with numerical weather predictions of variables like wind speed, direction
and temperature for the location of the wind farm, and tables of the
power predictions and related uncertainty fractiles for the predictions.

The wind farm also contains a model, the model is not a business object,
it is a property of the wind farm. The model which is assigned to the
wind farm depends on the data which is available for the farm. A user
has the option to select between several models for a wind farm, if for
instance no on-line measurements are available for the wind farm, the
user can select a model which is identical to the model used in the Risg
system. The generic model is an implementation of the model which
was found as the best one in Paper E, and this model requires on-line
measurements of the power production at the wind farm.

As mentioned previously, the update of the model parameters and the
calculation of the predictions is triggered by the data service. When
new data arrives at the data service, these data are put into tables of
each wind farm. The data service the sends a task to the task service,
and when the task is executed in the task service, it calls the relevant
methods in the farm object to inform the farm that new data is available.

A user can change data in the tables related to a wind farm. This
can happen if the automatic data validation system has not captured
some erroneous data. Wind farm models which are based on recursive
statistical methods need to be re-calibrated as a consequence of such a
change. This does not happen automatically, the user needs to trigger an
event which asks the wind farm model to re-calibrate. Such events can
be generated via the user interface. It could be argued that the model
should be consistent with the data at all times, therefore, model updates
should be triggered automatically every time data is changed. This is
not a feasible solution in the Zephyr system, as a model update may take
a considerable amount of time, performance issues require that this logic
is handled outside the Farm object.
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5.5.3 RegionModel

The structure of the region model is closely related to the wind farm
object. This object contains tables of data and a model for calculation
of predictions for a particular group of wind turbines in a particular
region. The model update and prediction is triggered in the same way
as for the wind farm object.

The main difference lays in the model and which data is stored in the data
tables. The model which is used is very simple, it is based on upscaling
constants as in the WPPT system described in Paper G. No meteoro-
logical data exist to represent a region model, as such data corresponds
to singular points, therefore the region model object only contains pre-
dictions of power and the related upscaled measurements of total power
produced by a group of wind turbines in the region.

5.5.4 Columns

The column business object represents a collection of simple objects,
where each object is referenced by an index. The are several types of
columns, depending on the indexing mechanism which is used. No dis-
tinction is made between columns containing different types of objects,
instead the column has a parser and a formatter property, which can
be used to transform between textual and internal representation of the
objects contained in the column. The generic column is the time col-
umn. In this column the indexing is based on time, and without going
into details, this approach allows for easy access to instantaneous time
indexed data.

5.5.5 Tables

All columns are contained in tables, and a table is simply a collection
of columns. The table contains methods for accessing the columns. All
columns have a name property which can be used to retrieve columns
from a table, columns can also be retrieved based on simple integer in-
dexing, columns can be added and removed from a table and so on.
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A special type of table which is used in Zephyr, is the prediction table.
This table has a special indexing which is related to the time step be-
tween subsequent predictions and the time step between each retrieval
of new predictions. If the prediction horizon is 36 hours and the time
step between each prediction is 3 hours, then this table will contain 13
columns. This table also has another interpretation, which is based on
only two columns, a timestamp column and a data column, where the
timestamp column contains the valid time for the predictions contained
in the data column. This representation is obtained by using the predic-
tion table as input to a filter table, which transforms the input table into
a table only containing two columns, a timestamp column and a data
column. This filter table is e.g. used to construct prediction plots.

5.6 Clients and user interface

The system architecture as presented in the previous sections, is ideally
suited for a multitude of small clients, each dedicated to a particular
task. E.g. depending on which information is wanted by a particular
user, or a group of users, dedicated clients can be developed. Some users
might only be interested in knowing the predictions for one larger area,
while other users might be interested in knowing the current running
conditions at a particular farm, e.g. the maintenance crew. When a new
wind farm is constructed, this farm has to be added to the system and
the system has to be re-configured, this task can also be handle by a
specific client.

The idea behind the client and the client user interface which is presented
here, is to provide a way for the user to access and perform all the
above mentioned tasks. The user can configure the client to his or hers
particular needs.

5.6.1 Main user interface

Figure 5.3 shows a screen shot of the graphical user interface (GUI)
implemented in the Zephyr system. The GUI layout is project oriented,
where a project is illustrated by a project tree. The system operates
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with two project definitions, and these two projects are illustrated by
graphical tree components on the left hand side of the GUIL. The lower
left tree illustrates the project defining the system setup of a particular
utility, and the tree in the upper left corner illustrates the project of a
particular user.

The system setup of a particular utility is organized hierarchically. The
basic objects in the system setup tree are regions, wind farms and tables
of data, where data related to the regions and the wind farms are stored.
These objects or the tree nodes are directly related to the business ob-
jects described previously. The region object defines the properties of a
larger region, containing one or more wind farms. The properties of a
region are e.g. - the wind farms in the region, the model which is used to
calculate total power predictions for the region and tables of measured
and predicted total power production for the region. Similarly, the wind
farm object defines the properties of a wind farm, like the model for cal-
culating the wind farm power predictions, and tables of data containing
measured variables at the wind farm. Furthermore, the wind farm object
contains the state of the wind farm, i.e. - if the farm is currently running
or not and the current wind farm power production. The system setup is
customizable via the system setup tree and node specific popup menus,
allowing super-users to customize the system setup, i.e. wind farms can
be added or removed, regions can be redefined, the models connected to
the wind farms and the regions can be changed and so on. These changes
are applied at runtime, and the system does not need to be restarted.
Such a change will in general correspond to adding, removing or chang-
ing a business object in an object store. Therefore, these changes will be
visible to all clients, and, as this is the system setup or utility wind farm
setup model, only super-users are allowed to perform such changes.

The user project tree holds the structure and definition of the windows
which are shown in the right hand side of the GUI, each window is il-
lustrated by a node in this tree. The user has the option to customize
how the windows are organized to fit his or her’s particular needs, by
inserting, moving and deleting the position of the window nodes in the
user project tree. Apart from the default windows defined by the sys-
tem, like the wind farm window, windows showing plots of predictions
and measurements, the user can create customized windows either using
scripts or via dialog windows. When a new window is created, the user
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Figure 5.3: Screen-shot of the Zephyr graphical user interface
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has to select the node in the tree where the new window will be placed
as a sub-node. Each user is not limited to having only one project tree,
the user project tree can be saved and reloaded, allowing the users to op-
erate with several trees, i.e. the user can define several user trees, where
each tree is fitted to one particular operational situation. Each window
node in this tree links to one or more business objects, illustrating the
information contained in the business objects.

5.6.2 Internal windows

The right hand side of the GUI screen shot in Figure 5.3 shows some
of the windows in the system, such windows are referred to as internal
windows. The windows which are shown in Figure 5.3 are: the map win-
dow, a table window, a prediction plot, the wind farm status window and
the script window. The map window shows the area which the system
is operation on. This map contains wind farm symbols, which illustrate
the current running conditions at the wind farm, i.e. the wind farm sta-
tus. Furthermore, the map window servers as background for weather
animations created from the numerical weather predictions. The cur-
rent implementation is capable of showing the predicted meteorological
variables as contour animations.

Some of the internal windows in the Zephyr client are shown below.
Figure 5.4 shows a time series plot window, and Figure 5.5 shows a
combined scatter and line plot of a power curve.

The slider on the top and the scroll bar on the bottom of the time series
plot can be used to specify the visible time period of the time series. The
slider specifies the time window width, and the scroll bar specifies the
start and end times.

Figure 5.6 shows the dialog window for adding a layer to a plot window.
A layer defines the x and y data, the axis settings and the plot type, i.e.
scatter or line. The data is selected by dragging a node, which represents
a column, from the tree to the fields in this window.

Data can be edited via the table window, an example of a table window
is shown in Figure 5.7. Editing a number in a table from a client auto-
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Figure 5.4: Time series plot window.

Figure 5.5: Power curve plot window.
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Layersettings

Type

Type: | Scatter - |
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|Data: = Speed Data: = Power
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‘ OK | | Cancel | | Add ‘

Figure 5.6: Plot layer window.

matically updates all relevant plots, tables, etc. in all connected clients.
Such an actions does not automatically force a model update. If e.g.
data related to a wind farm is modified then a wind farm model update
has to be requested via the wind farm node popup menu.

- N |

Measurements -
File
Power

95
21
314
285,
270]

Figure 5.7: Table window.

Figure 5.8 shows the wind farm status window. This window illustrates
graphically the current state of a wind farm. The state is defined as the
current production, shown as the dark fraction of the wind turbine tower,
the direction, shown by the dark gray turbine blade and other variables
shown by the meters in the right hand side of the window.
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CHAPTER 6

Conclusions

This thesis deals with a number of aspects related to short-term predic-
tion of wind power. The thesis is structured as a summary report and a
collection of ten research papers. In the summary report the background
and the motivation for the Ph.D. study are outlined. Bibliographic notes
to previous research within the field of short-term wind power prediction
are provided. The meteorological theory, which is particularly relevant
for wind power prediction is described and the physical approach used
in the system developed by Risg National Laboratory is analysed and
described. A short introduction to the statistical models that have been
considered is provided together with bibliographic notes to the litera-
ture for a more detailed description of the models and in particular the
estimation methods for the models. Some general consideration with
regard to statistical versus physical modelling is outlined, and possible
areas of combined statistical and physical models for short-term wind
power prediction are described. Finally, the summary report describes
the client/server software application that has been developed. The in-
cluded papers can be categorized into two groups, development of general
statistical models and methods, and development of dedicated short-term
wind power prediction models.
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The conclusions will be structured according to the main areas consid-
ered in this thesis and in the Ph.D. study. In short, these areas are the
development of general statistical models and methods for on-line estima-
tion and prediction, development of models and methods for short-term
prediction of wind power and implementation of the prediction models
in a client/server software application.

6.1 Statistical models and methods

The Papers A and B describe new estimation methods for statistical
models. Paper A considers on-line estimation of linear models, where
the parameters to be estimated exhibit smooth variations in time. An
estimation method for derived from local polynomial regression is sug-
gested, using local polynomials in the direction of time to approximate
the parameters locally. The results presented in the paper indicate that
the method is superior to the classical Recursive Least Squares (RLS)
method, if the parameter variations are smooth.

In paper B a method for on-line and adaptive estimation of Conditionally
Parametric Auto-Regressive eXtraneous (CPARX) models is derived,
and some of the properties of the method are analyzed. This method
can be interpreted as recursive local regression. Essentially it is a com-
bination of the RLS method with exponential forgetting and local poly-
nomial regression. Furthermore, the paper suggests a modification of
the exponential forgetting scheme of the RLS method, to cope with the
added complexity, which is introduced by allowing the parameters to be
functions of other variables than just time.

6.2 Short-term wind power prediction models

In Paper C a new reference for short-term prediction models is proposed,
and it is argued that the new reference model is more suitable than the
often used persistence predictor, especially if the prediction horizon is
above a few hours. The new reference is almost as simple as the persis-
tence predictor, basically it is a prediction horizon dependent weighting
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between the persistence and the mean of the power, where the weighting
is determined by the auto-correlation of the wind power time series.

The physical relations used in the Risg short-term prediction system have
been analyzed and validated. This analysis is provided in the summary
report. The purpose of the analysis has been to find out how these
relations can be incorporated in statistical models. It turned out that the
behaviour of the physical relations was very simple as far as to calculate
the wind at the wind turbine hub height. This relation was found to
be very well approximated by sector-wise linear functions. Based on
these findings some models have been proposed and tested in Paper E,
some including physical relations and some pure statistical models, and
it turned out that it is not advantageous to use any of the considered
physical relations. The reason for why the physical relations did not
prove to be useful has to do with the fact that the relations are derived
from idealized assumptions and these assumptions are simply not valid
when the input to the relations is variables from a numerical weather
prediction model.

It should be noted, though, that if no measurements of the power pro-
duction is available, then the physical relations can be used. Also, the
statistical models which have been proposed need one to three months
of data before these models are fully calibrated, therefore, the physical
models can be used until the statistical models are calibrated.

An examination of how the dependency on the turbulence intensity is
handled by the numerical weather prediction model, HIRLAM, is pro-
vided in Paper I. In this paper it is showed that the turbulence intensity
dependency is handled in a slightly unrealistic manner. Nevertheless it is
found that by selecting an appropriate model level, then the dependency
is properly taken into account.

Conditionally parametric models for short-term wind power prediction
have been considered. In Paper D weighted least squares is used for
estimation of the model parameters, while in Paper E the new estima-
tion method described in Paper B is used. When the special recursive
estimation method described in Paper B is used, then this model class
is an obvious choice for on-line applications. The explanatory variables
which were found to give the best results in the conditionally parametric
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models were: the wind speed and direction from the numerical weather
prediction model, lagged values of the power production, the prediction
horizon, the time of day and the time of year. The advantage of us-
ing conditionally parametric models is that variables can be included for
which no specific functional relations are known. This has been used for
the wind direction dependency in the models, as it was found that the
physically determined dependency could not be used. The conditionally
parametric model, which was found to be most adequate, outperformed
both simple linear models and non-linear models.

Paper J addresses the economical value of short-term predictions. Pre-
dictions from several prediction models are used as input to a model of
the England/Wales electrical grid, and it is found that for low penetra-
tion of wind energy, predictions have little value. As the penetration
increases the predictions and their accuracy of the become more impor-
tant, and it is also shown that confidence limits for the predictions can
increase the economical value of the predictions.

6.3 Client/server software application

A client/server software application has been developed, which is capable
of handling the data flow and model calculations related to a utility
with several wind farms. The software application is described in the
summary report. The application is based on a flexible architecture, in
principle there is no limit on the prediction model modules, which can
be added to the application. The application is based on a distributed
programming model, i.e. distributed services, where data handling and
model calculations can be performed on different computers. The first
version of the system is planned to go into operation in May 2000, where
it will be evaluated by the two Danish utilities Elkraft and Elsam.
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APPENDIX A

HIRLAM equations

A.1 Model dynamics

As the model is hydrostatic, the hydrostatic relation between increments
of geopotential and pressure is utilized. The model is a limited area
model (LAM), which implies that not only the upper and lower boundary
conditions need to be specified, but also the lateral boundary conditions
have to be specified. The atmospheric forecast variables defined in tree
dimensions are the horizontal wind components u and v, surface pressure
ps, temperature T, specific humidity, specific cloud condensation ¢. and
turbulent kinetic energy FE.

The vertical coordinate used in the HIRLAM equations is n(p, ps), where
p is pressure and ps is the surface pressure. The vertical coordinate
follows the terrain, and the boundary conditions for this variable are, at
the surface n(ps,ps) = 1 and at the top of the atmosphere 7(0,ps) = 0.

HIRLAM is derived from a spherical coordinate system, but in the for-
mulation two metric coefficients, h, and h,, have been introduced. For a
short distance X, Y on the earth with radius a, this yields . X = ah,dx
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and 0Y = ahydy.

The terms F,, in the equations below represent forces for the variable -,
which are due to other processes than dynamics.

The equations of motion (momentum conservation) utilized in HIRLAM
now read

Ou _.Ou  RJT,0l(p) 1 0(P+ Ey)
ot (f+ & 77877 ah, 0z ahyg ox + P (A
ov .0v  R4T, 0ln(p) 1 0(®+En)
CANE A AT g (A2
ot (F+8u 7787) ahy, 0z ahy oy + (A-2)
Where (o) O(hu)
1 yU hau
&= ahghy < or Oy > (A.3)
is the vorticity,
By = %(ﬁ +o?) (A4)

is the is the kinetic energy of the mean horizontal motion, 7 is the
vertical velocity in the n-coordinate system and ¢ is the geopotential,
f = 2Qsin¢ is the Coriolis parameter, €} the angular velocity of the
Earth, u, is the surface friction velocity, x = 0.4 £ 0.01 is the von Kar-
man constant

For temperature the equation is

or __wor v or . or 05 Tow + P (A.5)
ot ahy Oz ahy Oy 77877 (1= (0= 1)g)p & .

where §, is the ratio between the specific gas constant and the specific
heat capacity, d. is the ratio between the specific heat capacity of water
vapour and the corresponding value for dry air (at constant pressure),
and w is the pressure vertical velocity.

For the remaining variables (y = ¢,7 = ¢.,7 = E) the following equa-
tions apply

Oy u Oy v Oy Oy
ot  ahgyOx ahy dy n8n+F7 (A-6)
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The hydrostatic equation takes the form
0® R4, 0p

7T _ , A7
an p On (A7)
and the continuity equation
*p Op 0 dp
V= — (=) =0. A.
onot v < 377) "o <n0n> ’ (A5)
The definition of the divergence operator is
1 0 0
= — —(hg A.
vv ahaly <8x(hyu) + 8y(h U)) (A.9)

By integrating the continuity equation using the boundary conditions
7 =0 for n = 0 and n = 1 the equation for the surface pressure tendency

is obtained 5 . 5
Ps op
T /0 \V4 <V377> dn (A.10)

The equation for pressure vertical velocity is

1 ap
w=— [ V(V=]dp+VVp (A.11)
n on

and the equation for n
.Op ( dp ) / ! < 8]))
—=(1- + VIV=|d A12

A.2 Physical parameterizations

The physics compromises the process of radiation and subgrid scale trans-
port of momentum, temperature and moisture variables down to the
small scales associated with turbulence. In addition the thermodynam-
ics associated with latent heat release (e.g. condensation, evaporation,
sublimation and precipitation) must also be described. The boundary
conditions at the ground need also to be taken into account.

In this section only the turbulence parameterizations for the transport
of momentum, sensible heat and moisture used in HIRLAM will be con-
sidered. The treatment of the surface is described in the next section.
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Originally first order local closure was used in HIRLAM, but by introduc-
ing the prognostic equation for the turbulence kinetic energy, HIRLAM
has taken the first step towards second order closure. In (Sass et al. 1999)
it is reported that various parameterizations schemes have been tested
and used in HIRLAM, and the one described here is different from the one
originally described in (Machenhauer 1988). One reason for including the
prognostic equation for the turbulent kinetic energy, can be explained by
the description in Section 2.1.4 of how the boundary layer evolves with
time. The time derivative of the turbulent kinetic energy represent mo-
mentum or memory, and, therefore, as the mixed layer is transformed
into the residual layer, the state of the formerly mixed layer is brought
into the residual layer by this equation.

The equations for the mean variables used in HIRLAM are very similar
to the general equations outlined in Section A.1. The effect on the mean
variables caused by turbulence is obtained by replacing the variables in
the equation in Section A.1 with mean variables 7 and adding the term

ow'/

0z
to each equation, where ~/w’ is the vertical kinematic flux of 7. One
assumption applied here is that the horizontal derivatives of the covari-
ance is much smaller than the vertical derivatives. To the same level of

approximation the prognostic equation for the turbulent kinetic energy
is written

(A.13)

@ _ 7 /@+ 7 /@_{_ 7 /aj
ot "V er TVY e TV G,
oo ro] Yol
+ [;w/e@ _ [Zagj] _ [Wgﬂ e (A1d)

where E = % (u’ 20?4 w’2> is the turbulent kinetic energy and e is

the dissipation of E. The first two terms on the right hand side of the
equations are the horizontal sheer production of turbulent kinetic energy.
The third term involving vertical velocity variance and the fifth term
involving pressure correlations are neglected. The fourth term involves
buoyancy generated turbulence and the sixth term describes the vertical
convergence of subgrid scale vertical transport of E.

As mentioned previously in Section 2.1.3, the equation system describing
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the mean variables in a turbulent flow has to be closed by parameteriza-
tions. HIRLAM uses first order local closure, i.e. the covariances or the
vertical kinematic fluxes are parameterized by assuming relations of the
form

Pl M. . _

Yw' = K, <8z> D oy=u,v,0,q,q., F. (A.15)
In (A.15) K, is an eddy exchange coefficient analogous to the molecular
viscosity and the diffusivity coefficients. The eddy exchange coefficients
depend on E via the following relation

K, =c,K,0(Ry), (A.16)

where ¢, is a non-dimensional constant and K, = IWE is the eddy
exchange coefficient for momentum. ¢(-) is a function of the dry Re-
delsperger number R, given by ¢(Rs) = (1 + 0.139R,)~!, where

g 12 _00 —0q
s = —— (1 61g— 610— | . Al
R 90E<+06q82+06 o (A.17)

The dissipation term is handled by the expression

(A.18)

In the equations above [ is a diagnostic mixing length. It is computed
from | = /I,lg, where [, and [l are the distances an air parcel must be
displaced upward or downward, respectively, before its turbulent kinetic
energy has been consumed by buoyancy.

A.3 Surface layer

In the surface layer, i.e. the layer between the HIRLAM lowest model
layer and the surface, the fluxes are calculated using drag formulae re-
lating the surface fluxes to the mean states of the surface and of the
atmosphere at the observation height (in this case the lowest model level
in HIRLAM). The drag formulae approximates the vertical flux w’y’ of
7y by

Wy = CL A3V, (A.19)



86 Chapter A

where C,, is the drag coefficient, Ay = 7, — 7y, subscript s refers to
the surface and N to the lowest model level values of 7, and |V y| is the
magnitude of the horizontal wind vector.

The drag coefficient is given by

-1
C., = Curn (1 I 2 ) v, (R . ) (A.20)
20H 20M 20H *0M
This parameterization is valid for the variables v = M, Hy, H;, where M
corresponds to the momentum flux, Hy the sensible heat flux and H; the
latent heat flux. R; is the surface bulk Richardson number (Stull 1988),
which is a measure of turbulence intensity.

