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Prefae
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The project deals with stochastic modelling of hydrological systems with the
objective of assessing the uncertainty embedded in the system formulation.
The main focus is on grey box models, where the system description is for-
mulated as a set of stochastic differential equations, but also impulse response
function models are being considered.

The thesis consists of a summary report and a collection of six papers, writ-
ten during the period 2007–2011. Of these, two papers have been published
in conference proceedings and four research papers have been submitted for
publication in international scientific journals.

Kgs. Lyngby, September 2011
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Summary
The main topic of the thesis is grey box modelling of hydrologic systems, as
well as formulation and assessment of their embedded uncertainties. Grey box
model is a combination of a white box model, a physically-based model that
is traditionally formulated using deterministic ordinary differential equations,
and a black box model, which relates to models that are obtained statistically
from input-output relations. Grey box model consists of a system description,
defined by a finite set of stochastic differential equations, and an observation
equation. Together, system and observation equations represent a stochastic
state space model. In the grey box model the total noise is divided into a mea-
surement noise and a process noise. The process noise is due to model approxi-
mations, undiscovered input and uncertainties in the input series. Estimates of
the process noise can be used to highlight the lack of fit in state space formula-
tion, and further support decisions for a model expansion. By using stochastic
differential equations to formulate the dynamics of the hydrological system,
either the complexity of the model can be increased by including the necessary
hydrological processes in the model, or formulation of process noise can be
considered so that it meets the physical limits of the hydrological system and
give an adequate description of the embedded uncertainty in model structure.

The thesis consists of two parts: a summary report and a part which contains
six scientific papers. The summary report is divided into three distinct parts
that introduce the main concepts and methods used in the following papers.
The first part contains the basic concepts in hydrology and related hydrological
models. The second part explains the grey box model by presenting stochastic
differential equations and show how the equations can be linked to the avail-
able measurements. Moreover, impulse response function models are intro-
duced as an alternative to stochastic differential equation based models, but by
exploiting known hydrological models as the impulse response function in this



vi Summary
model makes this model framework partly physically-based. For estimating
the parameters in the grey box models maximum likelihood method is used.
The third important part of the summary report is predictions, and with fo-
cus on uncertainty of prediction intervals the corresponding performance mea-
sures have to include the intervals. The thesis illustrates three performance
measures for this performance evaluations: reliability, sharpness and resolu-
tion. For decision making, a performance criterion is preferred that quantifies
all of these measures in a single number, and for that the quantile skill score
criterion is discussed in this thesis.

The second part of the thesis, which contains the papers, is divided into two
different subjects. First are four papers, which consider the grey box model
approach to a well field with several operating pumps. The model foundation
is the governing equation for groundwater flow, which can be simplified and
represented a state space form that resembles the methods used in numerical
methods for well field modelling. The objective in the first two papers is to
demonstrate how a simple grey box model is formulated and, subsequently,
extended in terms of parameter estimation using statistical methods. The sim-
ple models in these papers consider only part of the well field, but data analysis
reveals that the wells in the well field are highly correlated. In the third paper,
all wells pumping from the same aquifer are included in the state space formu-
lation of the model, but instead, but instead of extending the physical descrip-
tion of the system, the uncertainty is formulated to handle the spatio-temporal
variation in the output. The uncertainty in the model are then evaluated by
using the quantile skill score criterion. In the fourth paper, the well field is
formulated by considering the impulse response function models to describe
water level variation in the wells, as a function of available pumping rates in
the well field. The paper illustrates, through a case study, how the model can
be used to define and solve the well field management problem.

The second half of part II consists of two papers where the stochastic differen-
tial equation based model is used for sewer runoff from a drainage system. A
simple model is used to describe a complex rainfall-runoff process in a catch-
ment, but the stochastic part of the system is formulated to include the increas-
ing uncertainty when rainwater flows through the system, as well as describe
the lower limit of the uncertainty when the flow approaches zero. The first
paper demonstrates in detail the grey box model and all related transforma-
tions required to obtain a feasible model for the sewer runoff. In the last paper
this model is used to predict the runoff, and the performances of the prediction
intervals are evaluated by the quantile skill score criterion.



Resumé
Hoved-emnet i denne afhandling er “grey box” modellering af hydrologiske
systemer, samt formulering og vurdering af deres indbyggede usikkerheder.
“Grey box” modellen er en kombination af en “white box” model, en fysisk
baseret model, der traditionelt er formuleret som deterministiske ordinære dif-
ferentialligninger, og en “black box” model, dvs. modeller baseret på statistiske
input-output relationer. “Grey box” modellen består af en system beskriv-
else, defineret ved et endeligt sæt af stokastiske differentialligninger, og en
observationsligning. System- og observtionsligninger repræsenter tilsammen
en stokastisk tilstandsrum model. I “grey box” modellen er den samlede støj
opdelt i målestøj og processtøj. Processstøjen skyldes model approksimationer,
uopdagede input og usikkerheder i input-serien. Estimater af process stø-
jen kan bruges til at fremhæve manglende fit i tilstandsrumformuleringen, og
yderligere støtte beslutninger for en model udvidelse. Ved brug af stokastiske
differentialligninger til at formulere dynamikken i det hydrologiske system,
forøger man enten kompleksiteten af modellen ved at inkludere de nødvendige
hydrologiske processer i modellen, eller formulering for proces støjen kan be-
tragtes, således at den opfylder de fysiske grænser for det hydrologiske sys-
tem og giver en tilstrækkelig beskrivelse af den integrerede usikkerhed i model
strukturen.

Afhandlingen består af to dele: en sammenfatning og en del som indeholder
seks videnskabelige artikler. Sammenfatningen er ydeligere opdelt i tre ad-
skilte dele, der introducerer de vigtigste begreber og metoder, der anvendes
i følgende artikler. Den første del indeholder de grundlæggende begreber i
hydrologi og relaterede hydrologiske modeller. Den anden del forklarer “grey
box” modellen, ved at præsentere stokastiske differentialligninger og vise hvor-
dan ligninger kan være knyttet til de tilgængelige målinger. Desuden bliver
impuls respons funktion modeller introduceret, som alternativ til stokastiske



viii Resumé (summary in Danish)
differentiallignings baserede modeller, men ved at udnytte kendte hydrolo-
giske modeller som impuls respons funktion i denne model, bliver den delvist
fysisk-baseret. Til at estimere parametrene i “grey box” modellerne anven-
des maximum likelihood metoden. Den tredje vigtige del i sammenfatnin-
gen er forudsigelser, og med fokus på usikkerheder for forudsigelsesintervaller
skal de tilsvarende performance mål også omfatte intervallerne. Afhandlin-
gen illustrerer tre performance mål for vurderinger af usikkerhedsintervaller:
pålidelighed, skarphed og opløsning. For beslutningstagere er et performance
kriterium,der sammenfatter alle disse mål i et enkelt tal at foretrække, et sådant
mål er fraktil skill scoren, der er diskuteret i denne afhandling.