The relation for W, is different for stable and unstable conditions. For
unstable condition the relation is
ayR;

0.5°
16, Co (B2 )

U, =1+ (A.21)

where apy = 10,by = 75,ay, = ag, = 15 and by, = by, = 75. The
relation for stable conditions, and special modifications to handle the
calculations over the sea are omitted here, see (Sass et al. 1999) for more
details.

It should be noted that the surface roughness lengths for momentum zgy,
sensible heat flux zop, and latent heat flux zoy, might bee different, but
in HIRLAM these are assumed equal. Furthermore, it is reported in
(Sass et al. 1999) that the values for the roughness lengths are slightly
unrealistic. The reason for this is due the spatial resolution used, which
means that effects that on a higher model Oresolution would be regarded
as surface curvature, is considered as roughness in HIRLAM.

A.4 Surface energy budget

The energy and moisture budget of a land surface needs to be treated
in a prognostic sense since the forecasting of a diurnal variation of mete-
orological variables close to the ground is vital. Only the equations for
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the temperature will be given here, the equations for the moisture can
be found in (Sass et al. 1999).

The equations for the temperature are based on a three layer soil model.
The equation for the temperature in the surface layer T is

aTs 1 Z ' 50(1 - ksnan)(Td - TS) (A 22)

Ot  pscsDy 0.5D1 (D + Ds)

7

In this equation ), H; = Hr + Hg + Hj, are the net fluxes due to
radiation, sensible and latent heat, respectively. F, = min(sﬁt, 1) is a
snow fraction, with S being snow depth and S; = 0.015 m a threshold
snow depth in an equivalent height of water. Ty is the soil temperature
in the intermediate layer, ps is the soil density, ¢, is the specific heat
capacity of the soil, kg is the heat diffusivity of soil without snow cover
and kg, is a constant used to reduce heat diffusivity if snow cover is

positive.

The equation for the temperature in the intermediate layer T} is

0Ty ko(Ta —T5) n k0(Teri — Ta)
ot 0.5D2(D1 + DQ) DsDs

(A.23)

where Ty, is the climatic deep soil temperature updated every month.
Dy = Dy = D3/6 = 0.07 m is the depth of the surface, intermediate and
the deep soil layer, respectively.

A.5 Diagnostic output

HIRLAM calculates some special diagnostic output variables, i.e. vari-
ables which do not give any feedback to the integration of the model
itself. For the list of variables see (Sass et al. 1999). Of special interest
in this thesis is the wind corresponding to 10m above ground level. The
calculation is performed for the v and v components of the wind sepa-
rately. For the unstable boundary layer, the © component is calculated
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5 2
u(2)=10m = un— % <—ln (M) - (A.24)

21n (114;)?) +2 (tan "1 (Xp) — tan_l(X))>

1 1

Z\ 1 ZN\ 4

x=(1-152) ", = (1o 15%)
5L TN 5L

where k is the von Karman constant, L is the Monin-Obukov length scale
and w, is the surface friction velocity, see e.g. (Stull 1988) for definition.
The relation for the stable boundary layer is a modified version of the
profile suggested in (Businger, Wyngaard, U & Bradley 1971), which
guarantees that the calculated wind speed is no larger than provided by
the lowest model level. This relation is

u(z)= " () T uy [1 ~exp (_ :;;;)] (A.25)

The relations for the v component, correspond to the above relations
when u is replaced by v.
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Tracking time-varying parameters with local regression

Alfred Joensen'?, Henrik Madsen®,
Henrik Aa. Nielsen! and Torben S. Nielsen!

Abstract

This paper shows that the recursive least squares (RLS) algorithm
with forgetting factor is a special case of a varying-coefficient
model, and a model which can easily be estimated via simple local
regression. This observation allows us to formulate a new method
which retains the RLS algorithm, but extends the algorithm by
including polynomial approximations. Simulation results are pro-
vided, which indicates that this new method is superior to the
classical RLS method, if the parameter variations are smooth.

Keywords: Recursive estimation; varying-coefficient; conditional para-
metric; polynomial approximation; weighting functions.

1 Introduction

The RLS algorithm with forgetting factor (Ljung & Soderstrom 1983) is
often applied in on-line situations, where time variations are not modeled
adequately by a linear model. By sliding a time-window of a specific
width over the observations where only the newest observations are seen,
the model is able to adapt to slow variations in the dynamics. The width,
or the bandwidth £, of the time-window determines how fast the model
adapts to the variations, and the most adequate value of A depends on
how fast the parameters actually vary in time. If the time variations are
fast, h should be small, otherwise the estimates will be seriously biased.
However, fast adaption means that only few observations are used for
the estimation, which results in a noisy estimate. Therefore the choice
of i can be seen as a bias/variance trade off.

'Department of Mathematical Modelling, Technical University of Denmark, DK-
2800 Lyngby, Denmark

?Department of Wind Energy and Atmospheric Physics, Risg National Laboratory,
DK-4000 Roskilde, Denmark
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In the context of local regression (Cleveland & Devlin 1988) the parame-
ters of a linear model estimated by the RLS algorithm can be interpreted
as zero order local time polynomials, or in other words local constants.
However, it is well known that polynomials of higher order in many cases
provide better approximations than local constants. The objective of this
paper is thus to illustrate the similarity between the RLS algorithm and
local regression, which leads to a natural extension of the RLS algorithm,
where the parameters are approximated by higher order local time poly-
nomials. This approach does, to some degree, represent a solution to the
bias/variance trade off. Furthermore, viewing the RLS algorithm as lo-
cal regression, could potentially lead to development of new and refined
RLS algorithms, as local regression is an area of current and extensive re-
search. A generalisation of models with varying parameters is presented
in (Hastie & Tibshirani 1993), and, as will be shown in this paper, the
RLS algorithm is an estimation method for one of these models.

Several extensions of the RLS algorithm have been proposed in the lit-
erature, especially to handle situations where the parameter variations
are not the same for all the parameters. Such situations can be handled
by assigning individual bandwidths to each parameter, e.g. vector for-
getting, or by using the Kalman Filter (Parkum, Poulsen & Holst 1992).
These approaches all have drawbacks, such as assumptions that the pa-
rameters are uncorrelated and/or are described by a random walk. Poly-
nomial approximations and local regression can to some degree take care
of these situations, by approximating the parameters with polynomials
of different degrees. Furthermore, it is obvious that the parameters can
be functions of other variables than time. In (Nielsen, Nielsen, Madsen
& Joensen 1999) a recursive algorithm is proposed, which can be used
when the parameters are functions of time and some other explanatory
variables.

Local regression is adequate when the parameters are functions of the
same explanatory variables. If the parameters depend on individual ex-
planatory variables, estimation methods for additive models should be
used (Fan, Hardle & Mammen 1998, Hastie & Tibshirani 1990). Unfor-
tunately it is not obvious how to formulate recursive versions of these
estimation methods, and to the authors best knowledge no such recursive
methods exists. Early work on additive models and recursive regression
dates back to (Holt 1957) and (Winters 1960), which developed recursive
estimation methods for models related to the additive models, where in-
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dividual forgetting factors are assigned to each additive component, and
the trend is approximated by a polynomial in time.

2 The varying-coefficient approach

Varying-coefficient models are considered in (Hastie & Tibshirani 1993).
These models can be considered as linear regression models in which the
parameters are replaced by smooth functions of some explanatory vari-
ables. This section gives a short introduction to the varying-coefficient
approach and a method of estimation, local regression, which becomes
the background for the proposed extension of the RLS algorithm.

2.1 The model
We define the varying-coefficient model
yi =21 0(x;) +e; i=1,...,N, (1)

where y; is a response, x; and z; are explanatory variables, 8(-) is a
vector of unknown but smooth functions with values in R, and N is the
number of observations. If ordinary regression is considered e; should
be identically distributed (i.d.), but if i denotes at time index and z!
contains lagged values of the response variable, e; should be independent
and identically distributed (i.i.d).

The definition of a varying-coefficient model in (Hastie & Tibshirani
1993) is somewhat different than the one given by Eq. 1, in the way
that the individual parameters in 6(-) depend on individual explanatory
variables. In (Anderson, Fang & Olkin 1994), the model given by Eq. 1
is denoted a conditional parametric model, because when x; is constant
the model reduces to an ordinary linear model



96 Paper A

2.2 Local constant estimates

As only models where the parameters are functions of time are consid-
ered, only x; = 7 is considered in the following. Estimation in Eq. 1
aims at estimating the functions 6(-), which in this case are the one-
dimensional functions €(7). The functions are estimated only for distinct
values of the argument ¢t. Let ¢ denote such a point and 9(75) the estimated
coefficient functions, when the coefficients are evaluated at ¢.

One solution to the estimation problem is to replace 6(i) in Eq. 1 with
a constant vector 8(i) = € and fit the resulting model locally to ¢, using
weighted least squares, i.e.

6(1) = argmin > wi(t) (s — =T 0)° (2)
i=1

Generally, using a nowhere increasing weight function W : Ry — Ry and
a spherical kernel the actual weight w;(¢) allocated to the ith observation
is determined by the Euclidean distance, in this case |i — t|, as

wilt) = W <|ih&)t‘> | (3)

The scalar A(t) is called the bandwidth, and determines the size of the
neighbourhood that is spanned by the weight function. If e.g. A(t) is
constant for all values of ¢ it is denoted a fixed bandwidth. In practice,
however, also the nearest neighbour bandwidth, which depends on the
distribution of the explanatory variable, is used (Cleveland & Devlin
1988). Although, in this case where x; = i, i.e. the distribution of
the explanatory variable is rectangular, a fixed bandwidth and a nearest
neighbour bandwidth are equivalent.

2.3 Local polynomial estimation

If the bandwidth A(t) is sufficiently small the approximation of 8(t) as a
constant vector near t is good. This implies, however, that a relatively
low number of observations is used to estimate 0(t), resulting in a noisy
estimate. On the contrary a large bias may appear if the bandwidth is
large.
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It is, however, obvious that locally to ¢ the elements of 8(¢) may be better
approximated by polynomials, and in many cases polynomials will pro-
vide good approximations for larger bandwidths than local constants.
Local polynomial approximations are easily included in the method de-
scribed. Let 6;(t) be the jth element of 8(t) and let p,(t) be a column
vector of terms in a d-order polynomial evaluated at t, i.e. py(t) =

[t 41 ... 1]. Furthermore, introduce z; = [21; -+ 2y,
uly = [supl (0= 0) - mpl =) - pl 0] (@)
~T ~T ~T ~T
¢ () =1[p1(t) -+ &; (1) -~ &, (1)), (5)

where &)j (t) is a column vector of local constant estimates at ¢, i.e.

b1 (1) = [bja,1(t) -+ S (t)] (6)

corresponding to zjip:‘gj (t — 7). Now weighted least squares estimation is
applied as described in Section 2.2, but fitting the linear model

yZ:uZt¢+ela 7/:1,,t, (7)

locally to t, i.e. the estimate (;Ab(t) of the parameters ¢ in Eq. 7 becomes a
function of ¢ as a consequence of the weighting. Estimates of the elements
of O(t) can now be obtained as

0;(t) = pi,(0);(t) = [0 01;(t) = du(t); j=1,....,p. (8)

d]'-l—l

3 Recursive least squares with forgetting factor

In this section the well known RLS algorithm with forgetting factor is
compared to the proposed method of estimation for the varying-coefficient
approach. Furthermore, it is shown how to include local polynomial ap-
proximations in the RLS algorithm.
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3.1 The weight function

The RLS algorithm with forgetting factor aims at estimating the param-
eters in the linear model

= z;fFO + e; (9)

which corresponds to Eq. 1 when 0(x;) is replaced by a constant vector
6. The parameter estimate 6(¢), using the RLS algorithm with constant
forgetting factor A, is given by

t
0(t) = i A=ty — 279)2. 1
(t) argmeln; (yi — 21'0) (10)

In this case the weight which is assigned to the ith observation in Eq. 10
can be written as

-] ()] oo

where the fact that ¢ < ¢ in Eq. 10 is used. Now it is easily seen that Eq.
11 corresponds to Eq. 3 with a fixed bandwidth A(t) = h = —(In \)~,
which furthermore shows how the bandwidth and the forgetting factor
are related. By also comparing Eq. 9 and Eq. 1 it is thus verified that
the RLS algorithm with forgetting factor corresponds to local constant
estimates in the varying-coefficient approach, with the specific choice Eq.
11 of the weight function.

3.2 Recursive local polynomial approximation

The RLS algorithm is given by (Ljung & Soéderstréom 1983)
t .
R(t) =Y N ziz] = AR(t — 1) + ze2] (12)
i=1

6(t)

0t —1)+RYt)z; |y — 2l — 1), (13)

with initial values



3 Recursive least squares with forgetting factor 99

where « is large (Ljung & Soéderstrom 1983). Hence, the recursive al-
gorithm is only asymptotically equivalent to solving the least squares
criteria Eq. 10, which on the other hand does not give a unique solution
for small values of t.

In Section 2.3 it was shown how to include local polynomial approxi-
mation of the parameters in the varying-coefficient approach, and that
this could be done by fitting the linear model Eq. 7 and calculating the
parameters from Eq. 8. It is thus obvious to use the same approach in
an extension of the RLS algorithm, replacing z; by u;;. However, the
explanatory variable u; ¢ is a function of ¢, which means that as we step
forward in time,

t—1

R(t — 1) = Z )\t_l_iui7t,1uz:t_1
=1

can not be used in the updating formula for R(t), as R(t) depends on u; .
To solve this problem a linear operator which is independent of ¢, and
maps pg,(s) to pg, (s + 1) has to be constructed. Using the coefficients
of the relation

d(d—1
(s—l—l)d:sd—i-dsd_l—i-(2,)5d_2+"'+1' (14)
it follows that
1 d dj(céj!—n (dj—lé(!dj—@ o1
1 dj —9 o1 gdi—1
pdj(s +1)=
1
L 1 -
0 1
I ) (15)
=Ljpy,(s)

Since L; is a linear operator it can be applied directly to w;; = L, ;—1,
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where
Ly 0 0 0 O

0 Ly 0 0 0
L=| ‘ (16)

0 ... ... L

Which, when applied to the recursive calculation Eq. 12 of R(t), yields
R(t) = ALR(t — D)LY + wsu!, (17)

and the updating formula for the parameters Eq. 13 is left unchanged.
The proposed algorithm will be denoted POLRLS (Polynomial RLS) in
the following.

Note that if the polynomials in Eq. 4 were calculated for the argument
i instead of ¢ — 4, then w;; = u;;—1, and it is seen that the recursive
calculation in Eq. 12 could be used without modification, but now there
would be a numerical problem for ¢t — oc.

4 Simulation study

Simulation is used to compare the RLS and POLRLS algorithms. For
this purpose we have generated N = 11 samples of n = 1000 observations
from the time-varying ARX-model

yi = ayi—1 +b(i)z; + e, e; € N(0,1),

where

2
1000

a=0.7, b(i):5+4sin< i), z; € N(0,1).

The estimation results are compared using the sample mean of the mean
square error (MSE) of the deviation between the true and the estimated
parameters

N n
MSE, = 22 {n_lﬂ > (a— a(i))Z}
]]; z;s )
MSEy, = §::2 {n_1+1 g(b(i) — b(i))Q}
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and the sample mean of the MSE of the predictions

N n
1
MSEp:N_1§2{n_S+ g —az—lyll—b(z—l)zz)}.
J

(18)
Only observations for which ¢ > s = 350 > max(fopt), where hgp is the
optimal bandwidth, are used in the calculation of the MSE, to make sure
that the effect of the initialisation has almost vanished. The observations
used for the prediction in Eq. 18, has not been used for the estimation
of the parameters, therefore the optimal bandwidth, Ay, can be found
by minimizing Eq. 18 with respect to the bandwidth A, i.e. forward
validation. The optimal bandwidth is found using the first sample, j = 1,
the 10 following are used for the calculation of the sample means.

The POLRLS method was applied with two different sets of polyno-
mial orders. The results are shown in Figure 1 and Table 1. Obviously,
knowing the true model, a zero order polynomial approximation of a
and a second order polynomial approximation of b, should be the most
adequate choice. In a true application such knowledge might not be
available, i.e. if no preliminary analysis of data is performed. Therefore,
a second order polynomial approximation is used for both parameters, as
this could be the default or standard choice. In both cases the POLRLS
algorithm performs significantly better than the RLS algorithm, and, as
expected, using a second order approximation of a increases the MSE
because in this case the estimation is disturbed by non-significant ex-
planatory variables. In the figure it is seen, that it is especially when

Method Pol. order hopt | MSE, | MSE, | MSE

POLRLS | dy =2,do =2 | 62 | 1.0847 | 0.0024 | 0.0605
POLRLS | d; =0,d2 =2 | 57 | 1.0600 | 0.0005 | 0.0580
RLS di =0,do=0| 11 | 1.1548 | 0.0044 | 0.0871

Table 1: MSE results using the RLS and POLRLS algorithms.

the value of b(7) is small, that the variance of a is large. In this case the
signal to noise ratio is low, and the fact that a larger bandwidth can be
used in the new algorithm, means that the variance can be significantly
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Figure 1: Estimated parameter trajectories. The first row shows the
trajectories from the RLS algorithm, the second row shows the result
from the POLRLS algorithm where a has been approximated by a zero
order polynomial, and b by a second order polynomial.
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reduced. Furthermore, it is seen that the reduction of the parameter esti-
mation variance is greater for the fixed parameter than the time varying
parameter. The reason for this is that the optimal bandwidth is found
by minimising the MSE of the predictions, and bias in the estimate of
b contributes relatively more to the MSE than variance in the estimate
of a, i.e. the optimal value of A balances bias in the estimate of b and
variance in the estimate of a. When a second order polynomial is used
instead of a zero order polynomial, for the estimation of b, it is possible
to avoid bias even when a significantly larger bandwidth is used.

5 Summary

In this paper the similarity between the varying-coefficient approach
and the RLS algorithm with forgetting factor has been demonstrated.
Furthermore an extension of the RLS algorithm, along the lines of the
varying-coefficient approach is suggested. Using an example it is shown
that the new algorithm leads to an significantly improvement of the es-
timation performance, if the variation of the true parameters is smooth.
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Tracking time-varying coefficient-functions

Henrik Aa. Nielsen!, Torben S. Nielsen!, Alfred K. Joensen!,
Henrik Madsen! and Jan Holst?

Abstract

A method for adaptive and recursive estimation in a class of non-
linear autoregressive models with external input is proposed. The
model class considered is conditionally parametric ARX-models
(CPARX-models), which is conventional ARX-models in which
the parameters are replaced by smooth, but otherwise unknown,
functions of a low-dimensional input process. These coefficient-
functions are estimated adaptively and recursively without speci-
fying a global parametric form, i.e. the method allows for on-line
tracking of the coefficient-functions. Essentially, in its most sim-
ple form, the method is a combination of recursive least squares
with exponential forgetting and local polynomial regression. It
is argued, that it is appropriate to let the forgetting factor vary
with the value of the external signal which is the argument of the
coefficient-functions. Some of the key properties of the modified
method are studied by simulation.

Keywords: Adaptive and recursive estimation; Non-linear models;
Time-varying functions; Conditional parametric models; Non-parametric
method.

1 Introduction

The conditional parametric ARX-model (CPARX-model) is a non-linear
model formulated as a linear ARX-model in which the parameters are
replaced by smooth, but otherwise unknown, functions of one or more ex-
planatory variables. These functions are called coefficient-functions. In

'Department of Mathematical Modelling, Technical University of Denmark, DK-
2800 Lyngby, Denmark

2Department of Mathematical Statistics, Lund University, Lund Institute of Tech-
nology, S-211 00 Lund, Sweden
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(Nielsen, Nielsen & Madsen 1997) this class of models is used in relation
to district heating systems to model the non-linear dynamic response
of network temperature on supply temperature and flow at the plant.
A particular feature of district heating systems is, that the response on
supply temperature depends on the flow. This is modelled by describ-
ing the relation between temperatures by an ARX-model in which the
coefficients depend on the flow.

For on-line applications it is advantageous to allow the function estimates
to be modified as data become available. Furthermore, because the sys-
tem may change slowly over time, observations should be down-weighted
as they become older. For this reason a time-adaptive and recursive esti-
mation method is proposed. Essentially, the estimates at each time step
are the solution to a set of weighted least squares regressions and there-
fore the estimates are unique under quite general conditions. For this
reason the proposed method provides a simple way to perform adaptive
and recursive estimation in a class of non-linear models. The method is
a combination of the recursive least squares with exponential forgetting
(Ljung & Soderstrom 1983) and locally weighted polynomial regression
(Cleveland & Devlin 1988). In the paper adaptive estimation is used
to denote, that old observations are down-weighted, i.e. in the sense of
adaptive in time. Some of the key properties of the method are discussed
and demonstrated by simulation.

Cleveland & Devlin (1988) gives an excellent account for non-adaptive
estimation of a regression function by use of local polynomial approxima-
tions. Non-adaptive recursive estimation of a regression function is a re-
lated problem, which has been studied recently by Thuvesholmen (1997)
using kernel methods and by Vilar-Fernandez & Vilar-Fernandez (1998)
using local polynomial regression. Since these methods are non-adaptive
one of the aspects considered in these papers is how to decrease the
bandwidth as new observations become available. This problem do not
arise for adaptive estimation since old observations are down-weighted
and eventually disregarded as part of the algorithm. Hastie & Tibshi-
rani (1993) considered varying-coefficient models which are similar in
structure to conditional parametric models and have close resemblance
to additive models (Hastie & Tibshirani 1990) with respect to estima-
tion. However, varying-coefficient models include additional assumptions
on the structure. Some specific time-series counterparts of these models
are the functional-coefficient autoregressive models (Chen & Tsay 1993q)
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and the non-linear additive ARX-models (Chen & Tsay 1993b).

The paper is organized as follows. In Section 2 the conditional parametric
model is introduced and a procedure for estimation is described. Adap-
tive and recursive estimation in the model are described in Section 3,
which also contains a summary of the method. To illustrate the method
some simulated examples are included in Section 4. Further topics, such
as optimal bandwidths and optimal forgetting factors are considered in
Section 5. Finally, we conclude on the paper in Section 6.

2 Conditional parametric models and local poly-
nomial estimates

When using a conditional parametric model to model the response ys
the explanatory variables are split in two groups. One group of variables
x5 enter globally through coefficients depending on the other group of
variables ug, i.e.

Ys = XSTO(US) + es, (1)

where 6(-) is a vector of coefficient-functions to be estimated and ey is
the noise term. Note that x; may contain lagged values of the response.
The dimension of x; can be quite large, but the dimension of ug; must be
low (1 or 2) for practical purposes (Hastie & Tibshirani 1990, pp. 83-84).
In (Nielsen et al. 1997) the dimensions 30 and 1 is used. Estimation in
(1), using methods similar to the methods by Cleveland & Devlin (1988),
is described for some special cases in (Anderson et al. 1994) and (Hastie
& Tibshirani 1993). A more general description can be found in (Nielsen
et al. 1997). To make the paper self-contained the method is outlined
below.

The functions 6(-) in (1) are estimated at a number of distinct points by
approximating the functions using polynomials and fitting the resulting
linear model locally to each of these fitting points. To be more specific
let u denote a particular fitting point. Let 6;(-) be the j’th element of
6(-) and let py(;)(u) be a column vector of terms in the corresponding
d-order polynomial evaluated at u, if for instance u = [u1 ug]? then

p2(u) = [1 uy ug u? ugug u3]?. Furthermore, let x5 = [:cljs...xpﬁ]T.
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With
7! = $1,spg(1)(lls) . .:Uj’spdT(j)(us) . .xnspg(p) (us)] (2)
and
Gy = Do Dy uyl, (3)

where ¢, ; is a column vector of local coefficients at u corresponding to
7 sPd(j)(us). The linear model

ys:zquu—i—es; i=1,...,N, (4)

is then fitted locally to u using weighted least squares (WLS), i.e.

N

$(u) = argmin Y we(uy)(ys — 24 ¢,)%, ()

¢u s=1

for which a unique closed-form solution exists provided the matrix with
rows z! corresponding to non-zero weights has full rank. The weights

are assigned as
_ |[us — ul|
wy(ug) =W < H(a) , (6)

where || - || denotes the Euclidean norm, A(u) is the bandwidth used for
the particular fitting point, and W(-) is a weight function taking non-
negative arguments. Here we follow Cleveland & Devlin (1988) and use

W) — (1—u®)3, uwelo;1) )
0, u € [1;00)

i.e. the weights are between 0 and 1. The elements of 8(u) are estimated
by ) R
0;(u) = py;y(0) @;(w); j=1,...p, (8)

where gAbj (u) is the WLS estimate of ¢, ;. The estimates of the coefficient-
functions obtained as outlined above are called local polynomial esti-
mates. For the special case where all coefficient-functions are approxi-
mated by constants we use the term local constant estimates.

If A(u) is constant for all values of u it is denoted a fixed bandwidth.
If A(u) is chosen so that a certain fraction « of the observations fulfill
||lus — u|| < A(u) then « is denoted a nearest neighbour bandwidth. A
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bandwidth specified according to the nearest neighbour principle is often
used as a tool to vary the actual bandwidth with the local density of the
data.

Interpolation is used for approximating the estimates of the coefficient-
functions for other values of the arguments than the fitting points. This
interpolation should only have marginal effect on the estimates. There-
fore, it sets requirements on the number and placement of the fitting
points. If a nearest neighbour bandwidth is used it is reasonable to se-
lect the fitting points according to the density of the data as it is done
when using k-d trees (Chambers & Hastie 1991, Section 8.4.2). However,
in this paper the approach is to select the fitting points on an equidis-
tant grid and ensure that several fitting points are within the (smallest)
bandwidth so that linear interpolation can be applied safely.

3 Adaptive estimation

As pointed out in the previous section local polynomial estimation can
be viewed as local constant estimation in a model derived from the orig-
inal model. This observation forms the basis of the method suggested.
For simplicity the adaptive estimation method is described as a general-
ization of exponential forgetting. However, the more general forgetting
methods described by Ljung & Soderstrom (1983) could also serve as a
basis.

3.1 The proposed method

Using exponential forgetting and assuming observations at time s =
1,...,t are available, the adaptive least squares estimate of the parame-
ters ¢ relating the explanatory variables z; to the response y; using the
linear model ys = z! ¢ + e, is found as

t
¢, = argmin Y N (y, — 2! ¢)?, (9)
¢

s=1
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where 0 < A < 1 is called the forgetting factor, see also (Ljung & Soder-
strom 1983). The estimate can be seen as a local constant approximation
in the direction of time. This suggests that the estimator may also be de-
fined locally with respect to some other explanatory variables u;. If the
estimates are defined locally to a fitting point u, the adaptive estimate
corresponding to this point can be expressed as

t
¢y (w) = argmin Y A" *w,(uy) (ys — 2L b,)° (10)
Pu s=1

where w,,(u;s) is a weight on observation s depending on the fitting point
u and ug, see Section 2.

In Section 3.2 it will be shown how the estimator (10) can be formulated
recursively, but here we will briefly comment on the estimator and its
relations to non-parametric regression. A special case is obtained if z, =
1 for all s, then simple calculations show that

i N Zizl /\tiswu(US)ys
¢t<u) - 22:1 )\tiswu(us) )

and for A = 1 this is a kernel estimator of ¢(-) in ys = ¢(us) + es, cf.
(Hardle 1990, p. 30). For this reason (11) is called an adaptive kernel
estimator of ¢(-) and the estimator (10) may be called an adaptive local
constant estimator of the coefficient-functions ¢(-) in the conditional
parametric model ys = zl ¢(u,) + es. Using the same techniques as
in Section 2 this can be used to implement adaptive local polynomial
estimation in models like (1).

(11)

3.2 Recursive formulation

Following the same arguments as in Ljung & Soderstrom (1983) it is
readily shown that the adaptive estimates (10) can be found recursively
as

$u(w) = by (w) + walw)Ry 22 |y — 2] b (w) (12)

and
Ru,t = )\Ru,t—l + wu(ut)ztth . (13)
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It is seen that existing numerical procedures implementing adaptive re-
cursive least squares for linear models can be applied, by replacing z;
and y; in the existing procedures with z;/w,(u;) and y;/w, (), re-
spectively. Note that z?(z)t_l(u) is a predictor of y; locally with respect
to u and for this reason it is used in (12). To predict y; a predictor like
zl'¢, ,(uy) is appropriate.

3.3 DModified updating formula

When w; is far from the particular fitting point u it is clear from (12)
and (13) that ¢,(u) ~ ¢,_;(u) and Ry ~ ARy 1, i.e. old observations
are down-weighted without new information becoming available. This
may result in abruptly changing estimates if u is not visited regularly,
since the matrix R is decreasing exponentially in this case. Hence it is
proposed to modify (13) to ensure that the past is weighted down only
when new information becomes available, i.e.

R+ = Av(wy(u); MRy -1 + wu(ut)ztth, (14)

where v(- ; A) is a nowhere increasing function on [0; 1] fulfilling v(0; A) =
1/X and v(1;A) = 1. Note that this requires that the weights span the
interval ranging from zero to one. This is fulfilled for weights generated
as described in Section 2. In this paper we consider only the linear
function v(w; A) = 1/A — (1/A — 1)w, for which (14) becomes

Ry = (1— (1= Nwy,(w)Ruys 1+ wy(uy)zez; . (15)
It is reasonable to denote
Aepr() =1 — (1= Nwy(ur) (16)
the effective forgetting factor for point u at time ¢.
When using (14) or (15) it is ensured that R, ; can not become singular
because the process {u;} moves away from the fitting point for a longer
period. However, the process {z;} should be persistently excited as for

linear ARX-models. In this case, given the weights, the estimates define
a global minimum corresponding to (10).
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3.4 Nearest neighbour bandwidth

Assume that u; is a stochastic variable and that the pdf f(-) of u; is
known and constant over t. Based on a nearest neighbour bandwidth the
actual bandwidth can then be calculated for a number of fitting points
u placed within the domain of f(-) and used to generate the weights
wy(ug). The actual bandwidth A(u) corresponding to the point u will be
related to the nearest neighbour bandwidth o by

Q= f(v)dv, (17)
Dy

where D, = {v € R? | |[|[v — u|| < fAi(u)} is the neighbour-hood, d is
the dimension of u, and || - || is the Euclidean norm. In applications
the density f(-) is often unknown. However, f(-) can be estimated from
data, e.g. by the empirical pdf.

3.5 Effective number of observations

In order to select an appropriate value for « the effective number of
observations used for estimation must be considered. In Appendix A it
is shown that under certain conditions, when the modified updating (15)

is used,

1 1

T = 1= BN ()] T (1= N E[w,(uy)] ()

is a lower bound on the effective number of observations (in the direction
of time) corresponding to a fitting point u. Generally (18) can be con-
sidered an approximation. When selecting o and A it is then natural to
require that the number of observations within the bandwidth, i.e. a7,
is sufficiently large to justify the complexity of the model and the order
of the local polynomial approximations.

As an example consider u; ~ N(0,1) and A = 0.99 where the effective
number of observations within the bandwidth, an,, is displayed in Fig-
ure 1. It is seen that an, depends strongly on the fitting point u but only
moderately on «. When investigating the dependence of af, on A and «
it turns out that amn, is almost solely determined by A. In conclusion, for
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the example considered, the effective forgetting factor Ay, (t) will be af-
fected by the nearest neighbour bandwidth, so that the effective number
of observations within the bandwidth will be strongly dependent on A,
but only weakly dependent on the bandwidth (a)). The ratio between the
rate at which the weights on observations goes to zero in the direction of
time and the corresponding rate in the direction of u; will be determined
by a.

350

250

150

Fitting point (u)

Figure 1: Effective number of observations within the bandwidth
(any(u)) for « =0.1,...,0.9 and A = 0.99.

As it is illustrated by Figure 1 the effective number of observations be-
hind each of the local approximations depends on the fitting point. This
is contrary to the non-adaptive nearest neighbour method, cf. Section 2,
and may result in a somewhat unexpected behaviour of the estimates.
If the system follows a linear ARX-model and if the coefficients of the
system are estimated as coefficient-functions then both adaptive and non-
adaptive nearest neighbour approaches will be unbiased. However, for
this example the variance of local constant estimates will decrease for
increasing values of |u|. This is verified by simulations, which also show
that local linear and quadratic approximations results in increased vari-
ance for large |u|. Note that, when the true function is not a constant, the
local constant approximation may result in excess bias, see e.g. (Nielsen
et al. 1997).

If A is varied with the fitting point as A(u) = 1 — 1/(Tp E[wy(u;)]) then
7w = Tp. Thus, the effective number of observations within the band-
width is constant across fitting points. Furthermore, 7 can be inter-
preted as the memory time constant. To avoid highly variable estimates
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of Elw,(uy)] in the tails of the distribution of u; the estimates should be
based on a parametric family of distributions. However, in the remaining
part of this paper A is not varied across fitting points.

3.6 Summary of the method

To clarify the method the actual algorithm is briefly described in this
section. It is assumed that at each time step ¢t measurements of the
output y; and the two sets of inputs x; and u; are received. The aim is
to obtain adaptive estimates of the coeflicient-functions in the non-linear
model (1).

Besides A in (15), prior to the application of the algorithm a number of
fitting points u?; i =1,...,n #p in which the coefficient-functions are to
be estimated has to be selected. Furthermore the bandwidth associated
with each of the fitting points A(); i = 1,... ,n¢p and the degrees of
the approximating polynomials d(j); j = 1,...,p have to be selected
for each of the p coefficient-functions. For simplicity the degree of the
approximating polynomial for a particular coefficient-function will be
fixed across fitting points. Finally, initial estimates of the coefficient-
functions in the model corresponding to local constant estimates, i.e.
do(u?), must be chosen. Also, the matrices R, o must be chosen.
One possibility is diag(e, ..., €), where € is a small positive number.

In the following description of the algorithm it will be assumed that
R, is non-singular for all fitting points. In practice we would just
stop updating the estimates if the matrix become singular. Under the
assumption mentioned the algorithm can be described as:

For each time step t: Loop over the fitting points u®; i =1,... SNy
and for each fitting point:

e Construct the explanatory variables corresponding to local con-
stant estimates using (2):

z] = [xl,tpg(l)(ut) .. .xp,tpg(p) (wy)].

e Calculate the weight using (6) and (7):
wy i (0g) = (1= (JJug —a@||/AD)3)3 ] if ||u; —u@ || < A and zero
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otherwise.

e Find the effective forgetting factor using (16):
AL () =1 (1= Nwy (uy).

e Update R, ; using (15):
R0, = A (R0 4y + wyo (ur)ziz]
e Update ¢, ,(u?) using (12):
éﬁt(u(i)) = é&tfl(u(")) + Wy ) (ut)R;&),tZt Yt — ZtT(%tfl(u(i))]'

e (Calculate the updated local polynomial estimates of the coefficient-
functions using (8):

éjt(u(i)) = pg(j)(u(i)) &j,t(u(i)% j=1...p

The algorithm could also be implemented using the matrix inversion
lemma as in (Ljung & Soderstrom 1983).

4 Simulations

Aspects of the proposed method are illustrated in this section. When
the modified updating formula (15) is used the general behaviour of the
method for different bandwidths is illustrated in Section 4.1. In Sec-
tion 4.2 results obtained using the two updating formulas (13) and (15)
are compared.

The simulations are performed using the non-linear model
yr = a(t,ug—1)yi—1 + b(t, ug—1)ws + ey, (19)

where {z;} is the input process, {u;} is the process controlling the co-
efficients, {y;} is the output process, and {e;} is a white noise standard
Gaussian process. The coefficient-functions are simulated as

(u— %tﬁ
1

1.5
a(t,u) =0.34 (0.6 — Wt) exp <_2(0'6_0f\7t)2>
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and

(u+1—2t)?

b(t,u) =2 — i
(t,u) exp ( 03
where t =1,..., N and N = 5000, i.e. a(t, u) ranges from -0.6 to 0.9 and
b(t,u) ranges from 1 to 2. The functions are displayed in Figure 2. As
indicated by the figure both coefficient-functions are based on a Gaussian

density in which the mean and variance varies linearly with time.
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u u

Figure 2: The time-varying coefficient-functions plotted for equidistant
points in time as indicated on the plots.

Local linear adaptive estimates of the functions a() and b() are then
found using the proposed procedure with the model

yr = a(u—1)ye—1 + b(ur—1)xs + €. (20)

In all cases initial estimates of the coefficient-functions are set to zero
and during the initialization the estimates are not updated, for the fitting
point considered, until ten observations have received a weight of 0.5 or
larger.

4.1 Highly correlated input processes

In the simulation presented in this section a strongly correlated {u;}
process is used and also the {x;} process is quite strongly correlated. This
allows us to illustrate various aspects of the method. For less correlated
series the performance is much improved. The data are generated using
(19) where {z;} and {u;} are zero mean AR(1)-processes with poles in
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0.9 and 0.98, respectively. The variance for both series is one and the
series are mutually independent. In Figure 3 the data are displayed.
Based on these data adaptive estimation in (20) are performed using
nearest neighbour bandwidths, calculated assuming a standard Gaussian
distribution for ;.

10

-10

0 1060 2060 3060 4060 5060
Time

Figure 3: Simulated output (bottom) when z; (top) and u; (middle) are

AR(1)-processes.

The results obtained using the modified updating formula (15) are dis-
played for fitting points u = —2,—1,0,1,2 in Figures 4 and 5. For the
first 2/3 of the period the estimates at u = —2, i.e. a(—2) and b(—2),
only gets updated occasionally. This is due to the correlation structure
of {u;} as illustrated by the realization displayed in Figure 3.

For both estimates the bias is most pronounced during periods in which
the true coefficient-function changes quickly for values of u; near the
fitting point considered. This is further illustrated by the true functions
in Figure 2 and it is, for instance clear that adaption to a(t,1) is difficult
for t > 3000. Furthermore, u = 1 is rarely visited by {u;} for ¢ > 3000,
see Figure 3. In general, the low bandwidth (o = 0.3) seems to result in
large bias, presumably because the effective forgetting factor is increased
on average, cf. Section 3.5. Similarly, the high bandwidth (« = 0.7) result
in large bias for v = 2 and ¢ > 4000. A nearest neighbour bandwidth of
0.7 corresponds to an actual bandwidth of approximately 2.5 at u = 2
and since most values of u; are below one, it is clear that the estimates
at u = 2 will be highly influenced by the actual function values for u
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5000

3000 4000
Time

2000

1000

Figure 4: Adaptive estimates of a(u) using local linear approximations
and nearest neighbour bandwidths 0.3 (dashed), 0.5 (dotted), and 0.7
(solid). True values are indicated by smooth dashed lines.
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5000

4000

3000

Time

2000

1000

Figure 5: Adaptive estimates of b(u) using local linear approximations
and nearest neighbour bandwidths 0.3 (dashed), 0.5 (dotted), and 0.7
(solid). True values are indicated by smooth dashed lines.
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near one. From Figure 2 it is seen that for ¢ > 4000 the true values at
u = 1 is markedly lower that the true values at u = 2. Together with
the fact that u = 2 is not visited by {u;} for ¢ > 4000 this explains the
observed bias at u = 2, see Figure 6.

" |5
N H
O‘ :___
5° Su ||
T a7
0
Q] Rk
2 1 0 1 2 -2 1 0 1 2
u u

Figure 6: Adaptive estimates for the example considered in Section 4.1
at t = 5000 for a = 0.3 (dashed), 0.5 (dotted), 0.7 (solid). True values
are indicated by circles and fitting points ranging from -2 to 2 in steps
of 0.2 are used.

4.2 Abrupt changes in input signals

One of the main advantages of the modified updating formula (15) over
the normal updating formula (13) is that it does not allow fast changes in
the estimates at fitting points which has not been visited by the process
{u;} for a longer period. If, for instance, we wish to adaptively estimate
the stationary relation between the heat consumption of a town and the
ambient air temperature then {u;} contains an annual fluctuation and at
some geographical locations the transition from, say, warm to cold peri-
ods may be quite fast. In such a situation the normal updating formula
(13) will, essentially, forget the preceding winter during the summer, al-
lowing for large changes in the estimate at low temperatures during some
initial period of the following winter. Actually, it is possible that, using
the normal updating formula will result in a nearly singular R.

To illustrate this aspect 5000 observations are simulated using the model
(19). The sequence {z;} is simulated as a standard Gaussian AR(1)-
process with a pole in 0.9. Furthermore, {u;} is simulated as an iid
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process where

N(0,1), t=1,...,1000
ug~ < N(3/2,1/6%), t=1001,...,4000
N(-3/2,1/6%), t=4001,...,5000

To compare the two methods of updating, i.e. (13) and (15), a fixed A is
used in (15) across the fitting points and the effective forgetting factors
are designed to be equal. If ) is the forgetting factor corresponding to
(13) it can be varied with u as

Mu) = EIN (0] = 1= (1= N Elwa(ur)],

where Efw,,(u)] is calculated assuming that u; is standard Gaussian, i.e.
corresponding to 1 < ¢ < 1000. A nearest neighbour bandwidth of 0.5
and A = 0.99 are used, which results in A(0) = 0.997 and A(£2) = 0.9978.

The corresponding adaptive estimates obtained for the fitting point v =
—1 are shown in Figure 7. The figure illustrates that for both methods
the updating of the estimates stops as {u;} leaves the fitting point u =
—1. Using the normal updating (13) of R; its value is multiplied by
A(—=1)309 ~ 0.00015 as {u;} returns to the vicinity of the fitting point.
This results in large fluctuations of the estimates, starting at ¢ = 4001.
As opposed to this, the modified updating (15) does not lead to such
fluctuations after ¢ = 4000.

5 Further topics

Optimal bandwidth and forgetting factor: So far in this paper it
has been assumed that the bandwidths used over the range of u; is de-
rived from the nearest neighbour bandwidth « and it has been indicated
how it can be ensured that the average forgetting factor is large enough.

However, the adaptive and recursive method is well suited for forward
validation (Hjorth 1994) and hence tuning parameters can be selected
by minimizing, e.g. the root mean square of the one-step prediction er-
ror (using observed u; and x; to predict y;, together with interpolation
between fitting points to obtain 6;_;(uy)).
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Figure 7: Realization of {u;} (top) and adaptive estimates of a(—1)
(middle) and b(—1) (bottom), using the normal updating formula (solid)
and the modified updating formula (dotted). True values are indicated
by dashed lines.

There are numerous ways to define the tuning parameters. A simple
approach is to use (A, «), cf. (15) and (17). A more ambiguous approach
is to use both A and A for each fitting point u. Furthermore, tuning
parameters controlling scaling and rotation of us; and the degree of the
local polynomial approximations may also be considered.