Anden del af afhandlingen som indeholder artiklerne er opdelt i to forskel-
lige fag. Først er fire artikler, der betragter “grey box” model metoden til en
kildeplads med flere driftmæssige pumper. Modelfundamentet er de styrende
ligninger for grundvandsstrømning, der kan forenkles og repræsenteres på en
tilstandsrums form, der ligner de fremgangsmåder, der benyttes i numeriske
metoder til kildeplads modellering. Målet i de første to artikler er at demon-
strere, hvordan en simpel “grey box” model er formuleret og, efterfølgende,
udvidet med hensyn til parameterestimering ved hjælp af statistiske metoder.
De simple modeller i disse artikler betragter kun en del af kildepladsen, men
dataanalysen afslører, at boringer på kildepladsen er parvis højt korreleret. I
den tredje artikel, er alle boringer der pumper fra det samme grundvandsma-
gasin inkluderet i tilstandsrum formuleringen af modellen, men i stedet for at
udvide den fysiske beskrivelse af systemet er usikkerheden formuleret til at
håndtere den spatio-temporale variation i outputet. Usikkerheden i modellen
er derefter vurderet ved hjælp af fraktil skill score kriteriet. I den fjerde ar-
tikel er kildepladsen formuleret ved at betragte impuls respons funktion mod-
eller til at beskrive vandstands variationen i boringerne, som en funktion af
alle tilgængelige pumpe rater i kildepladsen. Artiklen illustrerer ved hjælp
af et casestudie, hvordan modellen kan anvendes til at definere og løse kilde-
pladsstyring problemet.

Anden halvdel af del 2 består af to artikler, hvor den stokastiske differential-
lignings baserede model er brugt for kloak afstrømning fra et afløbssystem.
En simpel model er anvendt til at beskrive en kompleks nedbør-afstrømnings
proces for et opland, men den stokastiske del af systemet er formuleret til at
omfatte den stigende usikkerhed, når regnvand løber gennem systemet, samt
at beskrive den nedre grænse for usikkerheden, når flow-hastigheden nærmer
sig nul. Den første artikel viser i detaljer “grey box” modellen og alle relaterede
forandringer der er nødvendige for at opnå en realistisk model for kloak af-
strømning. I den sidste artikel anvendes denne model til at forudsige afstrømn-
ing, desuden er performance af intervallerne evalueret ved hjælp af fraktil skill
score kriteriet.
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CHAPTER 1 Introdution
The purpose of hydrological models is to understand the behaviour of hydro-
logical systems, where the focus is on generating predictions for controlling
and managing water resources so that human lives are protected and prop-
erty damages are prevented. Over the last decades the hydrological society
has been confronted with new challenges that involve an increased focus on
extreme events and water quality. This calls for new modelling approaches
in order to gain more information about future scenarios that describe uncer-
tainties for both short-term and long-term predictions. The model approaches
have either been deterministic, where the physical laws are the foundation in
the mathematical framework, or purely statistical ones where available data is
employed to build a model exclusively based on the input-output relation.

1.1 Motivation

The main objective of the thesis is to combine these two different approaches.
This is carried out by formulating the model such that it includes the signifi-
cant dynamic behaviour of the physically-based model, but enables statistical
methods and tools for estimating the model parameters and assessing the un-
certainties in the model structure. Hydrological systems are most often highly
complex where usually - due to the law of conservation - many interconnected
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processes are needed in order to describe the system evolution in both time
and space. Hydrological processes are physical phenomena, where the sys-
tem dynamics are often best formulated in continuous time by considering
ordinary differential equations, or partial differential equations. In order for
hydrological models to efficiently describe the dynamics in a deterministic hy-
drological system, a thorough understanding of the system and all influential
subprocesses is required. This is obtained by a rather detailed description of
all the processes involved. Consequently, the number of parameters that need
to be estimated in the model is typically large. A mathematical framework that
is based on such a formulation is very deterministic, and often referred to as
white box models.

However, in real world applications the ideal hydrological model, where the
system and all subprocesses are well described, does not exist. All hydrological
models are only approximations of the true process, but the model is consid-
ered to adequately describe the system behaviour when the residual series, the
difference between the model predictions and the measurements, is minimised
and observed as a series of white noise terms. If the deterministic model does
not include all the necessary influential factors, the residual series will render
a systematic pattern, and cause the model to depart from the measured out-
put. The model will then become incompetent for its purpose. Detailed white
box hydrological models are usually applied for simulation purposes, where
the objective is to determine the long-term effects of the system response on
predefined input sequences.

On the other hand, statistical models are desirable for short-term predictions,
since the statistical methods make it possible to use rigorous stochastic dynam-
ical models that provide a measure of the inherent uncertainty for the model
predictions. However, statistical models are discrete time models that do not
normally contain any physical knowledge regarding the system, and the phys-
ical parameters are partly hidden in the discrete time parameterisation. Thus,
for long-term predictions of physical phenomena, which is solely based on sta-
tistical models, the model output is not adjusted towards the physical drift em-
bedded in the physical knowledge of the system. Due to the lack of physics in
the model structure, where only the input-output data and statistical methods
are used to formulate the model, statistical models are called black box models.

To maintain the physical interpretation of the model, it would be suitable to
use formulation and apply an estimation method, where the parameterisation
is kept in continuous time. The model proposed in the thesis is based on the
most important physical knowledge of the hydrological process, but includes
an additional stochastic term to cope with uncertainties in the model formu-
lation and in the observations. The parameters in the model are physically
interpretable and estimated by applying statistical methods. The model ap-
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proach is called grey box model, since the basic model structure is inherited
from the white box models, usually in the form of ordinary differential equa-
tions, but the parameter estimation and the uncertainty assessment is obtained
using statistical methods. The grey box concept is illustrated in the diagram
in Figure 1.1, showing the contributions from the white box and the black box
approaches.

Considering the proposed grey box approach, the recommendation is to adapt
a simple model to describe the system dynamics. The reason for this recom-
mendation is that the law of parsimony tells us that the simplest adequate mod-
els are preferred in order to obtain a model and parameters that are identifiable
from data. Such simple model can then be extended, based on the estimation
results, where the parameter estimates and their variances play a central role
in identifying the lack of fit in the system formulation. The parameter esti-
mation also contains estimation for the uncertainty of the parameters. This
indicates that an improved model structure can be obtained by considering
the lack of fit in the deterministic part of the model, where extensions call for
more deterministic equations in order to remove the unwanted uncertainty. On
the other hand, the uncertainty can also be formulated in accordance with the
knowledge regarding the hydrological system. The former method has been
applied in many fields, e.g., chemical engineering (Kristensen et al., 2004a), dy-
namic models for air temperature (Søgaard, 1993) and heat dynamics of build-
ings (Bacher and Madsen, 2011). However, the latter approach has not received
much attention until recently (Møller et al., 2010a,b, Philipsen et al., 2010). This
thesis is dedicated to the uncertainty part of the grey box model, where simple
models are adopted to represent the dynamic behaviour of the hydrological
system. The uncertainty is formulated to obtain reasonable prediction inter-
vals for the model output. Thus, the grey box approach provides adequate
and operational models for the system. In that way the models are not only
physically interpretable, but do also depend on real time measurements and,
therefore, useful for both short-term and long-term predictions in connection
with online control and optimisation.