If n fitting points are used this amounts to 2n, or more, tuning parame-
ters. To make the dimension of the (global) optimization problem inde-
pendent of n and to have A\(u) and A(u) vary smoothly with u we may
choose to restrict A(u) and A(u), or appropriate transformations of these
(logit for A and log for h), to follow a spline basis (de Boor 1978, Lan-
caster & Salkauskas 1986). This is similar to the smoothing of spans
described by Friedman (1984).

Local time-polynomials: In this paper local polynomial approxima-
tions in the direction of time is not considered. Such a method is pro-
posed for usual ARX-models by Joensen, Nielsen, Nielsen & Madsen
(2000). This method can be combined with the method described here
and will result in local polynomial approximations where cross-products
between time and the conditioning variables (u;) are excluded.
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6 Conclusion and discussion

In this paper methods for adaptive and recursive estimation in a class of
non-linear autoregressive models with external input are proposed. The
model class considered is conditionally parametric ARX-models (CPARX-
model), which is a conventional ARX-model in which the parameters
are replaced by smooth, but otherwise unknown, functions of a low-
dimensional input process. These functions are estimated adaptively
and recursively without specifying a global parametric form. One possi-
ble application of CPARX-models is the modelling of varying time delays,
cf. (Nielsen et al. 1997).

The methods can be seen as generalizations or combinations of recursive
least squares with exponential forgetting (Ljung & Soderstrom 1983),
local polynomial regression (Cleveland & Devlin 1988), and conditional
parametric fits (Anderson et al. 1994). Hence, the methods constitutes
an extension to the notion of local polynomial estimation. The so called
modified method is suggested for cases where the process controlling the
coefficients are highly correlated or exhibit seasonal behaviour. The es-
timates at each time step can be seen as solutions to a range of weighted
least squares regressions and therefore the solution is unique for well be-
haved input processes. A particular feature of the modified method is
that the effective number of observations behind the estimates will be
almost independent of the actual bandwidth. This is accomplished by
varying the effective forgetting factor with the bandwidth. The band-
width mainly controls the rate at which the weights corresponding to
exponential forgetting goes to zero relatively to the rate at which the
remaining weights goes to zero.

For some applications it may be possible to specify global polynomial
approximations to the coefficient-functions of a CPARX-model. In this
situation the adaptive recursive least squares method can be applied for
tracking the parameters defining the coefficient-functions for all values
of the input process. However, if the argument(s) of the coefficient-
functions only stays in parts of the space corresponding to the possible
values of the argument(s) for longer periods this may seriously affect the
estimates of the coefficient-functions for other values of the argument(s),
as it corresponds to extrapolation using a fitted polynomial. This prob-
lem is effectively solved using the conditional parametric model in com-
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bination with the modified updating formula.

A Effective number of observations

Using the modified updating formula, as described in Section 3.3, the
estimates at time ¢ can be written as

A~

t
¢y (u) = argmin Y _ A(t, s)wu(us)(ys — 21 ),

d’u s=1

where
B(t,t) =1,

and, for s <t

Bt,s) = [ MNgs() = N (DB -1, 5),

Jj=s+1

where \¢, /() is given by (16). It is then obvious to define the effective
number of observations (in the direction of time) as

o0
Mu(t) =Y Bltt — i) = 14+ Npp(t) + A (DAL (E— 1) + ... (A1)
i=0
Suppose that the fitting point u is chosen so that E[n,(t)] exists. Conse-
quently, when {A¢;,(¢)} is i.i.d. and when A, € [0,1) denotes E[N{;(t)],
the average effective number of observations is

_ - 1
nu:1+)\u+)\i+...:1_5\u.

When {Xéff(t)} is not i.i.d., it is noted that since the expectation opera-
tor is linear, E[n,(t)] is the sum of the expected values of each summand
in (A.1). Hence, E[n,(t)] is independent of ¢ if {\;,(¢)} is strongly
stationary, i.e. if {u;} is strongly stationary. From (A.1)

Nu(t) =1+ Adpp()nu(t — 1) (A.2)
is obtained, and from the definition of covariance it then follows, that

. 1+ Covl gff(f)aﬁu(t—l)] o1

v =, A.
" 1—x, “1-x, (A-3)
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since 0 < A < 1 and assuming, that the covariance between A, ,(t) and
nu(t — 1) is positive. Note that, if the process {u;} behaves such that
if it has been near u for a longer period up to time ¢t — 1 it will tend
to be near u at time t also, a positive covariance is obtained. It is the
experience of the authors that such a behaviour of a stochastic process
is often encountered in practice.

As an alternative to the calculations above A{; (). (¢ — 1) may be lin-
earized around A, and 7,. From this it follows, that if the variances of
Aepp(t) and my(t — 1) are small then

_ 1

Th =~ N

1—Xy

Therefore we may use 1/(1 — \,) as an approximation to the effective
number of observations, and in many practical applications it will be an
lower bound, c.f. (A.3). By assuming a stochastic process for {u;} the
process {n,(t)} can be simulated using (A.2) whereby the validity of the
approximation can be addressed.
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A new reference for wind power forecasting

Torben S. Nielsen!, Alfred K. Joensen!, Henrik Madsen', Lars
Landberg? and Gregor Giebel?

Abstract

In recent years some research towards developing forecasting mod-
els for wind power or energy has been carried out. In order to
evaluate the prediction ability of these models, the forecasts are
usually compared to those of the persistence forecast model. As
shown in this paper, it is, however, not reasonable to use the per-
sistence model when the forecast length is more than a few hours.
Instead, a new statistical reference for predicting wind power,
which basically is a weighting between the persistence and the
mean of the power, is proposed. This reference forecast model is
adequate for all forecast lengths, and like the persistence model,
it requires only measured time series as input.

Keywords: Persistence, correlation, wind power, reference forecast model

1 Introduction

In this paper we propose a new reference model, which should be used
instead of the persistence model (1), when short term, say up to 48 hours,
forecasting models for wind power or energy are evaluated.

There are two types of wind power forecasting models, physical models as
in (Landberg 1999, Landberg 1994, Landberg & Watson 1994) and statis-
tical models as in (Joensen 1997, Nielsen & Madsen 1996, Madsen 1996).
Up to now the reference for these models, and many other meteorological
forecasting models, has been the persistence model given by

Di+k = Dt + €4k (1)

'Department of Mathematical Modelling, Technical University of Denmark, DK-
2800 Lyngby, Denmark

?Department of Wind Energy and Atmospheric Physics, Risoe National Labora-
tory, DK-4000 Roskilde, Denmark
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where t is a time index, k is the look ahead time, p is e.g. wind power or
energy, and £ denotes the residual. The forecast, p, obtained using this
model is

Dtk = Dt (2)

which states that the expected value k time steps ahead is equal to the
most recent value. In statistics this is called the persistence or naive
predictor. In this paper we shall denote (1) the persistence forecast
model.

The model (2) is a simple description, but yet very powerful. This is
because the atmosphere can be considered quasi-stationary, i.e. changing
very slowly. A characteristic time scale in the atmosphere is f~!, where
f is the Coriolis parameter. Using 107%s~! for f gives that this time
scale is approximately 3 hours, see (Landberg 1994).

To compare the forecasts to the observations, the root mean square error
(RMS) or the mean square error (MSE) is usually used. The MSFE for
the persistence forecast model is given by
= =
MSE, = —— — Prak)’ = -p)? (3
PT Nk ; (Pt+k — Dr+k) N _k ; (Petk — pt) (3)

where N is the number of observations. The RMS is given by

RMS, = \/MSE, (4)

Due to the quasi-stationarity of the atmosphere, p;; will be rather close
to p; when the time step k is less than a few hours, which means that
the MSE will be small compared to the MSFE for large k.

As k gets larger, k > f~!, or say above 36 hours, the flow in the atmo-
sphere will no longer remain constant, and the correlation between p;g
and p; will tend to zero. This means that the present flow provides no
information about the future flow, and the model (1) which correlates
the future flow to the present is no longer reasonable.

Instead the mean of the flow could be used as a simple reference when
the correlation is zero. In Appendix A it is shown that the MSE for the
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persistence actually is twice the MSE of the mean predictor, when the
correlation is zero.

It is thus quite obvious to suggest a new reference forecast model as a
weighting between the persistence and the mean where the weighting
for different forecast lengths is determined by the correlation between
pr and pyyg. In this paper such a reference is proposed. Wind power
is considered, but the proposed reference can be used for many other
meteorological quantities, e.g. wind speed or energy.

2 The new reference forecast model

As outlined in the introduction, the proposed reference forecast model
is a weighting between the persistence and the mean, i.e. the k step
forecast is written

Derk = agpt + (1 — ag)p (5)

where p; is the most recent measurement of the wind power, and p the
estimated mean of the power given by

1 N
pZN;pt (6)

When £k is small a; should be approximately one and the reference thus
corresponds to persistence, but when k is large and the correlation is
zero, ag should be zero and the forecast is simply the mean. It is thus
reasonable to define ay as the correlation coefficient between p; and pyx

N—k
N P PtPt+ko
U= "Nk (7)
1 ~
N > p?
i=1
where
Dt =Dt —D (8)

This actually corresponds to the value of a; which minimizes the MSFE
for the new reference.
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3 Examples

In this section measured wind power is used to calculate the correlation,
and the RMS for the new reference is compared to the RMS for the
mean and persistence.

3.1 Correlation

Measurements of half hourly mean values of wind power from a wind
farm, located in Hollandsbjerg, Denmark, have been used to calculate
an estimate of the correlation as a function of the forecast length. Two
datasets are considered, namely measurements from a summer and a
winter period. Each dataset contains 4380 measurements. The estimated
correlation as a function of the forecast length from the summer period
is shown in Figure 1 and the winter period in Figure 2.

Summer period
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?
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0.0

Forecast lenght k [hour]

Figure 1: Estimated correlation as a function of the forecast length for
4380 half hourly mean values of observed wind power in a summer period,
and the values of the fixed parameter function.
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Winter period
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Figure 2: Estimated correlation as a function of the forecast length for
4380 half hourly mean values of observed wind power in a winter period,
and the values of the fixed parameter function.



136 Paper C

From both figures it is seen that the correlation seems to exponentially
decrease as a function of the forecast length. Therefore the figures also
show the values of the function

f(k) = o" (9)

where the values used for ¢ are the estimated correlation coefficients for
k=1.

The correlation for the half hour forecast (kK = 1) is 0.968 for both pe-
riods, and the agreement between f(k) and the correlation is good for
both periods, as long as the forecast length is small. But for the summer
period the correlation is seen to be highly periodic, which is due to the
diurnal variation in the wind speed, and like latitudes like Denmark’s,
this diurnal variation is most significant during the summer period.

Thus, the correlation is not independent of the location of the wind
farm or the time of year. Therefore it is not possible to use a simple
expression like (9), or to assume global values for the correlation. It is
thus recommended that the correlation is calculated for each forecast
length using (7) and (8), and that the correlation which is calculated
using measurements from a given location, should not be used for any
other locations.

3.2 Performance

In this section the measurements from Hollandsbjerg are used to show
how the RMS of the forecast error depends on the forecast length. One
year of half hourly mean values of the power are used, and the RMS is
calculated using: the new reference, the persistence and the mean of the
power. The result is shown in Figure 3.

The figure clearly demonstrates the need for a new reference forecast
model, since the RMS for the persistence model for large horizons is
larger than the RMS obtains using the mean value as a forecast. For
small forecast lengths, k < f~! ~ 3 hours, the RMS for the new reference
is almost identical to the RMS for the persistence forecast model, and
for larger horizons, say k above 24 hours, the RMS for the new reference
approximates the RMS of the mean. For the intermediate horizons it
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Prediction performance
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Figure 3: The RMS for the three simple forecast models: the mean,
the persistence and the new reference. Calculated using one year of half
hourly mean values of measured wind power.
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is clearly seen that the new reference combines the forecasts from the
persistence and the mean in such a way, that the RMS is significantly
below the RMS of these two last approaches.

4 Summary

In this paper we have proposed a new reference forecast model for pre-
dictions related to wind speed and power. This reference should be
used instead of the commonly used persistence forecast model, which is
shown not to be reasonable for forecast lengths above a certain limit.
The algorithm for calculating predictions from the new reference model
is summarized below:

e Calculate the mean p using (6).
e For each forecast length k

— Calculate the correlation coefficient ay, using (7).

— Calculate the predictions p;, from the reference forecast model
using (5).

The main difference between this algorithm and the persistence forecast
model, is that the correlation coeflicient has to be calculated for each
forecast length. If the correlation were the same all over the world, or in
other words, not depending on the location of a wind farm, the algorithm
above could be simplified by omitting the calculation of the correlation
coeflicient. In this case the correlation coefficients could be given in a
table, which could be considered globally valid. But the results in the
previous section indicate that this is not the case.

The new reference forecast model is still almost as simple as the persis-
tence forecast model, since it only requires time series of measured wind
power as input. It is clearly demonstrated that if the forecast length, k,
is larger than f~' ~ 3 hours, then the new reference should be used.
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A The Mean Square Error (MSFE)

In this appendix it is shown that the MSFE for the persistence forecast
model is twice the MSE, if the mean is used as a forecast model when
the flow can be considered uncorrelated.

The MSE given by (3) can be rewritten as

MSEp ( Z pz + sz + Z pz -2 Z pzp1+k>

i=k+1 i=N—k+1
(A.1)

As the number of observations N — oo, and k < N, it is seen that the
second and third sum in (A.1) becomes neglible and hence

9 N—k N—k
s, 2 (30 58 Sowo)
=1

i=k+1

Using that the mean of two multiplied uncorrelated random variables,
X and Y, is given by E(XY) = E(X)E(Y), the MSE for large k can be
rewritten as

N—k N—k \ 2
MSE', ~ — > 3 o 1 S
PY Nk Pim N TR (&P

i=k+1
If instead the mean of the flow were used as a forecast model, i.e.

N

. _ 1

Pt+k:P:N Elpu 1<t<N
1=

we see that the MSFE for this model is

| X ; X
MSEnm = ¥ \Pi—w§ 2 Dj
i=1 j=1
N N2
=~ (ZPQ—}V Zm) ) ~ 5 MSE'
i=1 =1

which means that the MSE for the persistence model will be twice the
MSE of the mean model for large k, where p;1 1 and p; are uncorrelated.
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Statistical Methods for Predicting Wind Power

Alfred Joensen, Henrik Madsen and Torben S. Nielsen

Abstract

This paper describes how non-parametric statistical methods can
be applied to wind power prediction. Due to the local non-
stationary nature of the weather, a prediction model must be
capable of adapting to the changes in the weather conditions. The
approach applied here is to use locally weighted regression, where
changes in the weather conditions are captured by using time de-
pendent weighting. This approach reduces the model complexity,
and the weighted regression approach is also used to model other
relations, such as the power curve and the diurnal variation in
wind speed and power.

Keywords: Wind power; Prediction; polynomial approximation; weight-
ing functions.

1 Introduction

During the last decade the world has witnessed a renewed interest in
wind energy. This clean source of energy has become an important and
competitive alternative to conventionally fuelled plants. To fully benefit
from a large amount of wind farms connected to an electrical grid, it is
necessary to know in advance the electricity production generated by the
wind. This knowledge enables the utility to control the conventionally
fuelled plant in such a way that fossil fuels in fact can be saved. The
necessary time frame for the predictions is one to two days.

The prediction models which will be described in this paper are based
on measurements of wind speed wy, power p; and numerical weather
predictions (NWPs) of wind speed w; and direction ¢; from HIRLAM
(Machenhauer 1989) run by the Danish Meteorological Institute. Data
from a wind farm located in Hollandsbjerg, Denmark, has been used in
the study. In Figure 1 the layout of the wind farm is shown. The farm
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consists of 32 wind turbines, 30 Nordtank 130 kW and 2 Nordtank 300
kW turbines.

V’ Llevalbion 777/

Figure 1: Layout of wind farm and the terrain surface

The data from Hollandsbjerg covers one year, and it is therefore not
possible to model adequately any inter-annual dependency. Instead a
local regression approach which adapts to the actual meteorological state
is used.

2 Data Analysis

This section gives a short introduction to local regression, and continues
with examples of this approach applied to wind power prediction. More
on local regression can be found in (Hastie & Tibshirani 1993, Joensen
1997, Nielsen et al. 1997).
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2.1 Local regression

Locally weighted regression is a generalisation of the kernel smoothing
method (Nielsen et al. 1997), where the regression curve is approximated
by local constants. If the curvature of the true regression curve is sub-
stantial then only a small fraction of the observations can be used to
estimate a local constant if that estimate shall provide a reasonable non-
biased (local) estimate of the regression curve. The estimated regression
curve will in this case have large variance. Instead it is obvious to con-
sider a generalisation to local regression models where e.g. polynomial
approximation is used. Now it is possible to get a non-biased estimate
with a larger number of observations.

The underlying model for local regression is

where y; are observations of a response, x; are d- dimensional vectors of
explanatory variables, e; are independently identical distributed normal
variables and n is the number of observations.

The function f is assumed to be smooth and estimated by fitting a
polynomial P(x,x) model within a sliding window, and parameterized
such that

f(x) =Pz, ) (2)

For each fitting point, and for a given parameterization 8 of the polyno-
mial, the following least squares problem is considered

0(t) = argmin Y _wi(x)(y; — Pz, x))* 3)
i=1

The local least squares estimate of f(x) is now

f(x) = P(z,x) (4)

One common way to calculate the weights in (3) is to use a product kernel
where the distance between the explanatory variables is calculated one
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dimension at a time, i.e.

i1 — T

wilw) = W) w () o)

where the tri-cube weight function given by

_u33 U _1-
W(u):{a [ul?) we] - 1:1] ©)

0 Jul € [15 00]

can be used. The tuning parameter of the weight is called the bandwidth
h, and determines how many observation are included in fitting criteria
in (3).

If some of the explanatory variables are omitted in the weight calculation,
the model becomes global in that variable, and is called a conditionally
parametric model (Hastie & Tibshirani 1993, Nielsen et al. 1997). If
the dimension d is large there will be very few observations covered by
the weight function, resulting in a noisy estimate. If the true regression
curve is known to be e.g. globally linear in one or more of the explanatory
variables, then the conditionally paramteric model will be advantageous.

2.2 The power curve

Considering the layout of the wind farm in Figure 1 it is obvious that
the power curve should depend on the wind direction. First of all, it is
clear that the wind speed at each turbine is affected by the existence of
other turbines since the turbines give shelter to each other. Furthermore,
the wind speed also depends on the surrounding landscape, e.g. the
vegetation and the topography. The power curve is therefore modelled
using the measured wind speed and the NWP wind direction using the
steady state relation given by

e = g(we, dr) + e (7)

The reason for using the NWP direction is that there is no measured
wind direction from the site.
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Using the wind direction as an explanatory variable in local regression
is not straight forward. First of all the power curve at 0 deg and 360
deg should be the same as. This problem can be solved by adjusting
the directions in the data set, in such a way that the direction of the
fitting point becomes the midpoint of the interval used to represent the
directions.

Power [KW]

Figure 2: The power curve

The estimated power curve, using local second order polynomial approx-
imation and fixed bandwidths of 5 ms™! for the wind speed and 75 deg
for the wind direction is shown in Figure 2. The surface clearly shows
that the power production depends on the wind direction, but for wind
speeds above 18 ms™! the distribution of the data points is sparse, for
some directions there are no wind speed observations above 15 ms™!,

resulting in a quite rugged surface for high wind speeds.
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It has been assumed that the power curve does not depend on the time of
year. This is however not strictly true, because the direction dependency
will probably be varying from e.g. summertime where there are leafs on
the trees and to wintertime where there are no leafs. But the distribution
of data points would become very sparse if the power curve also should
depend on the time of year.

2.3 Diurnal and annual variation

Close to the coast line it must be expected that there is a diurnal varia-
tion in the wind speed; the so called land/sea- breeze. This wind speed
variation is driven by the diurnal variation in the temperature difference
between land and sea. For latitudes like that of Denmark this diurnal
variation is most significant during summertime. At wintertime there is
usually no or only a weak diurnal variation in the wind speed. Therefore
it is necessary to use both the time of day t4,, and the time of year ¢ as
explanatory variables for the diurnal variation.

Bearing in mind that in an on-line situation only past observations are
available, the diurnal variation can only be estimated using observations
up to the time of the estimation. This constraint can be fulfilled by
redefining the weight function in (6) in such a way that zero weight is
given to future observations.

As with the wind direction, the variable used to represent the time of
day is not continuos at 24 o’clock. This problem is solved in a similar
manner by adjusting the time of day at each fitting point, in such a way
that there are equally many observation before and after the time of day
at the fitting point.

The diurnal variation in the measured and the NWP wind speed are
estimated using second order polynomial approximation for the time of
day and zero order for the time of year. The bandwidth used for the
time of day is 5 hours and for the time of year 2 months, using only past
observations. Figure 3 shows the estimated variation on a summer and
winter day. First of all it is noticed that there is a clear diurnal variation
at summertime, and that the mean of the wind is higher at wintertime
but without any systematic variation as expected. It is also seen that
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Figure 3: Diurnal variation of observed and predicted wind speed

there is no variation in the NWP wind speed in the summer period. The
reason for this is that the NWP model does not take local phenomena
like the land/sea-breeze properly into account.

2.4 Other relations

The purpose of Section 2 has been to emphasise the most important rela-
tions which are revealed using the data from Hollandsbjerg. But several
other relations may exist which are not discussed above. For instance
the NWP wind speed should depend on the wind direction, because of
the spatial resolution of the NWP model. Several such relations have
been examined (Joensen 1997), but without success.

The main reason for this is most likely the distribution of the wind di-
rection. The distribution, which is depicted by a wind rose in Figure 4,
shows that there is only one main wind direction, and the wind direction
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Figure 4: The distribution of the NWP wind direction

is therefore redundant.

3 The Model

There are several ways to formulate multi-step prediction models (Joensen
1997, Nielsen & Madsen 1996). The approach taken here is to formulate
one model for each prediction horizon.

A number of models with several combinations of the explanatory vari-
ables have been tried out. The resulting model, which turned out to give
the best overall results (Joensen 1997), includes the same explanatory
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variables for each prediction horizon; but the parameters of the models
are different and have to be estimated for each prediction horizon.

The overall model is

Pevk = a(t)ps + d(t, taey) + b(t)g(Wisk, Prik) + €tk (8)

where ¢(.,.) is the power curve described in Section 2.2, and d(.,.) is
the annually varying diurnal variation of the power, which is estimated
similarly to the diurnal variation of the wind speed in Section 2.3. The
reason for including the power observation at time t in the model, is that
the power observations are auto-correlated. The result is that when k
is small, say below 3 hours, then p;, is rather close to p;. The diurnal
variation of the power is included in the model because the results in
Section 2.2 have shown that there were no diurnal variation in the NWPs.

The problem which arises when all the parameters of the model in (8)
are to be estimated using local regression, is called the curse of dimen-
sionality. If the parameters of all the relations in (8) are to be estimated
simultaneously, there will be very few data points covered by the weight
function, resulting in large parameter variance. Instead the relations
have to be estimated separately, and the only parameters that have to
be estimated in (8) are the coefficients of the polynomials a(.), b(.) and

d(..,.).

3.1 Results

This section gives the results from the model given in (8) compared to
the so called naive predictor and a new reference model which is more
adequate than the naive predictor (Nielsen, Joensen, Madsen, Landberg
& Giebel 1999, Nielsen & Madsen 1996). The predictions from the new
reference is a weighting between the naive predictor and the mean of
the power. When the prediction horizon k is large, say above 12 hours,
the correlation between the power observations p; and p;y; has almost
vanished, and it can be shown that the Root Mean Square Error (RMS)
of the naive predictor will be /2 times larger than the RMS of the new
reference (Nielsen et al. 1999).

The models are compared using the RMS. From Figure 5 it is clearly
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seen that the models which are presented in this paper outperform the
reference models.
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Figure 5: The RMS for different prediction horizons

3.2 Conclusion

This paper has demonstrated how locally weighted regression can be
used to develop prediction models for the power production from wind
turbines.

The main results in this paper are that the power production depends
both on the wind speed and direction, and that there is a diurnal vari-
ation in the power production which depends on the time of year. It
is described how this information can be used in an prediction model
which includes NWP of wind speed and direction. Throughout all the
modelling phases the locally weighted regression method has been used
and demonstrated.
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Model output statistics applied to wind power prediction

Alfred Karsten Joensen'?, Gregor Giebel', Lars Landberg!,
Henrik Madsen? and Henrik Aalborg Nielsen?

Abstract

Being able to predict the output of a wind farm online for a day
or two in advance has significant advantages for utilities, such
as better possibility to schedule fossil fuelled power plants and a
better position on electricity spot markets.

In this paper prediction methods based on Numerical Weather
Prediction (NWP) models are considered. The spatial resolu-
tion used in NWP models implies that these predictions are not
valid locally at a specific wind farm, furthermore, due to the non-
stationary nature and complexity of the processes in the atmo-
sphere, and occasional changes of NWP models, the deviation
between the predicted and the measured wind will be time de-
pendent. If observational data is available, and if the deviation
between the predictions and the observations exhibits systematic
behaviour, this should be corrected for; if statistical methods are
used, this approach is usually referred to as MOS (Model Output
Statistics). The influence of atmospheric turbulence intensity, to-
pography, prediction horizon length and auto-correlation of wind
speed and power is considered, and to take the time-variations
into account, adaptive estimation methods are applied.

Three estimation techniques are considered and compared, Ex-
tended Kalman Filtering, recursive least squares and a new mod-
ified recursive least squares algorithm.

Keywords: Forecasting Methods; Wind Energy; Statistical Analysis;
Performance
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1 Introduction

Several models for predicting the output from wind farms have already
been developed, some based on observations from the wind farms (Madsen
1996), others based on numerical weather predictions (Landberg 1994),
and again others on combination of both (Joensen, Madsen & Nielsen
1997).

This paper describes how statistical methods, usually referred to as
model output statistics (MOS), can be used in models that combine
observations and NWP model predictions, and the approach taken here
is slightly different from the approach in (Joensen et al. 1997). The NWP
model, HIRLAM (Machenhauer 1988), is run by the Danish Meteorolog-
ical Institute (DMI). The observations, wind speed w; and power p;, are
from four sites in Denmark: The Risg mast at Risg National Laboratory,
and the Avedgre, Kappel and Ostermarie wind farms.

The NWP model predicts several meteorological variables, such as tem-
perature, surface fluxes and pressure, wind speed w; and direction 6#; at
31 levels/heights, see (Machenhauer 1988) for definition of the levels, and
at the surface, i.e. 10 m a.g.l. The NWP model is run four times at day,
at 00:00, 06:00, 12:00 and 18:00 UTC, and the predictions are given in 3
hourly steps 36 hours ahead.

2 Finding the right NWP model level

In (Landberg 1994) it was found that the NWP predicted wind from level
27 gave the best results when used as input to the neutral geostrophic
drag law to determine u,, and the neutral logarithmic profile was used to
calculate the wind at hub height. It was concluded that the reason why
the stability dependant relations did not improve the results, was that the
heat fluxes were not predicted accurately enough. Since HIRLAM has
been updated several times since the investigation in (Landberg 1994),
it is reasonable to re-evaluate these results.

Based on the results in (Landberg 1994) the neutral relations are used to
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transform the NWP wind down to the surface, and the prediction per-
formance is compared to the performance of the surface wind calculated
by the NWP model. HIRLAM takes the stability into account when the
surface wind is calculated, and this comparison will therefore show if it
is advantageous to include the stability. Furthermore, in order to make
a fair comparison, the predictions should be corrected for any bias and
offset, i.e. the simple MOS model

Witk = QpWiik + bk + €pk (1)

where €, is assumed to be white noise and k is the prediction horizon,
is fitted to the observations using the least squares method.

Observations from 44, 76 and 125 m above the surface from the Risg
mast are used in the comparison, because the wind which should be used
might not be the same depending on which height above the surface it
is compared to.

To evaluate the performance of the predictions

VAR('wt+k)

(2)

is used, where VAR is the estimated variance of the observations and
MSE} is the mean square error of the predictions k hours ahead. The
interpretation of p is that it measures how much of the total variation in
the observations is explained by the predictions, i.e. a value of 1 means
that the predictions are perfect and 0 means that predictions are useless.

Figure 1 shows the results for each model height and each prediction
horizon compared to the 44 m observations at the Risg mast. It is clearly
seen that for all prediction horizons the best result is obtained using the
surface wind, and the corresponding figures for the 76 and 125 m show
the same results. The conclusion is therefore that it is advantageous to
take the stability into account, and hence the surface wind calculated by
the NWP model should be used.
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Figure 1: Performance for various NWP model levels

3 Wind direction dependency

Due to the spatial resolution of any NWP model it should be expected
that some kind of wind direction dependant fine tuning to a specific site
should be possible. One way to do this fine tuning is to apply a MOS
model

Witk = ap(Oprr)wisr + b (Oppr) + €rpn (3)

From a physical point of view the adjustment due to the topography
should be a wind direction dependant factor, but this model also in-
cludes a wind direction dependant offset. The reason for this is purely
statistical, e.g. if the prediction accuracy of the NWP model is not the
same for all directions the inclusion of the offset will increase the perfor-
mance.

Local regression (Hastie & Tibshirani 1993) has been used to estimate the
coefficient functions in (3). When using this method it has been assumed
that for a given wind direction sector the coefficient functions are well
approximated by second order polynomials. Using the terminology of
local regression, the nearest neighbour bandwidth was chosen to include
40% of the observations at each fitting point. A physical way to take
the topography into account is to perform a high resolution analysis of
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the site and the surroundings, and use this analysis to correct the NWP
wind for local topography effects, which obviously are not included by the
NWP model resolution. To see if this is advantageous the NWP surface
wind has been corrected by matrixes calculated by WAsP (Mortensen
et al. 1993).

Again Risg mast data from the last half of 1997 and first half of 1998
has been used for the estimation, while validation was performed with
data from the last half of 1998. In order to make a fair comparison, the
MOS model (1) has been applied after the WASP correction, and the
performance has also been calculated for the MOS model applied to the
raw NWP surface predictions.

Surprisingly, Figure 2 shows that the performance of the WAsP corrected
forecast is worse than without, although the difference is only minor. The
reason is most likely that the physical assumptions behind WASP are not
satisfied when WASsP is used for predictions of wind speed and direction
which contain errors. Nevertheless, it seems as if there is some depen-
dency on the topography, because the statistical correction (3) improves
the performance, but this is not the only reason. This follows from the
fact that the wind speed distribution depends on the wind direction, i.e.
the wind speed in Denmark is usually higher when coming from west
compared to e.g. north or east. This is a feature of the overall flow, and
can not be prescribed to the local topography. Because the wind speed
is not perfectly predicted by the NWP model this is incorporated by the
wind direction dependent offset in (3).

4 Diurnal variation

Surprisingly, as seen in Figure 2, it seems easier to predict e.g. 6 hours
ahead than 3 hours ahead. The reason is that the prediction horizon k
aliases with the time of day, and therefore, as shown in Figure 3, with
the diurnal variation in the wind speed/atmospheric stability. This is
because the NWP model is update 4 times a day, hence odd prediction
horizons correspond to the following times of day: 03:00, 09:00, 15:00 and
21:00, and even horizons correspond to: 00:00, 06:00, 12:00 and 18:00.



162 Paper E

0.80 -
N 0.75 1 x/ D /o
o 0.70
o
S /5\
£ 0.65 - \
2 0604 —9— No correction 2 \
gg —O— Statistical correction \E/E
0.55 - . =
—A— WA®P correctio ~
050 T T T T T T
0 6 12 18 24 30 36

Prediction horizon k [hour]

Figure 2: Performance for direction dependent models

Furthermore, Figure 3 is only based on measurements from the 1998
summer period, for latitudes like those of Denmark, there is also an
annual variation in the diurnal variation (Nielsen et al. 1999). When the
data used for the estimation is not from the same seasons of the year
as the data used for the validation, which is the case in Section 3, the
parameters of (3) become biased towards the diurnal variation in that
specific period. This is the main reason for the effect seen in Figure 2.

5 Adaptive estimation

In the previous sections only wind speed models have been considered,
we now turn to wind power models which are slightly more complicated
due to the non-linear relation between the wind speed and the power.

Furthermore, due to the non-stationary nature of the atmosphere, it must
be expected that the parameters of a MOS model will be time-varying.
Hence adaptive estimation methods are considered. Two widely used
methods for this purpose is Kalman filtering and recursive least squares,
see (Ljung & Soderstrom 1983) and the references therein. The key idea
behind these methods is the same, which is to discard old information as
new becomes available, or to be more specific, the methods slide a time-
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Figure 3: Diurnal variation

window of a specific width over the observations, where only the newest
observations are seen. This approach has its drawbacks and advantages.
If the true system is non-stationary and if this non-stationarity is not
described by the model, the approach implies that the model adapts to
the current state of the underlying system. But, on the other hand,
because less observations are used to determine the parameters of the
model, the parameters might become poorly determined, resulting in
large parameter and prediction variance. The optimal model choice is
therefore a model which balances simplicity and flexibility.

5.1 Extended Kalman filter

One way to simplify the model for predicting the power is, to in some way,
include a known relation between wind speed and direction and power,
i.e. the power curve, in the model that is to be estimated adaptively.
One solution is to apply the model

Pr+k = appow(brwitk + ck, Oryr) + dipe + Uk + €1k (4)

where pow(+,-) is the wind farm power curve derived by the PARK ap-
plication (Sanderhoff 1993). See (Landberg 1998) for a similar analysis.
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The reason for the scaling of the NWP wind speed inside the power curve
comes from the observation that the ratio between the measured wind
speed and the NWP wind speed is different from one and time depen-
dent. The constant inside the power curve lets the estimation determine
the cut-in and cut-out wind speeds. The observed power at time t is
include because for short prediction horizon the power observations are
auto-correlated (Nielsen et al. 1999), this is also the reason for including
the scaling of the power curve, because for short horizons more empha-
sis will be on the auto-correlation, i.e. p;, and for larger horizons more
weight will be put on the NWP and hence the power curve. Because this
model is not linear in the parameters, the Extended Kalman Filter has
been used for the estimation in this model.

5.2 Recursive least squares

A way to avoid the non-linearity is to use a polynomial approximation
of the power curve, i.e.

Ptk = Witk + bpwiyp, + cowp g + diepe + le + €4k (5)

This model has the same number of parameters as model (4), but it
does not incorporate any knowledge about the wind farm power curve,
apart from the fact that most power curves are very well approximated
by a third order polynomial in the wind speed. The parameters of this
model have been estimated using the standard recursive least squares
algorithm.

5.3 Recursive local regression

So far we have not mentioned how the parameters in the MOS models
depend on the prediction horizon. Actually we have just estimated one
set of parameters for each prediction horizon. Addressing the variance
problem of the Kalman Filter and the usual recursive least squares al-
gorithm, it might be advantageous to make assumptions about how the
parameters depend on k. Furthermore, in Section 3 and 4 it was shown
that the NWP model predicted wind direction improved the performance
for the wind speed predictions, and that there was an aliasing effect with
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the time of day/atmospheric stability, caused by the update frequency
of the NWP model. To take all these findings into account the following
model is proposed

Pt+k = a(k‘, 9t+k:7 tday>wt+k + b(kv 9t+kv tday)W162+k+
c(k, Opios tday)wis g, + A(K, Oriie, taay )De+ (6)
m(k, Op sk, Lday) + €t sk

This model is similar in structure to (5) except that the parameters/
coefficients now are assumed to be functions of the prediction horizon,
the wind direction and the time of day.

To take the stability into account it was found sufficient to estimate two
sets of coefficient functions, one set for the following times of day: 00:00,
03:00, 06:00, and 21:00, i.e. mainly neutral/stable conditions, and one set
for the times: 09:00, 12:00, 15:00, 18:00, i.e. mainly unstable conditions.
For the wind direction and the prediction horizon, the approach described
in (Nielsen, Nielsen, Joensen, Madsen & Holst 1998) have been used
for the estimation of the coefficient functions. This approach is best
described as recursive local regression, and it is an extension of the usual
recursive least squares algorithm, where the functional shape is found
by estimating the parameters locally over a grid spanning the variables,
e.g. for a given wind direction € in the grid, only observations close to
this direction are used when the value of the coefficient function for this
particular value of 0 is estimated.

In the actual estimation the coefficient functions were estimated in a
fine grid spanning the NWP model predicted wind direction, using a
fixed bandwidth of 100 Deg, and for the prediction horizon an increasing
bandwidth was used, i.e. for the 3 hour prediction a bandwidth spanning
only the 3 hour prediction was used, increasing to a bandwidth spanning
the 12 hour up to the 36 hour prediction for the 36 hour prediction, this
choice reflects the fact the variation of the parameters with the prediction
horizon was found to be small for large prediction horizons.

When only one set of coefficient functions were estimated for all times of
day, the assumption about the variation of the coefficient functions with
k failed, because in this case a 6 hourly variation is introduced in the
coeflicient functions with k.
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Because some wind directions are rare it was found important to use
a different degree of time adaptation depending on the wind direction
(Nielsen et al. 1998). For frequent wind directions the optimal time
window was found to be about 2-3 months, while for rare wind direction
it was not to use any adaptation at all. This indicates that the variation
of the coefficient functions with the wind direction is larger than the
time-variation.

6 Results

Figure 4 shows the performance for the three adaptive approaches that
have been described in the previous sections. It clearly seen that model
(6) gives the best results, the non-linear model (4) and the linear model
(5) are close in performance, neither model performs best on all pre-
diction horizons, but overall the linear model seems to perform best.
This suggests that the polynomial approximation of the power curve is
adequate.
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Figure 4: Performance of adaptive approaches

Figure 5 shows the prediction performance of model (6) for the three
wind farms, and it is seen that there is a pronounced variation in the
performance for the individual wind farms, which can be due to many
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factors, e.g. the NWP model accuracy depends on the specific location,
or another factor that might be of importance in this study is that the
quality of the observations from the wind farms was rather poor, about
30 % of the observations were missing.
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Figure 5: Performance for various wind farms

7 Summary

In this paper various MOS approaches have been proposed for wind
power prediction models, which are based on numerical weather pre-
dictions and observations.

Three estimation methods have been considered: Extended Kalman fil-
tering, recursive least squares and a new modified recursive least squares
algorithm. The results indicate that the best MOS approach, is one
which takes the wind direction, the time of day, the prediction hori-
zon, and auto-correlation of the observations into account when using
a wind speed polynomial approximation of the power curve to predict
the future power from a wind farm. Furthermore it was found that
the surface wind from the NWP model, which in this case is HIRLAM
(Machenhauer 1988), should be used.



168 REFERENCES

8 Acknowledgements

This work is partially funded by the European Commission (EC) under
JOULE (JOR3-CT95-0008). A. Joensen is partly funded by the Dan-
ish Research Academy. G. Giebel is funded by EC Training through
Research (JOR3-CT97-5004).

References

Hastie, T. & Tibshirani, R. (1993), ‘Varying-coefficient models’, Journal
of the Royal Statistical Society, Series B, Methodological 55, 757—
796.

Joensen, A. K., Madsen, H. & Nielsen, T. S. (1997), Non-parametric
statistical methods for wind power prediction, in ‘Proceedings of
the EWEC9T7’, Ireland, pp. 788-792.

Landberg, L. (1994), ‘Short-term prediction of local wind conditions’,
Boundary-Layer Meteorology 70, 171-195.

Landberg, L. (1998), ‘A mathematical look at a physical power prediction
model’, Wind Energy 1, 23-30.

Ljung, L. & Soderstrom, T. (1983), Theory and Practice of Recursive
Identification, MIT Press, Cambridge, MA.

Machenhauer, B., ed. (1988), HIRLAM Final Report, Danish Meteoro-
logical Institute, Copenhagen, Denmark.

Madsen, H., ed. (1996), Models and Methods for Predicting Wind Power,
Department of Mathematical Modelling, Technical University of
Denmark, Denmark.

Mortensen, N. G., Landberg, L., Troen, I. & Petersen, E. L.
(1993), ‘Wind atlas analysis and application program (WAsP)’,
RisgNational Laboratory user guide:  Risg-I-666(EN)(v.1)
Roskilde, Denmark.

)



REFERENCES 169

Nielsen, H. A., Nielsen, T. S., Joensen, A. K., Madsen, H. & Holst, J.
(1998), ‘Tracking time-varying coefficient-functions’. To be pub-
lished.

Nielsen, T. S., Joensen, A., Madsen, H., Landberg, L. & Giebel, G.
(1999), ‘A new reference for predicting wind power’, Wind Energy
1, 29-34.

Sanderhoff, P. (1993), ‘PARK - User’s Guide. A PC-program for calcu-
lation of wind turbine park performance’, RisgNational Laboratory,
Roskilde, Denmark. Risg-I-668(EN).



170




PAPER F

A model to predict the power
output from wind farms — an

update

Originally published as

L. Landberg and A. K. Joensen. A model to predict the out-
put from wind farms — an update. In proceedings from BEWEA

20, British Wind Energy Conference, pages 127-132, Cardiff, UK,
1998.



172 Paper F




1 Introduction 173

A model to predict the power output from wind farms —
an update

Lars Landberg? and Alfred Joensen'!-?

Abstract

This paper will report on the first results of the analysis of the
power-production predictions made for a number of wind farms
in Denmark, the UK and Greece. Because of the early stage of
the analysis, focus will be on two sites in Denmark: the Risg
mast at Risg National Laboratory and the Avedgre Wind Farm
near Copenhagen. The predictions will be analysed to show the
effect of the Model Output Statistics (MOS) modules. The results
are compared to persistence, but also to a new reference model,
combining persistence and the mean. Furthermore, the ability of
the model to predict storms will be tested.

1 Introduction

With the increasing installed capacity of wind energy world-wide, a need
to know the magnitude of this highly variable resource up to two days in
advance has emerged. This need has resulted in a number of prediction
models being made. This paper will focus on one such model called
the HIRLAM/WAsP model developed by Risp National Laboratory in
Denmark. The model has been run on-line for almost two years in a
EU-JOULE IIT funded project.

The paper will briefly describe the method and the operational set-up,
it will then quickly move on to an analysis of the results. The emphasis
of the analysis will be on the wind predictions at the Risg mast and the
power predictions for the Avedgre Wind Farm.