The grey box model is considered in connection with two different areas within
hydrology. Firstly, in connection with well field modelling, i.e., modelling the
pressure heads in several operating wells in a well field, and, secondly, in con-
nection with sewer runoff modelling for a drainage system where a combined
flow of rainwater and wastewater is diverted from a catchment.
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Figure 1.1: The grey box modelling concept. The prior knowledge from the
physical structure in the white box approach and the available
data from the measured input and output variables applied to the
black box model, is combined in a grey box modelling approach.

1.2 Overview of the thesis

The thesis is divided into two parts; a summary report and a collection of pa-
pers that have been written or prepared during the period of my PhD study.
The summary report is written as an introduction to the methods and models
that have been applied in the included papers. The thesis is based on six pa-
pers; two conference papers and four research papers, submitted or accepted
for publication in international journals.

The summary report includes five chapters. Following this introduction, three
main topics are explained in the three subsequent chapters. In Chapter 2 some
basic and useful concepts in hydrology are presented, along with the essen-
tial physical structure for both the groundwater flow model and sewer runoff
model.

Chapter 3 covers the mathematical theory behind the models applied in the
papers, i.e., the theory of stochastic differential equations and models based on
impulse response functions. This is followed by an introduction to the maxi-
mum likelihood method. The method is applied for all six papers in the pa-
rameter estimation. The stochastic differential equations consist of a drift term,
corresponding to an ordinary differential equation for maintaining the physical
knowledge in the equation, and a diffusion term accounting for the stochas-
ticity in the equation. The focus area of my thesis is the uncertainties in the
system structure. Hence, modelling with stochastic differential equations, and
in particular the diffusion term is given special attention in the chapter.

An overview of the topics used for prediction and uncertainty assessment are
contained in Chapter 4. To evaluate the uncertainty, the measurement criteria
for reliability, sharpness and resolution are described. This is followed by the
skill score criterion. It is considered as a global measurement for evaluating
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prediction intervals, and more appropriate as an overall performance measure
to distinguish between model proposals.

Chapter 5 contains discussion and some concluding remarks regarding both
the summary report and the included papers. Subsequently, some future per-
spectives are presented regarding the models proposed in the papers.

Following the summary report are the six papers, where Papers A to D are
dedicated to well field modelling, and Papers E and F deal with modelling and
prediction for the drainage sewer runoff.



8 Introdution



CHAPTER 2 Hydrology
Life depends on water. Our entire way of life is based on accessibility to water
resources and water abundance. In order to be able to harvest and produce
food, people have for thousands of years established societies and cultures
around water resources.

Hydrology is the study of water, with focus on movement, distribution and
quality of water. Hydrology is divided into several domains, where each do-
main has its own environmental identity, including hydrometeorology, surface
hydrology, hydrogeology, management of drainage basins and assessment of
water quality.

2.1 The hydrological cycle

To understand the movement of water in our environment, a fundamental step
is to acknowledge how water circulates in the world in which we live. To es-
tablish the origin of the rainfall and the source of the lakes and rivers that never
stop flowing down the hills, we have to realise that water circulates both in the
atmosphere and below Earth’s surface.

The circulation is named the hydrological cycle, and is sketched in Figure 2.1.
In its simplest form, this is described as the movement of water, as it evapo-
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Figure 2.1: The hydrological cycle, including the concepts in hydrogeology.

rates from the surface of both sea and land to the atmosphere. Water vapour
is transported in the atmosphere until it condenses (clouds) and, subsequently,
may dissolve over land in the form of precipitation. The precipitation that falls
on the surface area is partly collected into streams and rivers by surface runoff
that eventually runs back into the sea. The remaining part of the rainfall, how-
ever, is infiltrated into the soil.

The infiltrated water is stored in the subsurface, also called vadose zone. The
area below land surface is roughly divided into the subsurface and the ground-
water. You distinguish between the two parts by means of the watertable,
which is an elevation of saturation for the water stored below surface. From
the soil in the vadose zone the water flows as a subsurface flow into streams
and lakes, or by gravitational forces percolates further into the ground and



2.2 Hydrologial modelling 11
recharges the groundwater. The groundwater flow diverts the water towards
lakes, streams and the ocean. The precipitated water can also be intercepted by
vegetation and, subsequently, return to the atmosphere by the so-called tran-
spiration; a process similar to evaporation, but assigned to loss of water vapour
from plants, flowers, etc.

However, the cycle is not that simple. Each state in the cycle is faced with
stages that cannot be overlooked, e.g., the precipitation can fall anywhere, also
directly into the sea during or right after cloud formation. The time of the cycle
is not uniform. In other words, during droughts it seems it will never rain,
whereas during floods it seems the rain will never stop. Also, the intensity of
the precipitation events depends on climate and geographical location.

2.2 Hydrological modelling

Hydrological models are a simplified descriptions of parts of the hydrological
cycle. The purpose is to gain such information about the hydrologic process
that it can be used for predictions for states of the hydrological system. The ob-
jective in hydrological modelling is essentially to determine a description for
the flow as it passes from the input to the output, i.e., to obtain an acceptable
input-output representation for the hydrological system. The methods of flow
routing depend on knowledge about storage capacities in the hydrological sys-
tem and, in general, either deterministic models or stochastic models are used
to evaluate the storage.

As explained in Chapter 1 the deterministic models (or the white box mod-
els) are very detailed descriptions of the hydrological system, and are usually
based on physical knowledge of the system dynamics, only. The system pa-
rameters are obtained from hydrological surveys related to the system’s char-
acteristics. Thus, they are predefined in the model structure without any un-
certainty. The deterministic models tend to become fairly complicated, because
the model accuracy is optimised by improving the system with inclusion of as
many processes and subprocesses as possible in order to minimise the out-
put error. In contrast, stochastic hydrological models refer to statistical models
(or black box models), i.e., the model structure is obtained by correlating the
available input and output data series for the hydrological system in question.
Processes in hydrology that are categorised as black box models are usually
models with the primary goal of making short-term predictions, e.g., rainfall-
runoff and flood forecasting.

To accomplish better predictions and, consequently, improved water resources
management systems, the mainstream in modern hydrological modelling is
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dS(t)
dt

System boundary

System boundary

Input OutputSystem operator

I(t) Q(t)

Figure 2.2: Representation of a closed system. Changes in the system opera-
tor, the storage S, at time t are due to the difference between the
input I and the output Q.

focused on gaining a more general understanding of the behaviour of the hy-
drological systems.