'Department of Mathematical Modelling, Technical University of Denmark, DK-
2800 Lyngby, Denmark

?Department of Wind Energy and Atmospheric Physics, Risg National Laboratory,
DK-4000 Roskilde, Denmark
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2 The Method

The method for predicting the power output of a wind farm is outlined
in Figure 1. The idea is to explain (ie use physical relations) as much
as possible. This is done by modelling the large-scale flow by a NWP
(Numerical Weather Prediction) model. As we zoom in on the site —
using the geostrophic drag law and the logarithmic wind profile — more
and more detail is required, this detail is provided by the WAsP pro-
gram (Mortensen, Landberg, Troen & Petersen 1993). To calculate the
total production of the wind farm, taking the shadowing effects of the
turbines into account, the PARK program (Sanderhoff 1993) is used. Fi-
nally, to take any effects not modelled by the physical model and general
errors of the method into account two model output statistics (MOS)
modules are used. For a more detailed description of the model, see
(Landberg & Watson 1994, Landberg 19995, Landberg, Hansen, Vester-
ager & Bergstrom 1997, Landberg 1997). For an equational look at the
model, see (Landberg 1999a). The HIRLAM model (Machenhauer 1989)
of the Danish Meteorological Institute is used to generate the overall
winds.

HIRLAM wind

Geo drag law
Log profile

surface wind

|

orography

[ WASP roughness ]

[ Mos1 }—— PARK |—— MOs2 |——{Power prod.)

park lay-out

Figure 1: Flow chart of the HIRLAM/WAsP prediction model.
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The emphasis in this paper will be on the effect of the two MOS modules
and on the overall performance of the model.

The two MOS modules in the prediction model (MOS1 and MOS2 in
Figure 1) have the following expressions

MOSLI : upmos1 = a(f)u (1)

where ups0s1 is the MOS corrected wind speed, a(f) a direction depen-
dent (discretised in twelve sectors) scaling and u the wind speed calcu-
lated using the two physical equations and the WAsSP correction (the
wind labeled ‘local wind’ in Figure 1).

MOS2: Pyioso =P +5b (2)

where Pyios2 is the production of the wind farm, P the production cal-
culated by PARK, and b an off-set independent of direction.

These two MOS modules could have had a much higher degree of sofisti-
cation (e.g. dependence on forecast length, time of day etc), but to model
the possible physical effects only — cf (Landberg 1999a) — they have been
chosen as above.

3 Operational Set-Up

The model which will be evaluated in the following has been running on-
line since the beginning of 1997 (ie for more than 18 months), predicting
the production for a great number of wind farm located in Denmark,
Great Britain and Greece, see Figure 3.

The HIRLAM predictions are sent from DMI via the Internet to Risg, cf
Figure 2. At Risg a UNIX system is set up that runs the power prediction
model every time a new HIRLAM forecast arrives. The output from this
model is HTML-files (Hyper Text Mark-up Language) which are put on
the World Wide Web (WWW) automatically.
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The predictions from the HIRLAM model run are available around 3-4
hours after the model’s verify time, the time in transit between DMI
and Risg is insignificant, and the power prediction model is run in a
few minutes for all the wind farms. The HIRLAM model is run twice a
day, so, the WWW-site is also updated twice a day with a new 36-hour
forecast. The latest development is that the HIRLAM prediction horizon
has been extended to 48 hours and that the model now is run 4 times a
day (ie every 6 hours).

4 Results

In the following some first results of the analysis of the performance of
the prediction model will be given. The first section will focus on the
prediction of the winds at the Risg mast and the second on the wind farm
at Avedgre. Analysing wind-only predictions gives a clearer picture of the
prediction ability of the HIRLAM /WAsP model, because the predictions
are not disturbed by the no-linear power curve and is therefor a good
way to begin.

4.1 The Riso mast

To evaluate the model, the predictions are compared to the actual obser-
vations for a period of 12 months (Jul 97 to Jun 98). The performance of
the model is compared to three models: The persistence model, stating
that the production z hours ahead is identical to the present production
(cf eg (Landberg & Watson 1994)), the “new reference model” which is
a combination of the persistence model and the mean of the time series
(cf (Nielsen, Joensen, Madsen, Landberg & Giebel 1999)) and finally the
“raw” physical version of HIRLAM/WAsP, ie the model as described in
Figure 1, but without the MOS1 module corrections.

The statistical models have all had their parameters estimated using
data for the last six months of 1997 and the results shown here (for
all models) are predictions compared to observations from the first six
months of 1998. Looking at the comparison in Figure 4 it can be seen — as
expected — that the prediction model outperforms all the other models.
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Figure 2: The operational set-up. From the Meteorological Institute
where the predictions are made, via the Internet, to Risg, where the
power prediction model is run. The HTML-pages can be viewed by the
utility using any Web-browser, eg Netscape or Internet Explorer.
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Figure 3: The location of the wind farms predicted in the on-line system.
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It can also be seen, however, that excluding the MOS module leaves a
model which does not perform as well; it still outperforms the various
statistical models, but it is clearly seen that the MOS-module improves
the prediction ability. After only 3 hours the raw physical model and the
HIRLAM/WAsP model predicts better than the two reference models.

5| —0— Persistence
{ —o— New ref
4 —v— Physical model o—70
/D#D‘D\g/
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Figure 4: The performance of the prediction model for the 44.2 m wind
at the Risg mast compared to persistence, the new reference (see text for
explanation) and the raw physical model (see text). Full symbols refer
to the mean error (ME) and open to the root mean square (RMS).

It is unexpected to see that the mean error of the "new reference model”
increases with the length of the prediction. This is due to the fact that
the winds in the last half year of 1997 in general were much lower than
the ones in the first half year of 1998, cf Figure 5. Another very surprising
fact is that looking at the first six months of 1997, it can be seen that the
agreement between the mean wind speed as calculated by HIRLAM and
the observed is quite poor. After this period the agreement is good. It
is assumed that the discrepancy is due to an old version of the HIRLAM
model.
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Figure 5: The running mean of the observations at the Risg mast com-
pared to the 40 h prediction of the HIRLAM model for the 18 month
period.

4.2 The Avedore Wind Farm

In this section the performance of the prediction model for Avedgre Wind
Farm will be analysed. The wind farm consists of 12 300 kW Bonus
turbines and is located near Copenhagen along a dike. In Figure 6 the
predictions for Avedgre are compared to the persistence predictions. As
expected the prediction model outperforms the persistence model, but
first after 6 hours as compared to the 3 hours for wind forecasting. It can
be seen (reading the right-hand y-axis) that the mean error for the eg
+12h prediction is only 13% of the total installed capacity. Comparing
this result to the result of predictions done in 1996 (Landberg et al. 1997),
it is found that they are in good agreement.

4.2.1 Effect of MOS

To see the effect of the two MOS modules, the change in mean error
(ME) and mean absolute error (MAE) for the +24h prediction has been
plotted in Figure 7. ME is the mean of the error and MAE is the mean of
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Figure 6: The performance of the prediction model for the Avedgre Wind
Farm. The HIRLAM/WAsP model is marked by the squares and the
persistence model by circles. Full symbols are the mean absolute error
(MAE) and open the ME.

the absolute value of the error and is a measure of the scatter of the error.
From the figure it can be seen that the MAE does not change significantly
by using the two MOS modules, but ME is reduced considerably.

4.2.2 Storms

To try to give a feel for the prediction capability of the model all storms
for the entire period (1 Jan 97 to 1 Aug 98) have been found. The
definition of ‘storm’ is here taken to mean an event where the production
rose from a very low value (ie close to 0 kW) to around 3 000 kW (approx.
80% of the total installed capacity) and then down again to a low value
over a period of a few days.

Using this selection criteria 7 storms were found in 1997 and 9 in the
first seven months of 1998. These 16 storms are depicted as “thumb nail
images” in Figures 8, 9 and 10 and listed in Table 4.2.2.
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Figure 7: The mean absolute error (MAE, referring to the left-hand axis)
and mean error (ME, referring to the right-hand axis) for the two MOS
modules (labelled ‘MOS1’ and ‘final’) compared to the physical model
(‘phys’) and the persistence model (‘persist’) for the 24 hour prediction
for the Avedgre Wind Farm.
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Studying the figures in detail reveals that of the seven storms in 97 one
was predicted very well and two were predicted satisfactorily. In 98 four
were predicted very well and three satisfactorily. This is very much in
line with the results found for the wind speed at the Risg mast: in the
first half of 1997 the HIRLAM model had problems, which then seems
to have been fixed.

1997
Start End Quality Notes
7/1 9/1 - level missed
12/1  15/1 - start-up missed
18/3  20/3 = end missed
21/4  24/4 - missed completely
10/5  12/5 - missed completely
1711 22/11  +
25/12  27/12 = cut-out predicted
1998
14/1  18/1  +
26/1 29/1  +
15/2 18/2 =
25/2 2/3 + cut—out predicted
6/3 8/3 =
10/3  13/3 - level missed
19/3 20/3 =
15/6  19/6  +
14/7  16/7 = cut-out predicted

Table 1: The storms.

In the column

marked ‘Quality’ the predictions are

graded according to the following: — bad, = OK, + good.
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Figure 8: The storms in 1997. Solid line is the observed production,
dashed lines are the predictions.
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Figure 9: The storms in 1997/98. Solid line is the observed production,
dashed lines are the predictions.
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Figure 10: Storms in 1998. Solid line is the observed production, dashed

lines are the predictions.
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5 Summary

In this paper we have shown that the HIRLAM/WAsP model predicts
wind as well as power very well. It was demonstrated that by sup-
plementing the physical equations with MOS, the predictions were im-
proved. Finally, it was found that strong and rapidly developing storms
were predicted very well, particularly in 1998.
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Short-term prediction towards the 21st century

Lars Landberg!, Alfred Joensen?, Gregor Giebel', Henrik Madsen?
and Torben S. Nielsen?

Abstract

A new chapter in the continued and exiting story of short-term
prediction has begun! The paper will describe a new project
funded by the Danish Ministry of Energy where all the Danish
utilities (Elkraft, Elsam, Eltra, and SEAS) will participate. The
goal of the project is to develop and implement on-line a pre-
diction system combining the Risg and IMM models. This will
ensure that the best forecasts are given on all prediction horizons
form the short range (0-9 hours) to the long range (36-48 hours).

1 Introduction

Electrical utilities, wind farm owners, green certificate and power traders
and everybody else with a commercial interest in wind energy must re-
alise that — in a marked which expands 30% every year — the variability
of the wind and thereby the power production must be dealt with as
efficiently as possible.

There is no doubt that if one is a utility with more than 10% of the elec-
trical power coming from wind energy the variability is a real problem;
but recently also new players have come on the marked. This is because
of the opening of the electrical market. These players include the wind
farm operator who must give accurate estimates of the expected produc-
tion in order to avoid severe penalties imposed by the power buyers.

One way of handling the variability is to predict the expected wind energy
produced power well into the future, ie up to two days in advance. This
is possible now (as first demonstrated in (Landberg & Watson 1994))
using numerical weather prediction (NWP) models.

'Department of Wind Energy and Atmospheric Physics, Risoe National Labora-
tory, DK-4000 Roskilde, Denmark

2Department of Mathematical Modelling, Technical University of Denmark, DK-
2800 Lyngby, Denmark
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This paper will describe a new model which is under development in a co-
operation between Risg and IMM and all the Danish electrical utilities.
The paper will also begin by briefly outlining what today is considered
state-of-the-art.

2 State-of-the-art

Presently there are two models to predict the power production from
wind farms in operation at electrical utilities and these are both consid-
ered state-of-the-art:

1. The Risg model
2. The IMM model

The two models both use weather predictions from NWP models (here
the Danish Meteorological Institute HIRLAM model) as input. The way
this input is used is different for the two models:

The Risg model uses mainly physical relations to transform the predicted
wind into predicted power: the geostrophic drag law, the logarithmic
wind profile, WAsP corrections for local influences, PARK calculations
for actual wind farm output. The results are corrected using a math-
ematical filter (a MOS filter). The model predicts for individual wind
farms or groups of wind farms representing an area.

In the IMM model statistical methods are applied for predicting the ex-
pected wind power production in a larger area using on-line data covering
only a subset of the total population of wind turbines in the area. The
approach is to divide the area of interest into sub-areas each covered
by a wind farm. Predictions of wind power with a horizon from half
an hour up to 39 hours are then formed for the individual wind farms
using local measurements of climatic variables as well as meteorological
forecasts of wind speed and direction. The wind farm power predictions
for each sub-area are subsequently up-scaled to cover all wind turbines
in the sub-area before the predictions for sub-areas are summarized to
form a prediction for the entire area.
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3 The Project

The present paper describes a modeling system which will be developed
in a project funded by the Energy Research Programme (EFP) under the
Danish Ministry of the Environment and Energy. The title of the project
is “Wind farm production predictor” and it has as its aim to develop a
model which is a combination of the two models mentioned above and
implement the system at all the Danish utilities.

The partners in the project are:

e Risg National Laboratory (coordinator)

e Institute of Mathematical Modeling at the Danish Technical Uni-
versity

e Elkraft, utility
e Elsam, utility
e Eltra, utility

e SEAS, utility

These partners give a good blend of research and industry.

The project started in April 1999 and will run for three years. The first
version of the new model is expected to be ready in April 2000. The
project involves 94 man months of work.

4 Why a New Prediction System?

The main goal is to merge the two state-of-the-art models (Risg’s and
IMM’s), to obtain synergy between the physical and the statistical ap-
proach. This will give reliable forecasts on the short (0-9 hours) as well
as the long term (24-48 hours).
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Since the two “old” models were developed a lot has changed on the
programming side as well, so the opportunity is taken to implement the
newest programming methods: A Client/Server architecture build as
Java Beans, connected to a SQL database interfaced via JDBC (see later
for details).

A last advantage is that by developing a uniform model for all the Dan-
ish utilities, all efforts are focused on this model, which gives the best
possible improvements and easier maintenance.

5 The New System

There are two aspects of the new system: the mathematical model and
the system architecture. Both of these will be described in the following.

5.1 The Model

This section describes how a prediction model covering the total wind
power production in an area can be derived. The approach is to divide
the area of interest into a number of sub-areas. Predictions of wind power
with a lead time from half an hour up to 48 hours are then formed for
the individual sub-areas using data of the local power production as well
as weather forecasts for the sub-area. The power predictions for each
sub-area are then summarized to form a prediction for the entire area.

In the model setup described in the following it is assumed that data will
be available from three sources:

e Weather forecasts for some selected climatic variables — primarily
wind speed and wind direction.

e On-line measurements of power production in a number of (refer-
ence) wind farms in the area. Each sub-area must include at least
one of the reference wind farms.
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Figure 1: Model overview.

e Hourly sums of the power production for the entire population of
wind turbines in each sub-area. These data will be available on a
daily basis, i.e. they are not on-line measurements.

With data from these sources in hand a prediction model for the total
wind power production in the area can be derived as illustrated in Fig-
ure 1. The model consists, as it is seen from the figure, of two model
branches each providing a prediction of the total power production in
the area but using different input data.

In the left hand model branch a dynamic wind farm prediction model
(PPf]m) calculates predictions of the power production for the individual
wind farms in a sub-area using local measurements of power production
and weather forecasts. The wind farm prediction model can be written
as

e = alk, 00, - F(pi™) +
bk, 0, ) - PP (Wille) +
ik, 6T) 1)

where ﬁffk‘ , 1s the predicted power production at time ¢+ k given at time
t, p{™ is the observed power production at time ¢, F'() is a low-pass filter
function, ;jr”z‘ , are the local weather forecasts for the wind farm at time
t + k given at time ¢, P()"" is an estimated power curve function (see
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below) and finally a(), b() and m() are smooth functions of prediction
horizon k and forecasted wind direction. The functions a(), b() and m()
are unknown and has to be estimated (See (Nielsen 1999)). The functions
must depend on k as the uncertainty of the weather forecasts increases
as the prediction horizon grows.

The predictions for the individual reference wind farms in the sub-area
are summarized and subsequently up-scaled by PP to cover all wind
turbines in the sub-area. Here PP describes the static relationship
between the total power production in a sub-area and the predicted power
production for the related reference wind farms as a function of local
weather forecasts. The upscaling model is given as

AOT

Pliwe = bk wiip 07 k) - Pk
(ks W gy 07 k) (2)

where ﬁfim , is the predicted power production for the sub-area at time
t + k given at time ¢ and b(), m() are smooth functions of prediction
horizon and local forecasts for the sub-area of wind speed and wind
direction.

The total power prediction for the left hand model branch is subsequently
found by summarizing the power predictions for the individual sub-areas.

The right hand model branch does not, as opposed to the left hand side,
rely on on-line observations. Instead the power predictions for the sub-
areas are calculated using the sub-area prediction model PP, which
describes the static relationship between the total power production in
the sub-area and local weather forecasts. The sub-area prediction model
is given as

Pk = P2 (Wily) (3)

where are local weather forecasts for the sub-area at time ¢ + k

or

t+klt
given at time ¢t and P()°" is an estimated power curve function (see
below). Once again the prediction of the total power production is found

by summarizing the power predictions for the individual sub-areas.

The power curve for the wind farms and the sub-areas referred to above
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is given as
P tgfmt) = m(kvwﬁkw ffk\t)
+b(k, Wiy O k)
St ke (4)

X
t+k|t

forecast of a stability measure (to be determined) and finally b(), m()
are smooth functions of prediction horizon as well as local forecasts of

wind speed and wind direction.

where zz means either vm (wind farm) or or (sub-area), is a local

Comparing the predictions from the two branches it is expected that the
predictions calculated by the left hand branch will be superior for the
shorter predictions horizons as they are anchored to “the real world” via
the on-line power observations, whereas the opposite is expected to be
true for the longer prediction horizons. The final power prediction for the
total area is calculated by PP using the predictions from the two model
branches as input. Using mean square error (MSE) as a measure this
could be done simply by picking the best of the two predictions for the
individual prediction horizons, or at bit more sophisticated by calculating
the final prediction as the weighted average of the predictions from the
two branches using MSE~! as weighting.

5.2 The system architecture

Experience from the Danish utilities Elsam and Elkraft with the use of
the existing prediction systems developed by Risg and IMM has shown
that the prediction system needs to be highly flexible. Demands, such
as the simultaneous use by several users, call for a Client/Server ar-
chitecture, where all data assimilation and numerical calculations are
performed by the server, and multiple clients can connect to the server
for retrieving and viewing the predictions. Furthermore, to evaluate the
performance of the models, it has to be possible to show historical pre-
dictions against the actual observations and the current status of wind
farms connected to the system, e.g. in case of a wind turbine failure.
Therefore the server will be responsible for maintaining a database of all
relevant data collected by the system, which can be retrieved from the
server and shown as e.g. tables or plots by the client.
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Other features required by the Danish utilities include the possibility
to add or remove wind farms to or from the system while the system
is on-line, the possibility to include meteorological stations, to contain
wind farms with different properties, e.g. farms where data is received
hourly, and wind farms where data is only received once a day. Also,
depending on the type of measurement at different wind farms, these
could get different prediction models assigned. Furthermore, it should
be possible to configure the system to use input from different numerical
weather prediction models. The number and type of prediction models
running in the system should be configurable, and each user should be
able to configure personal client settings, e.g. which prediction model to
use and if he wants to look at all the wind farms in the system or only
a subset.

Based on all these requirements, the system will be implemented in
an object oriented programming (OOP) language, which supports a
Client /Server architecture and features a full set of graphical compo-
nents for building GUIs (Graphical User Interfaces). The system (at
least the clients, but preferably also the server) should run on various
platforms.

Therefore, it has been decided to use the Java(tm) 2 platform from Sun
Microsystems (www.java.sun.com) for the implementation of the pre-
diction system application. The graphical user interface will be based on
the Swing package in the JDK(tm) 2 release from Sun, the Client/Server
architecture will be implemented using RMI (Remote Method Invoca-
tion) and EJB (Enterprise Java Beans). An SQL (Structured Query
Language) database, which supports the JDBC (Java Database Connec-
tivity) interface, will be used for the data storage.

Figure 2 illustrates the Client/Server configuration, using Java tech-
nology that complies with open standards. This implies that the sys-
tem becomes platform independent, and hence the server can run on a
Unix workstation as well as on Windows NT workstations, while multi-
ple clients running under different operating systems can connect to the
server.

Figure 3 focuses on a lower level of detail in the system. It illustrates how
different components in the system are linked. The server holds a refer-
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Figure 2: The Client/Server configuration using Java technology.

ence to all modules on the server side of the application, e.g. all the farm
modules, which are responsible for running the farm level mathematical
models, and modules running mathematical models calculating the total
power predictions. Each time the model is updated, this should be re-
flected in the GUI components in the client, e.g. a component showing
the current state of a wind farm (production, wind direction, etc.), or a
plot showing the total power predictions. This is accomplished by using
an event model over the RMI interface. All client components, which
are interested in notification when a component running on the server is
updated, register themselves as listeners to this server component. The
server component maintains a list of all interested listeners, and each
time the server component is updated, it runs through the list calling all
listeners to notify that an update or change has occurred.

Using this concept throughout makes it easy to build a highly dynamical
system. The components in the server do not need to worry about the
actual implementation of a large number of components in the client,
and which components will need to be notified or not, since the client
components decide themselves. Figures 4 and 5 show snapshots of a
preliminary GUI, which serves as an illustration of how the actual GUI
will be implemented.

Figure 4 shows the map of Jutland, Denmark. Four wind turbines sym-
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Figure 3: The linking of the different components in the system.

bolising wind farms are shown. Each time new data is received by the
components, which are responsible for these wind farms in the server, the
picture of the wind turbines will be updated. This information is dis-
patched to the “wind turbine” component on the map, using the event
model interface described above. Additional information is available with
a mouse-over event, by placing the mouse cursor over the turbine.

On the left hand side of the screen in Figure 5 a tree is shown, which
illustrates the components running on the server, and how these compo-
nents are linked. Furthermore, each node in the tree gives the user access
to manipulation and/or retrieving of information about the specific com-
ponent. If e.g. the wind speed node is dragged to the plot window, the
wind speed measurements from the selected wind farm will be added to
the plot.