2.2.1 Storage equation

The fundamental requirement in hydrological modelling is that the water bal-
ance in the hydrologic process is preserved in such a way that within a closed
system the same quantity of water exiting the water system is the same as
the quantity entering the system. Changes in the system are then illustrated
as the difference between the input and the output at some specific time. In
continuous-time these system changes are described with the continuity equa-
tion (Douglas et al., 2001) 1 which states, as previously described, that a flux of
water going into the system at the input must emerge at the output. The law
of mass conservation is illustrated in Figure 2.2.

In a storage S(t) with the input I(t) and corresponding output Q(t), and which
is not influenced by alternative external factors (e.g., subprocesses in the form
of lateral flow to a river), the storage equation, for time t, is written

dS(t)

dt
= I(t)− Q(t). (2.1)

If a difference is detected between the input and the output at the time t, the
system is considered to be unsteady, i.e., I(t) 6= Q(t) ⇔ dS(t)/dt 6= 0. Fur-
thermore, the flow in the storage is considered to have a constant density. If
the density is varying the flow is compressible, but compressible flows are not
being considered in the hydrological studies in this thesis.

1Also called the law of mass conservation
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The differential equation (2.1) is a traditional deterministic representation of
flow through a storage, simply stating that all influential processes are well
described within the system operator (Figure 2.2). This indicates that all sub-
processes and potential input variables are included in the system formulation.
However, this is very seldom the case since hydrological processes are complex
phenomena. Due to the system complexities, it is usually very difficult to con-
clude that a system has reached a complete description. The available data
for the system usually contains measurements for the input and the output
variables, but unavoidably a deviation is exposed as the model is compared
to the measured output. Even for the “perfect” model, a minor discrepancy is
detected, but this discrepancy increases with the lack of a description for the
system dynamics. Therefore, a noise term is added to the system representa-
tion in (2.1) to account for the deviation between the input and the output of
the system, i.e.,

dS(t)

dt
= I(t)− Q(t) + ”Noise”. (2.2)

2.3 Surface water hydrology

Surface water hydrology refers to the theory of movement of water on land
surface. Flowing water on Earth’s surface is a vital part of the hydrological cy-
cle. A surface runoff is a derivation of precipitation fallen on land areas, where
the excess water is collected into lakes and rivers that diverts the water from
the rainfall back to the sea. Incidents linked to surface water hydrology are
directly observable – both those that are due to natural causes and those that
are man-made structures created to avoid nuisance. In urban areas, deriva-
tion of all excess water is of great importance, since overflows in these areas
can severely affect properties and human lives as well as causing pollution of
water supplies and disruption of communication and transport.

For a particular rainfall-runoff system, catchment is the land area that receives
the water from the rainfall, whereas the land area that contributes to the sur-
face runoff to the catchment outlet is called watershed. The relation between
rainfall and corresponding runoff has been studied for decades. A fundamen-
tal tool to visualise this particular rainfall-runoff correlation is a hydrograph.
A hydrograph shows how the flow rate evolves in time for a given location in
the rainfall-runoff system.
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2.3.1 The unit hydrograph

As a response to a rainfall, a unit hydrograph can be used to illustrate an out-
let flow from a watershed or a catchment. It is usually illustrated graphically,
and is basically an impulse response function of a linear time-invariant system
(Madsen, 2008), showing how a discharge from a watershed evolves in time,
subsequent to a single unit of rainfall on the catchment (Sherman, 1932). The
unit hydrograph can be visualised as illustrated in Figure 2.3, by setting r and
s equal to one, and t is a single time-step. The unit hydrograph is considered
unique for a given watershed, where several terms can be identified to char-
acterise the watershed. One of these terms is the time delay tp from the time
of the rainfall to the time of the corresponding hydrograph to reach its maxi-
mum flow (peak flow), shown in Figure 2.3. This time delay is often referred
to as retention time and plays a central role in characterising rainfall-runoff
flows. However, several requirements have to be fulfilled for the unit hydro-
graph analysis (Chow et al., 1988): The duration of the rain event has to be brief,
and the catchment should be small. Also, the rainfall is assumed to be uni-
formly distributed through the entire drainage area. For a single catchment, an
increase in the rainfall causes an increase in the hydrograph as well, such as
displayed in Figure 2.3.

For long periods of dry-weather situations, the only contribution to the mea-
sured runoff is the so-called baseflow. Several methods have been proposed
to separate the baseflow from the direct runoff flow, e.g., the recession curve
approach and the arbitrary approach (Gupta, 2008, Jonsdottir et al., 2006a). For a
flow in a sewer drainage system, the baseflow corresponds to the wastewater
from the household in the catchment, and is usually seasonally observed due
to the traditional daily and weekly behaviour of the household.

2.3.2 Runoff models

One of many lumped flow routing methods that have been developed (Chow
et al., 1988, Viessman and Lewis, 1996) considers the hydrological system as a
series of linear reservoirs. Reservoir is referred to as linear when the reservoir
storage is in linear relation to the output flow from the reservoir, linked with a
storage coefficient k [T] that represents the retention time for the flow through
the reservoir, i.e.,

S(t) = kQ(t)⇔ Q(t) =
1
k

S(t). (2.3)
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Figure 2.3: Two hydrographs for a single uniform rain event falling on a
catchment. A rain of s mm/h results in a runoff flow as shown
by the red hydrograph. An increase in rain from s to r mm/h will
influence the size of the peak flow as the hydrograph is increased
as well (from the red curve to the blue curve, respectively).

Thus, the differences in the output flow from the reservoir is due to the differ-
ence in storage in the reservoir:

dQ(t) =
1
k

dS(t),

and for changes due to time, the time derivative for the output is written

dQ(t)

dt
=

1
k

dS(t)

dt
. (2.4)

By replacing the time derivative of the storage, dS/dt, in (2.4) with the stor-
age equation (2.1), the time derivative for the output flow in a single reservoir
becomes

dQ(t)

dt
=

1
k
(I(t)− Q(t))

=
1
k

I(t)− 1
k

Q(t). (2.5)

Using the condition Q(0) = 0 and considering the input as an unit impulse, the
solution for the single reservoir output flow is

Q(t) =
1
k

e−
t
k . (2.6)
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Hence, the solution is an impulse response function with an exponential decay.
The response time to the unit impulse, T for a single reservoir has exponential
distribution with rate 1/k, with mean E{T} = k and variance V{T} = k2. This
corresponds to the top hydrograph on the right side of Figure 2.4.