It should be noted that the description of the system in this section
has only been meant to illustrate the type of features, which will be
available in the system. Several other features not described here will be
implemented in the actual system, as well as what has been described
here might change slightly, as the applications is still in the design phase.
The modular design of the application, where e.g. wind farms with
different characteristics can be plugged in to one or more total modules,



5 The New System 201

E%_%Zephpl
File ‘“iew Tools Plot Windows Help

== B

E-Farms

- fwedsre

- Pawer curves
%----Physical

L. Statistical

- WWWE wind 5|
WP wind di
- P ovwar
E-Obszemvations
E---Wind speed
~-Wind directic
#H-Hollandshjerge

H - Syltholm
~Wedersaker
‘Havmallarne

[+
B

vy 8.0 [ms]
P BO3.T [khv]

" Farms | Stations [ Total | Flots | wap [ Total]

Figure 4: Snapshot of the preliminary GUI. The snapshot is of Jutland
(DK) and the three wind turbines symbolise three wind farms.



202 Paper G

E=3 Zephyr [ [Of ]
File View Toole Piot Windows Help

=& B
[=1- Stations
2-Risa
L beying speed
Wind directian

: -_ Time Sernies Plot
File Wiew Seftings Help

¢ i~Temperature
i ) . = r 2
H-Himrmelbjerget QI '—D 100 %
T B S I S LRl G R S LR R e i A [ i G I S R G VT S Rl S A 5 a |
B
Ly, mI
o 0o
=
e
o 5.0
e
—
]
oot
g 1 & | | i 1 | |
02/18 0F 02/22 14 02/26 02 02/20 13 030400
Tine
[4] [ [*]

|95/02/16 06:00 o BB/030E 1800

Farms | stations | Total |
| Ready

Figure 5: Snapshot of the preliminary GUI, showing a tree illustrating
the components running on the server.



6 Summary 203

which calculate the total power predictions, makes it easy to customise
the application to different utilities.

6 Summary

This paper has described a new system to predict the power output from
wind farms. The system is being developed in a EFP-funded project
which has Risg and IMM as the modeling team and all the Danish utilities
as partners and users.

The mathematical model in the system is dual stringed, combining a
model which uses predictions from a weather prediction model and on-
line observations on the one side and weather predictions only on the
other side. This is to give as accurate as possible predictions on both the
short- and the long-term.

The system is designed as a Client/Server architecture, using the newest
programming techniques which include: Java, Java Beans, RMI (Remote
Method Invocation) and a SQL database supporting the JDBC interface.
This design gives a very high degree of flexibility allowing the users to
customise the system exactly to meet his or her requirements.

The final system will be ready in 2002, and the first version is expected
on-line and operational in 2000.
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Implementation of Short-term Prediction
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Abstract

This paper will give a general overview of the results from a EU
JOULE funded project (“Implementing short-term prediction at
utilities”, JOR3—-CT95-0008). References will be given to spe-
cialised papers where applicable. The goal of the project was to
implement wind farm power output prediction systems in opera-
tional environments at a number of utilities in Europe. Two mod-
els were developed, one by Risg and one by the Technical Univer-
sity of Denmark (DTU). Both prediction models used HIRLAM
predictions from the Danish Meteorological Institute (DMI).

Keywords: Short-term prediction; wind farm power output.

1 Introduction

In many places around the world, but in Europe in particular, the number
of wind farms is now so large that the electricity production from these
wind farms have (sometimes critical) effect on the running and control
of the overall electrical grid.
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To fully benefit from these large amounts of wind energy it is therefore
necessary to have some kind of idea of the expected production in the
next few days.

This will enable the electrical utilities to control the conventionally fueled
plants in such a way that fossil fuels will be saved.

2 The Project

The project consisted of a group of people with skills in many areas:
model development and evaluation, utility practices, implementation of
models and so on.

2.1 Goal

The goal of the project was to carry out on-line implementation of predic-
tion models developed in earlier projects. The evaluation of the models
should be done in economic terms as well as the more traditional ways.

By putting most of the weight on the implementation side and not
so much on the actual model development, the project aimed at (and
reached) demonstrating that these very sophisticated models can run
reliably in a real life operational situation.

2.2 Partners and roles

e Risp National Laboratory (DK): prediction model development, imple-
mentation and evaluation, co-ordination

e Rutherford Appleton Laboratory (UK): model evaluation using the
National Grid Model (NGM) (Halliday 1988)

e Technical University of Denmark, IMM (DK): prediction model devel-
opment, implementation and evaluation

e Observatory of Athens (GR): model development and evaluation

e ELSAM (DK): model implementation and implementation evaluation,



3 Outcome 209

wind farm measurements

e ELKRAFT (DK): model implementation and implementation evalua-
tion, wind farm measurements

e WECTEC (US), E Davis Consult (US), OEM (US): model evaluation
for the US cases.

3 Outcome

Two prediction models were developed: the Risg and the IMM models.
These models were implemented and evaluated in a number of ways de-
scribed in the following. The two models both use weather predictions
from Numerical Weather Prediction (NWP) (here the Danish Meteo-
rological Institute HIRLAM model, cf (Machenhauer 1989)) models as
input. The way this input is used is different for the two models and the
differences and the implementation will be described in the following.

The main difference between the two models is that the Risg model was
developed with a utility in mind with no on-line access to the wind farm
productions, whereas the IMM model was developed with a utility with
on-line wind farm productions available. Predictions were made for a
number of stations shown in Figure 1. Furthermore, the Risg model was
run in an off-line mode for three sites in the US.

The total sum of findings and results form the project can be found in the
final report written to the European Commission (Landberg, Joensen,
Giebel, Watson, Madsen, Nielsen, Laursen, Jgrgensen, Lalas, Tgfting,
Ravn, MacCarty, Davis & Chapman 1999).

3.1 Riso model

The Risg model uses mainly physical relations to transform the predicted
wind into predicted power: the overall HIRLAM-predicted wind is trans-
formed to the surface using the geostrophic drag law and the logarithmic
wind profile, the surface wind is corrected for local influences using the
WASsP model (Mortensen, Landberg, Troen & Petersen 1993, Troen &
Petersen 1989), and the PARK program (Sanderhoff 1993) is used for



210 Paper H

Figure 1: The location of the wind farms. Black dots are the wind farms
for which Risg predicts, and gray are the ones IMM predicts for.
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calculations of actual wind farm output. The results are corrected using
a mathematical filter (a MOS filter). For detailed description and anal-
ysis of the model see (Landberg 19995, Landberg 1998, Landberg 1997,
Landberg 1999a).

The on-line implementation of the Risg model is shown in Figure 2. An
example of the predictions as seen of the WWW is shown in Figure 3.

To give an example of the Risg model’s ability to predict storms Figure 4
shows the development of a storm and how well the predictions agreed
with the observations.

3.2 IMM model

In the IMM model statistical methods are applied for predicting the ex-
pected wind power production in a larger area using on-line data covering
only a subset of the total population of wind turbines in the area. The
approach is to divide the area of interest into sub-areas each covered
by a wind farm. Predictions of wind power with a horizon from half
an hour up to 39 hours are then formed for the individual wind farms
using local measurements of climatic variables as well as meteorological
forecasts of wind speed and direction. The wind farm power predictions
for each sub-area are subsequently up-scaled to cover all wind turbines
in the sub-area before the predictions for sub-areas are summarized to
form a prediction for the entire area. The model is described in great
detail in (Nielse & Madsen 1997).

The idea behind the implementation is shown in Figure 5. The over-view
screen of the prediction system at Elsam is shown in Figure 6

3.3 Elkraft implementation

Elkraft Power Company coordinates energy cooperation in the eastern
part of Denmark.

In the Zealand area there are now installed wind turbines with a total ca-
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Figure 2: The idea behind the on-line implementation of the Risg model.
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Figure 4: The storm on the 27th February as seen from the Avedgre
Wind Farm. Solid line is the observed production and dashed lines are
the predictions using the Risg model.
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Figure 6: The over-view screen of the IMM model as seen at the Elsam
utility
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pacity of around 300 MW. This figure will double or triple within the next
decade. The influence of the fluctuations of the wind power is already
being felt in the daily control and operation of the system. Therefore
efforts are being undertaken to predict the wind power production.

In the present version of the wind power prediction system the data
flows may be sketched as follows. The Danish Meteorological Institute
produces predictions of wind speeds for a number of specified locations,
15 in total, where major wind farms are located. The prognoses are
represented as values for every third hour, with a time horizon of 36
hours.

The prognoses are transmitted to Risg National Laboratory, where the
predictions of wind speed are automatically transformed to predictions
of power production, based on WAsP analyses of the specific wind farms.
These predictions may be seen at the homepage at Risg National Labo-
ratory.

Elkraft Power Company takes the predictions from Risg National Lab-
oratory via the Internet. The predictions are then combined with the
available knowledge to produce a prognosis for the whole are of interest.
In particular, the wind turbines, for which individual prognoses are not
made, are included by using an up-scaling factor. Further, tuning of the
prognoses is made, for instance to account for major wind farms under
construction or revision. Longer time biases in the prognoses are de-
tected by comparison with the available measurements, given as hourly
or monthly production values.

The prognoses and online measurements are distributed via the local area
network to the relevant persons, in particular to those in the control room
and to those that trade power on short-term basis.

The system was introduced mid-1998, and has been functional during
the last quarter of 1998. An example of the user interface at Elkraft is
shown in Figure 7.
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Figure 7: The predictions as displayed in the Elkraft dispatch and con-
trol centre. The columns are hourly measured wind power production,
the straight horizontal line corresponds to maximum production (i.e in-
stalled capacity) and the curved line is the prediction. It is possible for
the dispatcher to choose between current and previous predictions and
productions, and which turbines to have displayed.
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3.4 Elsam/Eltra implementation

In the Western part of Denmark Elsam is responsible for the econom-
ical load dispatch of the production from the primary power stations,
whereas Eltra controls the transmission grid and has the system respon-
sibility. The power production set-up consists of 6 primary power stations
equipped with 4250 MW of CHP (Combined Heat and Power) units, a
large number of local CHP units with a total installed power of 1400 MW
and finally wind turbines with a total rated power of approximately 1000
MW. The production from the local CHP units and the wind turbines
is treated as priority production, which implies, that the available power
from these sources has to be accepted by the system responsible opera-
tor. On a yearly basis the load in the Elsam/Eltra area ranges between
1200 MW and 3700 MW. It is obvious, that the management of 1000
MW of wind power in such a setup will have to rely on the availability
of dependable wind power predictions.

The IMM model is implemented in a software package called WPPT
(Wind Power Prediction Tool). WPPT was installed in the control
centres of Elsam and Eltra in October 1997 and has been used oper-
ationally since January 1998. The assessment by the operators is that
WPPT generally produces reliable predictions, which are used directly
in the economic load dispatch and the day-to-day electricity trade. In
periods with unstable weather the operators may choose to modify the
predictions (typically smooth the pattern of the prediction) before fur-
ther usage though. The economical value of the wind power predictions
is difficult to evaluate directly mainly due to the problem of assessing
the course of action had the predictions not been available. Instead two
cases have been analysed in order to illustrate how the predictions are
used and with which consequences:

e (Case 1. On October 17th 1998 the wind power production varied
from 600 MW during the morning hours down to 300 MW at 6
pm before increasing to 800 MW at midnight. At 10:30 am the
day before WPPT had predicted a wind production around 600
MW during the first half of the day rising to maximum production
(930 MW at that time) from 8 pm and onwards. The next wind
power prediction based on a new set of meteorological forecasts was
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available at 4:30 pm October 16th and predicted a different course
for the last part of the following day - from 700 MW just before
noon down to 350 MW at 5 pm increasing to maximum production
at midnight. The first prediction was so different from the actual
production, that the running reserve would not have been capable
of covering the missing production from 5 PM to 7:30 pm. The
missing power would have had to be purchased from NordPool at
a total extra price of approximately DKK 16,000. The second pre-
diction was so much better, that the deviation could be countered
by the normal means of regulation without any additional costs
compared to a perfect forecast. See Figure 8 for details.

Case 2. On November 9th the wind power production varied from
350 MW at midnight 8th increasing up to 800 MW at noon before
decreasing down to 100 MW at midnight 9th. This course of the
wind power production was accurately predicted the day before
and consequently did not imply any costs for the operation.

As indicated by the examples above the operators rely on the wind power
production from WPPT in the daily planning since the predictions are
markedly better than what can be derived from other sources. This is not
to say, that there is no room for improvement, and thus WPPT is subject
to continues improvements based on the experiences of the operators.

3.5

RAL calculations

The National Grid Model was run for the England & Wales, Crete and
Towa grids and the results were:

e The forecasts give improved fossil fuel savings over persistence for

the England & Wales grid - at least 13% better at 40% penetration
(cf Figure 9).

e The results for Crete are poor because the site forecasts are poor.

e Crete has a lot of fast response plant and so forecasting is not

so beneficial anyway unless models can significantly improve upon
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Figure 8: Case 1 (October 17th 1998) predicted by the IMM model.
Solid line is the observed production, dashed lines are the predictions.



222 Paper H

persistence at up to 4 hours ahead. Also a study of Crete would
benefit from a hybrid of the RAL NGM and the RAL islands model
(which can simulate diesel start-ups on a minute by minute basis).

e The Iowa results are disappointing, this is because of the crude
temporal resolution of the forecasts (six-hours).
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Figure 9: Fossil fuel savings during the calendar year 1994 for different
installed wind power capacities into the England and Wales grid using
different forecasting methods.
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3.6 US results

The Risg forecasting model was applied to selected sites in the US. The
general goal of this a application was to understand whether the ap-
proach used successfully in Europe could be transferred to facilities in
the US. When this EPRI program was begun in 1996, it was thought
that data either from the EPRI managed eight station North Dakota
Wind Resource Assessment Program or the first large EPRI/DOE TVP
(Turbine Verification Programme) project at Ft. Davis, Texas would
be used. The availability of data from these two projects was limited,
forcing EPRI to look elsewhere.

Datasets from regions where wind energy projects were either operational
or being considered was a significant consideration in the choice of sites.
In addition, areas where the terrain was not too complex, that is, hilly
or mountainous, and areas where numerical weather prediction models
might have sufficient valid data to perform successfully. The Great Plains
was the prime area as the terrain is principally flat or rolling farm- and
grasslands. In addition, there is a sufficient observational data base up-
wind of the Great Plains which should allow for good performance of nu-
merical weather prediction models. The projected development of large
wind electric generating facilities in the upper Great Plains of Minnesota
and Iowa also focused EPRI on this region.

EPRI obtained data from the first operational wind plant on the Buffalo
Ridge in Southwestern Minnesota for use in the forecasting application.
This 25MW wind plant came on-line in mid-1994 and power data was
made available by the wind plant owner for slightly over a 2-year period.
Wind speed and wind direction data was also available for wind resource
assessment programs conducted in Iowa during the same time period.
These meteorological data were also obtained.

Application of the Risg model requires the use of numerical weather pre-
diction data. The availability of historical data for the concurrent time
period, mid 1994 to mid 1996, was researched. The National Center for
Atmospheric Research (NCAR) was contacted and there archives were
reviewed. The only complete prediction data set available for the US at
that time was for the Nested Grid Model, the operational weather pre-
diction model used by the National Center for Environmental Prediction



224 Paper H

(NCEP). These data sets were assembled and provided to Risg National
Laboratory for testing their modeling approach on US sites.

The Risg model was applied to the Buffalo Ridge Wind Plant, the me-
teorological site at Alta, and the meteorological site at Sibley. For the
wind plant, preparation for application of the model included:

e Creation of a digitized terrain file. This file included all terrain
contours within a 10 km radius of the wind plant.

e Creation of a roughness data file. This file included an estimate of
the terrain roughness for each of twelve 30 degree sectors.

e Creation of the PARK data files. These files include the power
curve for the KVS33, a thrust curve for the KVS33, a meteorolog-
ical data file consisting of shape, scale and frequency of occurrence

of the wind speed in twelve 30 degree sectors, and the location of
each (73) KVS33 turbine.

For the two meteorological tower sites, a roughness file is the only re-
quired input since these are single sites, wind speed is the predictand,
and the files for WAsP and PARK are not required.

From the numerical weather prediction data file, the 10 meter, 950 mil-
libar (mb), 850 mb and 700 mb wind speed were extracted. The data
for a matrix of four sites, coordinate point 42, 43, 51, and 52 are ex-
trapolated separately to the Buffalo Ridge, Alta, and Sibley sites. This
forms the basis for the predicted wind speed. For example, the predic-
tions from the model run of 12159412 (December 15, 1994 at 1200GMT)
would consist of wind speed and wind direction values for 8 time periods
at six hour intervals, out to 12179412 (December 17, 1994 at 1200GMT).

The model was first applied to the meteorological data at the Alta site.
Predictions of average wind speed at eight different time periods in the
future twice each day are made using the model. These predictions are
based on the numerical weather prediction model. These predictions are
then compared to the observed values from the Alta tower. A matrix is
then created comparing the predicted and observed values. This matrix
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is plotted in Figure 10. The poor correlation and pronounced lack of
linearity between the predicted and actual values is disappointing
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Figure 10: Scatter Plot of the Forecast Wind Speed Versus Actual Wind
Speed at the Alta Site.

The reason for this is not yet clear. The data set, consisting of predicted
values and actual values, either wind speed (Alta and Sibley) or wind
power (Buffalo Ridge) is still being analyzed by staff at Risg. It is possible
that the large grid spacing in the NGM model, compared to the smaller
grid spacing in the HIRLAM model, could be one of the causative factors.

4 The Future

This section will describe the different ways the results of this project
are planned to be used in future projects.

In Denmark the Energy Agency via the EFP99 research programme has
funded a project where the Danish utilities will be provided with a predic-
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tion system which is a combination of the Risg and the IMM prediction
systems described in this paper. It is planned that at the end of the
project all Danish utilities with a high penetration of wind energy will
have this prediction system integrated in the daily dispatch and schedul-
ing.

In the US it is hoped that a EPRI/DOE-funded project will start in
1999. The main goal is to implement the Risg prediction system in the
US, predicting for a number of wind farms in the US.

5 Summary

This paper has described the results of a now finished JOULE project,
which had as its goal to implement and evaluate in both traditional and
economic term models for predicting the power output from wind farms.
It was shown that two such models were implemented successfully and
that the two major Danish utilities used the predictions in the daily
dispatch and planning.
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HIRLAM - Analysis of vertical model levels
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Abstract

Using numerical weather predictions as input to calculations of
corresponding wind power predictions from wind farms, requires
an assessment of the wind at each wind turbine position. This
paper examines how the wind from different vertical levels from a
numerical weather prediction model, HIRLAM, corresponds with
the actual measured wind speeds.

Keywords: Numerical Weather Prediction, HIRLAM, turbulence in-
tensity, Wind Power.

1 Introduction

This paper presents an analysis of the numerical weather predictions
from HIRLAM run by the Danish meteorological institute. A thor-
ough description of HIRLAM can be found in (Sass et al. 1999) and
(Machenhauer 1989). The emphasis is on applications of the predictions
for wind power prediction. More specifically, wind speed prediction vari-
ables from HIRLAM at different vertical model levels are compared to
measured wind speeds. Furthermore, the influence of the turbulence
intensity on the vertical wind speed variation is examined.

2 Finding the correct HIRLAM model level

In (Landberg & Joensen 1998) it is argued that HIRLAM must have
changed in 1997. This assumption is based on a comparison of the run-
ning mean of the measured wind speed at Risg National Laboratory and
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the HIRLAM predicted wind for the same location. In the description
of HIRLAM in (Sass et al. 1999) it is stated that various parameteriza-
tions schemes have been used in HIRLAM. It is therefore to be expected
that it is possible to identify the change more accurately by looking at
the relation between the wind at different model levels, as the wind at
different model levels is linked via the turbulence parameterization.

Figure 1 verifies this assumption. It is clearly seen that the relation
between the special output wind from HIRLAM, corresponding to 10 m
agl, and the wind at the lowest model level changes, and the date of the
change is found to be the 10th of September 1997.
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Figure 1: HIRLAM wind from the lowest model level versus the special
10m agl output wind from HIRLAM. Square symbols correspond to data
before the 10th September 1997 and round symbols correspond to data
received after the 10th of September

The results presented in (Joensen, Giebel, Landberg, Madsen & Nielsen
1999) are based on data received after the 10th of September. But it is
interesting to see what the consequences of the change of the parameter-
ization has for the accuracy of the predictions.

In Figure 2 and 3 the performance of the predictions is shown as a func-
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tion of HIRLAM model level and prediction horizon, for each period.
The performance measure is defined in (Joensen et al. 1999), and the
simple model

Wiyk = AWk + b+ Erqp, (1)

is used to link the observed wind speed wy; to the magnitude of the
HIRLAM predicted wind w;y from model level I, k is the prediction
horizon. As the purpose of the analysis in this section is to identify the
wind from HIRLAM which gives the highest degree of explanation, the
simple model (1) should suffice.
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Figure 2: Wind speed prediction performance using the wind from var-
ious HIRLAM levels and for different prediction horizons. Data is from
January 1997 to September 1997.