By considering a system of N reservoirs (displayed on the left side of Figure 2.4)
the results from the single reservoir flow equation (2.6) are utilised, and also
the fact that the retention time in reservoir n, for n = 1, . . . , N, is assumed in-
dependent. The resulting impulse response function for the flow through N
linear reservoirs in a series, where the storage parameter k is the same for all
reservoirs (Nash, 1957), is

QN(t) =
1

kΓ(N)

(
t

k

)N−1

e−
t
k , (2.7)

which is a gamma distribution where N represents the shape parameter and
the rate parameter is the inverse of the retention time k, i.e., 1/k. The mean and
variance for flow through the N reservoirs is, due to the gamma distribution,
E{TN} = kN and V{TN} = k2N, respectively.

The system of linear reservoirs can be presented directly from Eq’s. (2.2) and
(2.3) on a state space form, where the nth state, Sn for n = 2, . . . , N, is described
as

dSn(t)

dt
=

1
k

Sn−1(t)−
1
k

Sn(t) + “Noise”.

If the storage parameter is the same for all states, the mean of the gamma dis-
tribution in (2.7) can be adopted in the state space formulation to include a pa-
rameter for the mean retention time for the flow through all N states. Hence,
k = TN/N and the state space formulation is written

d

dt




S1(t)
S2(t)

...
SN(t)


 =




− N
TN

0 · · · 0
N

TN
− N

TN

...
. . .

. . .
0 N

TN
− N

TN







S1(t)
S2(t)

...
SN(t)


+




1
0
...
0


 I(t) + “Noise”. (2.8)

The state space description can readily be extended to the case of different stor-
age parameters for the individual states.

2.3.3 Drainage systems

Drainage is a term that applies to the process of removing excess water from
catchments so as to prevent overflow and in that way protecting properties and
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Figure 2.4: A system of N linear reservoirs. Corresponding hydrographs for
the output Qn(t) are shown to the right.

lives. For rural areas, or areas that have not been developed, the drainage oc-
curs naturally as a part of the hydrological cycle (Figure 2.1) and infiltrates into
the vadose zone. For developed areas, however, or so-called urbanised areas,
the human factor has severely influenced the drainage of the excess water in
the catchment.

Urban drainage was introduced in order to improve sanitary conditions in
the populated areas, and to divert the flow out of these areas. In order to
remove both wastewater and rainwater, and thereby minimise the inconve-
nience for the population, pipe networks are constructed below ground surface
in cities and towns. In cities the rain falls on either a permeable or impermeable
area. The permeable areas drain the water to the subsurface by infiltration, but
in the impermeable areas the excess water is collected from the paved areas,
e.g., roofs and streets, by open channels linked to the drainage systems. Fur-
thermore, through wastewater from the households the population also con-
tributes to the runoff system.

In papers E and F the linear reservoir model in (2.8) is applied to a simple
model of urban drainage system.
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2.4 Groundwater hydrology

Groundwater hydrology deals with occurance, movement and quality of water
stored in the saturated part of the underground zone. A geologic formation in
the saturated zone capable of storing a significant amount of groundwater is
known as an aquifer; i.e., a sediment that yields water in quantities that are suf-
ficient for a well or a spring (see Figure 2.1). The hydraulic conductivity of an
aquifer is high, meaning that the aquifer – within a reasonably short time – is
capable of transferring water from one location to another within the aquifer.
The zone of saturation is usually categorised into several layers of different
aquifers. These are vertically separated by either layers of much lower perme-
ability than the nearby aquifers, referred to as aquitards, or by layers that are
almost impermeable, the so-called aquicludes. They form flow barrier between
aquifers.

An aquifer can be considered as either confined or unconfined. An unconfined
aquifer is an aquifer that is directly influenced by the vadose zone, i.e., the
aquifer is not bounded by an aquitard or an aquiclude on top. For multiple
layers of aquifers, the upper most aquifer is always defined as an unconfined
aquifer, with the varying watertable as its upper limit and, thus, is recharged
by rain or irrigation water that percolates from the Earth’s surface through the
vadose zone. The water level in a bore hole that is drilled into an unconfined
aquifer is the same as the watertable, separating the saturated and unsaturated
zones.

The confined aquifer, however, has an aquitard as an upper barrier, and an
aquitard or an aquiclude below. The level of the watertable of the recharge
area of the confined aquifer is usually much higher than the top of the confined
aquifer itself, indicating that the water in the confined aquifer is pressurised.
A bore hole that is drilled into such an aquifer has a water level that rises sig-
nificantly above the top of the aquifer.

In Denmark, the main resource for drinking water is the groundwater, which
is transported from pumping wells – one or several in a region often referred
to as a well field – to the consumers.

2.4.1 Darcy’s law

The basic equation of groundwater flow is Darcy’s law, an analogue to Fourier’s
law for heat transfer, and Ohm’s law in electrical circuits. The equation is
named after Henri Darcy, who in 1856 experimented with flows in a pipe filled
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with sand. He discovered that the flow rate Q in the pipe was inverse pro-
portional to the length of the sand filter L and proportional to both the cross-
sectional area of the pipe A and the head drop between the start and the finish
of the filter, ∆h. With an addition of a constant of proportionality for the sand,
the so-called hydraulic conductivity κ, Darcy’s law is

Q = κA
∆h

L
, (2.9)

and in general describes water transport in a porous material. As mentioned
above, Darcy’s law describes one-dimensional flow, only. The flow equation
can be generalised so as to apply to three-dimensional flow, and that leads to
the governing equation for groundwater flow (see, e.g., Gupta, 2008).

Darcy’s law cannot be generalised for all flows. It is only valid for laminar
flows, and for flows in Newtonian fluids. Furthermore, for flows through ex-
tremely fine-grained material, Darcy’s law does not apply, nor does it if the
medium is not fully saturated.

2.4.2 Stochastic groundwater flow

In a confined anisotropic aquifer the governing equation for groundwater flow
is a partial differential equation:

Ss
∂h

∂t
=∇ · κ∇h + R (2.10)

where h [L] is the hydraulic head, κ [LT−1] is the tensor matrix of the hydraulic
conductivity, Ss ([L−1]) is the specific storage and R [T−1] represents any exter-
nal stress affecting the groundwater flow.

To obtain a successful model for the groundwater flow, where water is dis-
charged from the aquifer at several locations simultaniously, the groundwater
flow equation (2.10) has to be discretised and solved numerically. This is done
by dividing the well field into a number of cells. This is the general numerical
methodology for partial differential equations, where usually the finite element
or finite difference methods are applied to solve the equation. In hydrogeology
several commercial softwares have been developed for simulation of ground-
water, e.g., MODFLOW (McDonald and Harbaugh, 1983) and MIKE-SHE (Mad-
sen et al., 2008).