The most significant change that can be observed in these two figures is
that in the second period, the model level winds give the poorest per-
formance, while the special output wind from HIRLAM corresponding
to 10 m agl clearly gives the best results. When comparing the perfor-
mance in the two periods, using the HIRLAM wind which gives the best
performance in each period, then it does not seem as if the performance
is improved by the new parameterization scheme used in HIRLAM. In
the first period there is a close run between the wind from the lowest
HIRLAM levels, i.e. level 31 and 30.
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In the next section these findings are further analyzed, as it is not possible
to deduce from these figures what really has happened.
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Figure 3: Wind speed prediction performance using the wind from var-
ious HIRLAM levels and for different prediction horizons. Data is from
the September 1997 to July 1998

The systematic variation of the performance is described in (Joensen
et al. 1999), which is related to the aliasing effect between the prediction
horizon and the diurnal variation in the atmospheric turbulence intensity.

3 Influence of turbulence intensity

In (Landberg 1994) it was concluded that the turbulence intensity was
not predicted accurately enough to be used in the stability dependent
geostrophic drag law and the vertical wind profile. This is the reason
for using the neutral versions of these relations in the Risg prediction
system.

In this section we will take a closer look at these assumptions, and try to
find out if some measure of the turbulence intensity can be used in some
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modified relation. In (Sass et al. 1999) it is described how the stability
dependency is handled by HIRLAM, and it is also noted that several
stability schemes have been tested in HIRLAM. In the previous section
it was found that the properties of the HIRLAM predictions changed on
the 10th of September 1997, and the most likely reason for this change
was that a new turbulence scheme had been introduced.

In general turbulence is generated by convective forces and wind shear
(Stull 1988). The variables which are available for examining the turbu-
lence influence from HIRLAM are therefore the sensible and latent heat
fluxes and the wind speed.

The Buoyancy flux, Bs, will be used as a measure of the turbulence
intensity. The Buoyancy is defined as (Stull 1988)

Hs gHL
0.608 2
* Lep’ @)

Bs = ﬂ
Cpp

where 3 = ¢/6 is the buoyancy parameter, Hy is the sensible heat flux,
c¢p the heat capacity of air at constant pressure, p the density of the air,
g the gravitational acceleration, Hy, the latent heat flux, L. the latent
heat of vaporization, and 6 is the potential temperature.

The buoyancy is negative for unstable and positive for stable conditions,
due to the definition of the sensible and latent heat flux in HIRLAM. A
way to verify how well the turbulence dependency used in HIRLAM fits
reality is to examine how the difference between the observed wind speed
and HIRLAM predicted wind speed depends on the Buoyancy flux.

The measurements which are used in this section are from the mast at
Risg National Laboratory and the measurement height is 44 m agl. Fig-
ure 4 shows scatter plots of the difference between the HIRLAM predicted
wind speed from various model levels and the measured wind speed from
the Risg mast versus the Buoyancy flux. The 3 and 6 hour predictions
have been used and the model levels which have been used are level 25,
31 and the special output wind corresponding to 10 m agl. The first
column in the figure correspond to the period before HIRLAM changed
and the second column corresponds to the following period. From the
figure it is clearly seen that the turbulence scheme has changed, as the
shape of the scatter in the two columns is very different.
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The scatter in the upper left corner shows the difference between the
HIRLAM predicted wind speed from model level 25 and the measured
wind speed, using data from the first period. If the sensible and latent
heat fluxes are predicted accurately by HIRLAM, then this difference
should depend on the Buoyancy flux in the following way: when the
buoyancy is negative the atmosphere is unstable and the difference should
be small, as the turbulence intensity decreases the buoyancy goes from
negative to positive values and the difference between the wind speed
should increase. From the figure it is therefore seen that the qualitative
shape of this scatter is as expected.

The next scatter in the first column is similar to the first one, except that
now the predicted wind from level 31 is used. Level 31 corresponds on
average to approximately 30-40 m agl, therefore it should be expected
that there is little of no dependency on the buoyancy in this case, as the
measurements are from 44 m agl. Actually it seems as it the influence
of the turbulence is slightly overemphasized. In last scatter in the first
column the special output wind from HIRLAM corresponding to 10 m
agl is used, compared to the scatter where level 31 is used, it is seen that
now the influence of the stability is even more overemphasized. In this
case this is what should be expected, as the height which the predicted
wind corresponds to is well below measurement height of the measured
wind speed.

In the second period the scatter using the level 25 looks as expected, but,
surprisingly, after HIRLAM has changed, there is a clear dependency on
the Buoyancy flux for the difference between the wind speed from level
31 and the observed wind speed. As described above, these wind speeds
correspond to roughly the same height above the ground, therefore this
dependency should not be expected. The shape of the scatter suggests
that the influence of the turbulence intensity is not taken into account;
the shape of the scatter is very similar to the shape of the scatter for
level 25.

Given the shape of the scatter using level 31 in the second period, it is
not a surprise to see that there is no dependency on the stability when
the 10 m wind is used. As the measurements are from 44 m agl, it
should be expected that this scatter should be similar to the scatter in
the first period. This is not the case, and therefore it actually seems as
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Figure 4: Scatter plots of the difference between the HIRLAM predicted

wind speed and the observed wind speed at 44m agl versus the Buoyancy
flux (Bs - 103).
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if HIRLAM performs worse in modelling the turbulence intensity after
the change. Nevertheless, by using the 10 m wind from HIRLAM in the
second period, the dependency on the stability seems to be taken into
account.

As described in (Sass et al. 1999) special parameterizations are used in
HIRLAM, which have been modified to fit the resolution of the model,
and to retain numerical stability in the model integration. This means
that the parameterizations used in HIRLAM might be constructed with
emphasizes on the integration of the model, not necessarily on the accu-
racy or influence of the turbulence at a given height and specific location.
In (Petersen, Mortensen, Landberg, Hgjstrup & Frank 1997) it is argued
that numerical weather prediction models, where the flow is driven by
the pressure gradient only, and the influence of turbulence and surface
drag is neglected, perform remarkably well in predicting the overall at-
mospheric flow compared to models like e.g. HIRLAM. This is because
the turbulence is difficult to predict, especially as the prediction hori-
zon increases. The magnitude of the drag imposed on the flow from the
surface is directly related to the turbulence intensity, and uncertainty
in the turbulence intensity corresponds to random input to the integra-
tion of the model equations. Therefore, a more conservative guess of the
turbulence intensity, like assuming neutral conditions or a mean diurnal
variation, might give better performance for larger prediction horizons
than a highly sophisticated turbulence scheme. This fact ought to be
realized, and the physical parameterizations used in numerical weather
prediction models should therefore also depend on the prediction horizon
length.

The findings in this section clearly demonstrate that there is a problem
related to the use of physical relations derived from idealized conditions
on variables from a numerical weather prediction model, in this case
HIRLAM. The reason is that the properties of the input variables to
the physical relations do not fit the assumptions for which the relations
have been derived, therefore these relations are simply not adequate. In
(Jonsson 1994) a formal treatment of this problem is given in a regression
context. These finding also support the results in (Joensen et al. 1999),
where it was found that the performance of using the physical relations
in the Risg system was worse than not using any of these relations at all.
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4 Summary

It has been illustrated how the predicted wind speed from HIRLAM
corresponds to actual measured values of wind speed at three different
heights above the ground. It is found that the turbulence intensity de-
pendency is not properly taken into account, although, the modeling of
dependency has improved since the model has been updated.
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Abstract

With increasing penetrations of wind power, the need for accurate
forecasting is becoming ever more important. Wind power is by
its very nature intermittent. For utility schedulers this presents
its own problems particularly when the penetration of wind power
capacity in a grid reaches a significant level (;20%). However, us-
ing accurate forecasts of wind power at wind farm sites, schedulers
are able to plan the operation of conventional power capacity to
accommodate the fluctuating demands of consumers and wind
farm output. The results of a study to assess the value of fore-
casting at several potential wind farm sites in the UK and in the
US state of Iowa using the Reading University/Rutherford Apple-
ton Laboratory National Grid Model (NGM) are presented. The
results are assessed for different types of wind power forecasting,
namely: persistence, optimised numerical weather prediction or
perfect forecasting. In particular, it will shown how the NGM has
been used to assess the value of numerical weather prediction fore-
casts from the Danish Meteorological Institute model, HIRLAM,
and the US Nested Grid Model, which have been ’site tailored’ by
the use of the linearised flow model WASP and by various Model
Output Statistics (MOS) and autoregressive techniques.
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1 Introduction

When the penetration of wind power in a national electricity grid reaches
a given level (;20%) the fluctuating nature of wind farm output starts
to become important (Bossanyi 1983). In certain areas of Denmark
and Northern Germany, penetration levels are exceeding this figure and
interest in the accurate forecasting of wind power is becoming more
widespread. If it is possible to accurately forecast up to a day ahead
the expected output from wind farms connected to a network, it is then
possible to schedule and dispatch the conventional power plant more
efficiently.

This paper shows a study of how numerical weather prediction (NWP)
forecasting of wind power can aid central power unit dispatch and result
in overall fossil fuel savings. The two study cases of the England and
Wales national grid and the grid of the US State of lowa are presented.

2 The National Grid Model

2.1 Outline

The Reading University /Rutherford Appleton Laboratory National Grid
Model (NGM) (Bossanyi 1983) has been developed over a number of
years to simulate the scheduling and dispatch of conventional power plant
connected to a national electricity grid system and can also simulate the
integration of renewable energy sources, namely wind and photovoltaic
power plant. The NGM has been used to assess the value of forecasting
at UK Meteorological Office sites (Watson, Landberg & Halliday 1994).
In this paper, the model is used to assess the value of forecasting at real
or potential wind farm sites.

The model works by tracking hour—by—hour the status of each power
unit. At each hour, the start—up and shutdown of plant is planned up to
a day ahead in order to meet the predicted hourly demand. This planning
of start-up and shutdown of plant is dependent on the prediction of load
and wind power (if wind power is integrated into the network) for each
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hour ahead.

2.2 Power Plant

The model can simulate the operation of several different types of con-
ventional plant namely:

e Nuclear - assumed to operate as inflexible base load

e Hydro - assumed to operate partly as base load and partly as fast
response.

e Combined cycle gas turbine (CCGT) - modelled as having a three-hour
start-up time from cold (idle for ;120 hours), two hour start-up time if
idle for ;8 hours but j120 hours and a one hour start-up time if idle for
less than eight hours.

e Coal/oil-fired steam turbine - modelled as having an eight-hour start-
up from cold, but can be on a given number of hours warm standby if
required in less than eight hours.

e Pump-storage - assumed to be available 'instantaneously’ within the
hourly time resolution of the model.

e Open cycle gas turbine (OCGT) - also assumed to be available 'in-
stantaneously’. Plants are scheduled in a merit order, which depends
on plant type and overall fuel efficiency. Nuclear plant is used first in
the merit order followed by CCGT, oil/coal thermal, pump-storage and
OCGT. Hydro plant is used both as base load and peaking plant in a
similar manner to pump-storage.

2.3 Wind Power

If wind power is present in the system then it is accepted after nuclear
plant in the merit order. This is subject to whether all the thermal plant
is minimum part-loaded. If the supply is greater than the demand for
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any given hour even if all the thermal plant is at minimum part-loading
(50%) then excess wind power is discarded until this is no longer the
case. This has to be done as the thermal plant cannot be switched off
instantaneously, it has to be done within the one-hour time resolution of
the model.

2.4 Spinning reserve

In general, for a national power system, there is only a limited amount of
fast response plant available (generally pump-storage, hydro or OCGT).
In the case of the England and Wales grid, this is mainly in the form
of OCGTs, which are expensive to run. Fast response plant is therefore
only used as a last resort at times of peak demand or when there is an
unexpected surge in demand.

Alternatively, ‘spinning reserve’ can be scheduled in advance. The term
spinning reserve corresponds to thermal power plant at part-load whose
loading can be quickly increased to meet a surge in demand or, if there
is a significant amount of wind power integrated into the system, an
unexpected fall in generated wind power. The NGM therefore plans at
each hour the amount of spinning reserve that is required up to a day
ahead.

This spinning reserve is planned as a fixed fraction of the predicted load
(called SR1) and a fixed fraction of the predicted wind power, if any wind
energy is integrated into the system (called SR2). An extension to the
spinning reserve algorithm can be used, whereby SR2 can also be speci-
fied as a fraction of the expected standard deviation of the forecast error
divided by the predicted wind power. The expected standard deviation is
assessed statistically off-line beforehand using historic data classified by
key parameters such as time-of-day, season, direction, forecast lead-time,
etc.

When the NGM is run it carries out a simulation for the period of interest,
usually one year, with fixed values of SR1 and SR2. The model repeats
each yearly run, optimising the values of SR1 and SR2 until the total
fossil fuel cost is minimised subject to there being no loss-of-load events
(power cuts) during the period of simulation. The load is much more
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predictable than the wind power and so SR1 is generally far smaller
than SR2.

2.5 Load data and load prediction

Load data is accepted by the model as an hourly or half-hourly time
series. It is assumed that the standard deviation accuracy of load pre-
diction is 1.5% for all hours up to a day ahead. The model is run such
that the actual load is used as the forecast and the real load at dis-
patch, as far as the model is concerned, is the actual load multiplied by
a gaussian uncertainty factor with mean 1 and standard deviation 0.015.

2.6 Wind power data and wind power prediction

Wind power data is accepted as one dataset of hourly wind power values.
These values are a combination of the power output from whatever sites
are being used as input to the grid. The wind power data can be real or
‘simulated’ (where wind speed at a site is converted to wind power using
a suitable wind turbine power curve).

The NGM can accept wind power predictions in several formats:

e Persistence - The wind power at time z hours ahead (t+ ) is predicted
to be same as it is at the present time, ¢.

e Numerical weather prediction model hybrid - Forecasts of the wind
power are accepted from whatever hybrid forecast is available whether it
be statistical, enhanced numerical weather prediction or a hybrid of the
two. A forecast can be accepted either hourly or 12-hourly.

e Perfect - Wind power is assumed to be forecasted perfectly. The term
'numerical weather prediction model’ refers to a computer model used
typically by a national meteorological bureau to predict meteorological
parameters. Such models output values on a regular grid. In this case,
values from a regular grid are interpolated to the wind farm site and
‘tailored’ to the site using Model Output Statistics (MOS) (Glahn &
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Lowry 1972), a wind flow model such as WASP (Mortensen et al. 1993),
a time series autoregressive model (ELSAM (Ed.) 1995), or a hybrid of
these, depending the data available.

3 The Grids Studied

3.1 England and Wales

The England and Wales 1994 plant mix is summarised in Table 1. There
are interconnections with Scotland (2200MW) and France (1988MW).
These are treated by the NGM as output from coal units. This is an
approximation but allows the source of the power transmitted by the
interconnections to be treated as plant in the merit order with a given
start-up time. It can be seen that the grid is dominated by thermal
plant with only a small fraction of fast response plant (pump-storage

and OCGT).

3.2 Iowa

The US State of Iowa 1996 plant mix is also summarised in Table 1.
There are interconnections to neighbouring states which are neglected
by NGM. This is to simulate the situation where the lowa grid is self-
sufficient in terms of electricity. The lowa grid is also dominated by
thermal plant but there is a larger proportion of fast response plant
(OCGT) than for the England and Wales grid.

Table 1. England & Wales (1994) (National Grid Company plc 1996)
and Iowa (1996) plant mix (Mid-Continent Area power Pool 1997).
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Plant Capacity (MW)
England and Wales | Iowa
Nuclear 10642 475
Coal 31370 | 2286
Oil 5934 | 3102
CCGT 8915 107
OCGT 1559 | 1443
Pump-storage 2088 -
Total 60508 | 7413

4 Wind Farm Sites

4.1 United Kingdom

Wind speed data from eleven sites monitored as potential wind farm
sites were used as supplied by the UK wind farm developer Renewable
Energy Systems Ltd. The data from these sites, which were used for this
study, covered the calendar year 1994. Wind speed forecast data were
interpolated from the nearest grid points of the Danish Meteorological
Institute’s HIRLAM model (Machenhauer 1989) to the potential wind
farm sites.

HIRLAM forecasts are made at 00Z and 127 up to t+36 hours with a tem-
poral resolution of 3 hours. The high-level geostrophic wind speed from
HIRLAM was then transformed to the ground using the WASP model.
Orography data, from UK Ordnance Survey 50m Panorama grid point
files, and roughness data, from UK Ordnance survey 1:25000 Pathfinder
maps, for each site were used as input to the WASP model. In addition,
the HIRLAM forecasts were combined with historic observed values using
an autoregressive time series model, called the Wind Power Prediction
Tool (WPPT) (ELSAM (Ed.) 1995) to produce hourly forecasts. It was
found that the WPPT forecasts gave more accurate predictions than
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the HIRLAM/WASP forecasts and it is the results using these forecasts,
which are reported here. These forecasts are henceforth referred to as
the WPPT forecasts.

Wind speed was transformed to potential wind power using the power
curve of the largest commercial wind turbine on the market at the time
when this project was started, namely the Vestas V66 1650kW wind
turbine.

4.2 The US State of Iowa

Wind speed data for two potential wind farm sites in the State of lowa
were made available by Wectec. Data for the calendar year 1996 were
used in the NGM analysis. In this case, wind speed forecast data were
interpolated from the nearest grid points of the US National Weather
Service Nested Grid Model to the two potential wind farm sites. The
Nested Grid Model forecasts are made at 00Z and 127 up to ¢ + 48 with
a temporal resolution of 6 hours. As no orography and roughness data
were available, interpolated geostrophic wind speed values were ’tailored’
to the two sites using historic data and Model Output Statistics (MOS)
as a function of direction and time-of-day. These forecasts are referred
to as the NWS/MOS forecasts.

Wind speed was transformed to potential wind power using the power
curve of the Vestas V66 1650kW turbine once again.

5 Results

5.1 Overview

For both the England and Wales grid and the grid covering the US State
of Towa, fossil fuel savings for a one-year simulation period were calcu-
lated for different penetrations of wind power and different forecasting
methods. Fossil fuel savings are defined as the difference between the
fossil fuel cost with no wind power and the fossil fuel cost for a given
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penetration of wind power. The wind power penetration is adjusted by
multiplying the Vestas V66 wind turbine output as calculated in Sec-
tion 4 by an appropriate number of installed turbines at each site. For
simplicity, the same number of turbines was assumed to be installed at
each site.

5.2 England and Wales

Figure 1 shows the fossil fuel savings resulting from different penetrations
of wind power for the England and Wales grid for 1994. The z-axis
displays the total rated energy output as a fraction of the total energy
demand for the year (273TWh), assuming that the wind turbines would
be operating at maximum output throughout the entire year. The y-axis
displays the fossil fuel saving relative to the total fossil fuel cost when no
wind power is integrated into the grid. What is noticeable from Figure
1is:

e The value of forecasting becomes significant when the rated output as
a fraction of total demand reaches around 0.6, which corresponds to a
penetration level of 25%.

e It is beneficial to use the standard deviation of the historic forecast
errors in planning the spinning reserve (see Section 2.4). This can also
be seen when using persistence forecasting at high penetration, where
the rated output as a fraction of total demand reaches 1.3 (penetration
level of 40%).

When the rated output as a fraction of total demand reaches 1.3 (pen-
etration level of 40%), the fossil fuel savings using the WPPT forecasts
and the standard deviation of the historic forecast errors to plan the
spinning reserve are 26% higher than persistence. However, it should
be noted that if persistence forecasting is used in conjunction with the
standard deviation of the historic persistence forecast errors to plan the
spinning reserve, the savings are still 13% better than persistence alone.
NB Penetration is defined as the installed wind power capacity as a frac-
tion of the total conventional and wind power plant.
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Figure 1: Fossil fuel savings for different forecasting methods for the
England and Wales grid (1994)

5.3 lIowa

Figure 2 shows the equivalent fossil fuel savings for the Iowa grid com-
paring perfect, persistence and NWS/MOS forecasts. The total demand
here was 28TWh.

It can be seen that:

e Perfect forecasting performs increasingly better than persistence as the
penetration level increases.

e The NWS/MOS forecasts perform significantly worse than persistence
at all penetrations.

The first point indicates that ’intelligent’ forecasting is beneficial from
the point of plant scheduling. However, the second point shows that the
NWP forecasts produced every 12 hours at lead-times in increments of
six hours are not good enough in comparison with persistence.
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Figure 2: Fossil fuel savings for different forecasting methods for the Iowa
grid (1996).

6 Discussion

The WPPT forecasts give greater fossil fuel savings than persistence
in the case of the England and Wales grid. In the case of Iowa, the
NWS/MOS forecasts perform worse than persistence. However, if one
compares the forecasts with persistence as a function of forecast lead-
time for the individual sites then it is found that the forecasts outperform
persistence at lead-times of 3—4 hours and this is approximately the same
for the sites in England and Wales and those in ITowa.

Although the NGM results for Iowa seem disappointing, it should be
noted that the WPPT forecasts are optimised as far as possible for
the UK sites giving hourly forecasts which are based on three-hourly
HIRLAM forecasts, whereas the NWS/MOS are only available every six
hours. This means that much of the time, quite ’old’ forecasts are being
used by the NGM in the case of the Iowa grid to plan plant scheduling
and spinning reserve.
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7 Conclusions

It has been shown that enhanced numerical weather prediction forecasts
of wind power at potential wind farm sites can improve the efficiency
of plant scheduling resulting in fossil fuel savings when compared with
persistence. Indeed, for the England and Wales grid WPPT forecasts
can result in a saving of up to 26% compared to persistence at a wind
power penetration level of 40%. However, it has also been shown that the
quality of the forecasts is quite critical. If thermal plant has a start-up
time of eight hours then six-hourly forecasts updated every 12 hours do
not show an improvement over persistence. The next step would be to
optimise the NWS/MOS forecasts using a site ’tailored” WPPT model.
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