In the thesis, the cell is assumed to be of an arbitrary form and the cells are dis-
cretised without taking restrictions related to the shape of the cells into consid-
eration. For that the finite volume method is applied (Rozos and Koutsoyiannis,



20 Hydrology
2010). Hence, Eq. (2.10) is integrated with respect to the volume V for the dis-
cretised cell in the well field. Consequently, assuming that the input stresses R
and the specific storage is space invariant for each cell, the divergence theorem
(Adams, 1999) can be applied to obtain

SsV
∂h

∂h
=
∫

S

κ∇h ·nds+ RV (2.11)

where the integral on the right hand side is a surface integral of the total dis-
charge through the surface S, surrounding the volume V. The vector n is a
unit vector, normal to the surface element ds and pointing outwards from the
volume.

The surface integral (2.11) cannot be solved analytically and numerical meth-
ods have to be used. An assumption to simplify the calculation of the integral
is to consider equipotential lines (no-flow lines) at the edges of the discretised
cell. Consequently, h · n is equal to the gradient of h along the marginal of the
cell. Thus, the surface integral can be reduced to an aggregation of Darcian
fluxes to the cell from all the neighbouring cells (Anderson and Woessner, 2002).

To calculate the water level in cell i (hi) under influence from the J neighbouring
wells (see Figure 2.5), the integral in Eq. (2.11) is simplified to

Ss,iVi
dhi

dt
=

J

∑
j=1

κij Āij

Dij

(
hj − hi

)
+ RiVi (2.12)

where Dij is the distance between wells i and j, and Āij is the cross-section
area between the same cells, with conductivity κij. Furthermore, Vi, Ss,i and
Ri are the same as mentioned previously, but are now related to cell i only.
Assuming that the cross-section area is a constant, is only valid for confined
aquifers. For unconfined aquifers, Eq. (2.12) can also be utilised, but then the
cross-sectional area Āij is a function of the water head difference in the cells,
and the groundwater flow equation becomes nonlinear. However, unconfined
aquifers are not of interest in the following studies and are, therefore, not dealt
with.

For a homogeneous isotropic confined aquifer the aquifer thickness b is con-
sidered to be uniform. Consequently, several assumptions can be attained re-
garding the parameters in the groundwater flow:

Ai =
Vi

b
, Si = Ss,ib, Tij = κijb and Eij =

Āij

b

where Ai [L2] is the base area of cell i, Si is its storage coefficient, or stora-
tivity [-], Tij corresponds to the transmissivity of the flow between the cells i
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Figure 2.5: A sketch of cell i with an operating well included. Also included,
the parameters related to cell i and its coupling to the neighbour-
ing cell j.

and j [L2T−1], and Eij is the screening of the cross-sectional flow [L]. The flow
equation for cell i is then written as

Si Ai
dhi

dt
=

J

∑
j=1

TijEij

Dij

(
hj − hi

)
+ Wi (2.13)

where Wi = Ribi Ai and accounts for sources and sinks that either discharge or
recharge cell i to maintain the water balance in the system.

In well field modelling the discharge of water is considered to be the most
influential sink that affects the aquifer, and for a cell with a pumping well in-
cluded the pump rate of the well has to be subtracted from the groundwater
flow equation for that particular cell. However, due to the storage coefficient,
which represents the porousity of the aquifer, the drawdown in the cell is not
as rapid as the one detected inside the well where pure water is discharged.
Hence, the water level outside the well is less affected by the pumping than
the water level inside. Thus, the discharge rate is multiplied by the storage
coefficient in order to calculate the water drawdown in the cell.

The source/sink term in the groundwater flow equation (2.13) can then be writ-
ten

Wi = −SiQi + Li Ai(H0 − hi) (2.14)

where Qi is the positive discharge flow through the well in the cell, Li is the
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leakage coefficient through the aquitard, and H0 corresponds to the piezomet-
ric surface in the cell. The linear equation for the water drawdown in cell i in a
confined aquifer is then written

dhi

dt
=

1
Si Ai

J

∑
j=1

TijEij

Dij

(
hj − hi

)
+

Li

Si

(
H0 − hi

)− 1
Ai

Qi. (2.15)

The stochastic groundwater model considered in Papers A, B and C is pre-
sented on a state space form. In its simplest formulation each state contains a
single operating well, only. Hence, for a well field with N wells, the proposed
groundwater model for the well field is described by only N states in the sys-
tem description. By such a simple formulation of the complex physical system
as an aquifer, the model structure is a rough approximation of the real system.
However, the discrepancy from reality for each of the states can be quantified
by adding a noise term to the states, and an estimation of the noise term will
provide a measure of uncertainty of the model.

A stochastic groundwater model with N wells is then written on a state space
form as

d

dt




h1
...

hN


 =




− 1
S1

( 1
A1

∑
J
j=1

T1jE1j

D1j
+ L1

)
· · · T1N E1N

S1 A1 D1N

...
. . .

...
TN1 EN1

SN AN DN1
· · · − 1

SN

( 1
AN

∑
J
j=1

TNj ENj

DNj
+ LN

)







h1
...

hN




+




L1
S1

− 1
A1

· · · 0
...

...
. . .

...
LN
SN

0 · · · − 1
AN







H0
Q1
...

QN


+ "Noise"

(2.16)

and corresponds to the model approach introduced in Paper C.

2.5 Concluding remarks

In this chapter an overview of some fundamental and widely used concepts in
hydrology have been introduced. The hydrological cycle has been described,
and parts of it are included in this monograph. Firstly, the sewer runoff. The
modelling approach proposed in Papers E and F is an extension of the basic
model for a series of linear reservoirs applied to urban drainage systems. The
runoff/drainage model is presented on a state space form to account for the
retention time in the system. Secondly, the groundwater flow equation is sim-
plified so that by assumptions it is transformed from a partial differential equa-
tion to a set of ordinary differential equations on a state space form.
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In both cases the modelling approach involves several approximations before
arriving at a simplified description of the system. The aim of the simplification
is to obtain a structure that describes the flow from the input to the output
on a state space form where each state is presented by an ordinary differential
equation. However, for each step towards the simplified model, the embedded
uncertainty in the model structure is increased; an uncertainty that has to be
taken into account in order to obtain a reasonable assessment of the variation
of the model output. A description of the uncertainty is also needed in order
to account for the fact that in many cases the forcing or input to the system is
not known exactly.

In the following chapter the additive noise in the differential equation is de-
scribed. This leads to a set of stochastic differential equations for the states in
the state space formulation of the hydrological systems. For state Xt with input
Ut, at time t, where the system is described by the function f (·) and the vector
θ of the (unknown) parameters, each state variable in the system equation is
written

dXt = f (Xt,Ut, t;θ)dt + “Noise”dt, (2.17)

where the noise term needs to be properly specified to obtain a sufficient un-
certainty measures for the state. This equation is frequently employed in the
succeeding chapters, as well as in most of the papers included.



24 Hydrology



CHAPTER 3 Grey box modelling
Over the last several decades, a variety of methods has been proposed for hy-
drological modelling, with the shared objective to predict the future response
of the hydrological system in connection with, e.g., planning, designing or
management (see an overview by Singh and Woolhiser, 2002). However, for
both white box models and black box models the main concern is the uncer-
tainty in the model structure and, as pointed out by Refsgaard et al. (2006), one
of the main challenges for the future modelling aspects is to incorporate an ad-
equate description of the uncertainty into the modelling framework. Hence, it
is desirable to obtain a modelling approach that bridges the gap between the
white box models in continuous-time and black box models in discrete-time,
since this will facilitate the use of data in the modelling and subsequently in
forecasting and control.

3.1 Modelling by stochastic differential equations

A grey box model is an approach that incorporates both white box and black
box components. The fundamental equation in the grey box modelling ap-
proach is the Stochastic Differential Equation (SDE).
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3.1.1 Stochastic differential equations

As observed in Chapter 2, the system dynamics of a hydrological process can
often be interpreted by Ordinary Differential Equations (ODEs). In general the
ODE is written

dXt

dt
= f

(
Xt, t;θ

)
, t ≥ 0 (3.1)

and describes the dynamics of the variable Xt in a very rigid and deterministic
fashion. A first attempt to add a stochastic part to the ODE (3.1) is simply by
adding noise, and obtain

dXt

dt
= f

(
Xt, t;θ

)
+ σ

(
Xt, t;θ

)
Wt, t ≥ 0 (3.2)

where the additional term is a product of a given function σ(Xt, t;θ) and a
reasonable stochastic process {Wt}t≥0. A straightforward approach for the
stochastic process would be to adopt stationary process with the properties
E{Wt} = 0, and Wt and Ws being independent for t 6= s. However, such a
stochastic process cannot have continuous paths. A more appropriate approach
is obtained by subdividing the time interval [0, t]:

0 = t0 < t1 < . . . < tk < . . . < tK = t, (3.3)

and, subsequently, where Xk = Xtk
, Wk = Wtk

and ∆tk = tk+1 − tk, Eq. (3.2) can
be rewritten on a discrete form as

Xk+1 = Xk + f
(
Xk, tk;θ

)
∆tk + σ

(
Xk, tk;θ

)
Wk∆tk (3.4)

with k = 0, . . . ,K − 1. Replacing Wk∆tk with the stochastic term ∆ωt = ωt+1 −
ωk a suitable stochastic process {ωt}t≥0 is obtained. This stochastic process
should have stationary independent increments with mean zero, but the only
suitable stochastic process with continuous paths that fulfills these require-
ments is the Wiener process (Knight, 1981).

The Wiener process is a fundamental continuous-time stochastic process for
providing a mathematical interpretation of the diffusion processes. It is named
after the American mathematician Norbert Wiener, but the process is often
referred to as Brownian motion, in honour of Robert Brown1. Wiener’s con-
tribution to the mathematical theory of the Brownian motion led to the one-
dimensional Brownian motion being referred to as a Wiener process. The main
properties of the Wiener process are illustrated below, but more detailed de-
scriptions of the process can be found by, e.g., Madsen (2008) and Maybeck
(1982). The mathematical properties of the Wiener process, {ωt}t≥0, are

1Brown was a botanist, who in 1828 was the first person to observe the irregular state of motion
when he investigated the diffusion of small pollen grains



3.1 Modelling by stohasti di�erential equations 27
1. P(ω0 = 0) = 1

2. The (consecutive) increments of the process, for any partioning of the
interval 0 ≤ t0 < t1 < . . . < tN < ∞, are mutually independent.

3. The Wiener process is Gaussian, i.e. the increments ωt − ωs for any 0 ≤
s < t is Gaussian with mean and covariance, respectively,

E
{

ωt − ωs
}
= 0

V
{

ωt − ωs
}
= σ2|t − s|

(3.5)

where σ2 is the incremental variance. The standard Wiener process is
defined by σ2 = 1.

The sample paths of the process are continuous with probability one, but are
nowhere differentiable, also with probability one.

Now, by rewriting the discretised version (3.4) where the terms of the the stan-
dard Wiener process are included, the results for the whole process can be ob-
tained by

XK = X0 +
K−1

∑
k=0

f
(

Xk, tk;θ
)
∆tk +

K−1

∑
k=0

σ
(
Xk, tk;θ

)
∆ωk. (3.6)

Letting ∆tk → 0 and applying the traditional integration, given that the limit of
the right hand side exists, the SDE can be solved by the integral

Xt = X0 +
∫ t

0
f
(
Xs, s;θ

)
ds +

∫ t

0
σ
(
Xs, s;θ

)
dωs (3.7)

if – and only if – an appropriate interpretation of the second integral is pro-
vided.

The solution to (3.7) is found by integration, where the first integral can be de-
fined in the traditional Riemann-Stieltjes sense. For the second integral, how-
ever, the variations of the paths of ωt are too big for the integral to be properly
defined in the Riemann-Stieltjes sense, i.e., the total variation of the path is
almost surely infinite. To obtain a solution for the stochastic integral

∫ t

0
σ
(
Xs, s;θ

)
dωs

the sum of the Wiener processes is considered, i.e.

K−1

∑
k=0

ϕ
(
Xτk

,τk;θ
)
ω[tk,tk+1)

(t) (3.8)
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where τk ∈ [tk, tk+1) and the time discretisation is in accordance with (3.3) where
K → ∞. This sum cannot be interpreted in the Riemann-Stieltjes sense because
of the unbounded variances of the Wiener paths. The approximation for the
sum of Wiener processes (3.8) depends on the choice of the point τj, and select-
ing the left end point leads to the Itô integral where τk = tk and the limit for the
sum can be written

∑
k

ϕ
(

Xtk
, tk;θ

)
ω[tk,tk+1)

(t)→
∫ t

0
σ
(
Xτ ,τ;θ

)
dωτ. (3.9)

For modelling purposes with real data where SDEs are applied, the Itô inte-
gral is the most logical selection for interpretation of the stochastic integral,
since it utilises present values in the integration (Øksendal, 2007). Alternative
choice would be the Stratonovich integral where τk = (tk + tk+1)/2 in (3.8),
which provides the integral with some nice properties from traditional calculus
(Stratonovich, 1966, Kloeden and Platen, 1999). However, since the Stratonovich
integral utilises future time-steps in the integral, it is not as sufficient for real-
world applications. My entire thesis is based on real data, i.e., the focus is on
solving (3.7) for real-world case studies. Therefore, only the Itô integral (3.9) is
considered in the following.

For the stochastic variable Xt, the Itô process of the form in (3.7) is written on
a differential form as a SDE:

dXt = f (Xt, t;θ)dt + σ(Xt, t;θ)dωt. (3.10)

This is the form for the SDEs applied in the following case studies as an essen-
tial equation to describe the dynamics of the system. The system can then be
described by several SDEs, where each SDE represents a state description in the
model structure. The SDEs in Papers A-C, E and F apply (3.10) to formulate the
state variables in the system descriptions. The first term on the right hand side
of the SDE is the drift term. It describes the main part of the physical structure
of the system and corresponds to the ODE in (3.1). The physical characteristics
of the drift term are expressions most engineers are familiar with from formu-
lating the traditional ODE models. The second term is the diffusion term of the
SDE. It provides a suitable interpretation of the unavoidable dynamical errors,
due to the fact that the mathematical model is not describing the true process
in an exact way and inputs (or forcing) are also not known exactly. A large dif-
fusion term in the SDE is usually caused by model approximations and partly
known inputs that should be accounted for in the SDE.

3.1.2 Transforming the SDE

In the SDE in (3.10) the diffusion term is presented with a state dependency.
Assessing the uncertainty of a system described by SDEs, indicates that the
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uncertainty has to be accounted for in the SDEs. However, for physically-based
systems the SDEs usually lead to a physical interpretation, which has to obey
the physical laws. Thus, the diffusion term in the SDE has to correlate with the
physics in the drift term in such a way that the uncertainty of the SDE is within
the limitations of the response. An example of a state dependent diffusion is
the sewer flow model in Papers E and F where the state variables in the model
correspond to the volume of water stored in the reservoirs. This obviously has
the lower limit zero since the volume cannot accept negative values. In other
words, the diffusion of states must approach zero as the drift approaches the
lower boundary of zero.

When the parameters are estimated in a model, where the system is described
by SDEs with state dependent diffusion, some computational limitations pre-
vent the estimation. For the estimation of SDEs with state dependent diffusion
terms, higher order filtering techniques are required (Vesteraard, 1998). For the
estimation, the software CTSM2 is used (Kristensen and Madsen, 2003, Kristensen
et al., 2004a), but it applies an ordinary Kalman filter to evaluate the likelihood
function for linear grey box models and an extended Kalman filter to obtain a
solution for the nonlinear models. If a transformation is available for the SDE
with a state dependent diffusion term, such that the diffusion becomes inde-
pendent of the state, the filtering techniques in CTSM can be applied in order
to obtain efficient and numerically stable estimates (Baadsgaard et al., 1997).

The transformed SDE can be derived from a reasonable transformation of the
stochastic variable Xt. Let φ(Xt) be a twice continuously differentiable function
with respect to Xt ∈ R where t ∈ R0. Then a new stochastic variable Zt ∈ R is
defined as

Zt = φ(Xt)

where the SDE can be derived with a second order Taylor expansion of the Itô
process of the variable Xt in (3.10). Hence, the SDE for Zt is obtained by

dZt =
∂φ(Xt)

∂t
dt +

∂φ(Xt)

∂x
dXt +

1
2

∂2φ(Xt)

∂x2 (dXt)
2. (3.11)

By including the Itô process (3.10) in Itô’s formula (3.11), and apply the rules

dt · dt = dt · dωt = 0 and dωt · dωt = dt,

the Itô process for the transformed variable Zt can be written

dZt =

(
∂φ(Xt)

∂t
+ f (Xt, t;θ)

∂φ(Xt)

∂x
+

σ2(Xt, t;θ)
2

∂2φ(Xt)

∂x2

)
dt

+
∂φ(Xt)

∂x
σ(Xt, t;θ)dωt.

(3.12)

2Continuous-Time Stochastic Modelling - www.imm.dtu.dk/ctsm
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To obtain a state independent diffusion term in the transformed Itô process
the product in the diffusion of the transformed SDE (3.12) has to be equal to a
term that is independent of Xt. However, such a term can still be considered
as a function of the time and the parameters θ in the original SDE (3.10), and
is defined by σ̃(t;θ). Then the aim is to find the diffusion term σ̃(t;θ)dωt, but
from (3.12) this corresponds to

σ̃
(
t;θ
)
=

∂φ(Xt)

∂x
σ(Xt, t;θ). (3.13)

Rearranging this expression:

∂φ(Xt)

∂x
=

σ̃(t;θ)
σ(Xt, t;θ)

(3.14)

and to obtain the transformed variable Zt that eliminates the random variable
Xt from the diffusion in the original Itô process, Eq. (3.14) is integrated:

Zt = φ(Xt) = σ̃
(
t;θ
)∫ dx

σ(x, t;θ)

∣∣∣∣
x=Xt

. (3.15)

This transformation of a state with a univariate state dependency in the expres-
sion for the diffusion is referred to as the Lamperti transform (Iacus, 2008). By
defining

f̃
(
Zt, t,θ

)
=

∂φ(Xt)

∂t
+ f (Xt, t;θ)

∂φ(Xt)

∂x
+

σ2(Xt, t;θ)
2

∂2φ(Xt)

∂x2 (3.16)

the transformed Itô process can be written

dZt = f̃
(
Zt, t,θ

)
dt + σ̃

(
t;θ
)
dωt. (3.17)

The Lamperti transformation usually has the consequence that a SDE with a
linear drift term, where the ordinary Kalman filter applies, becomes nonlinear,
and an extended Kalman filter is required. However, by transforming the SDE,
the unknown parameters in the original SDE are retained and can be estimated
efficiently.

3.1.3 Stochastic grey box models

Formulation of a system that varies in both time and space and describes the
movement of a physical phenomenon, is typically presented in the form of a
partial differential equation (PDE). However, due to external factors that have
substantial effect on the physical system, it is normally not possible to solve
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the PDE analytically. Therefore, a simplification of the system formulation is
required. One simplified approach is the lumped parameter model, obtained
by replacing the PDE with a finite set of ODEs (as introduced by Eq. (3.1)),
which can then by related to discrete time measurements by using a state space
formulation:

dXt = f(Xt,Ut, t,θ)dt (3.18)

Yk = g(Xk,Uk, tk,θ) + εk, (3.19)

where (3.18) is the system equation, describing the variation in time of the
physical state in the system in continuous-time, and (3.19) is the observation
equation that indirectly relates the observations to the states in discrete-time.
The time t ∈ RO indicates the continuous time and k (k = 1, . . . ,K) is the dis-
cretely observed sampling instants for K number of measurements. U ∈ Rm is
a vector of input variables and Y ∈ Rl is a vector of the output variables. The
state variables X ∈ Rn represent the dynamic behaviour of the system, where
the system dynamics are determined by the function f(·) ∈ Rn. The function
g(·) ∈ Rl in the observation equation describes how the output variables are
functions of the indirectly observed state variables Xk with residuals εk. The
vector θ ∈ Rp contains the unknown parameters in the system.

Presenting the system equation as a finite set of ODEs indicates that the uncer-
tainty is not accounted for in the system structure, and the residuals εk contain
not only the measurement noise, but also noise terms related to model approx-
imation in the system description, undetected input variables and insufficient
input measurements. Consequently, an autocorrelation is detected in the se-
quence of the output noise terms εk. To improve the existing model, a sepa-
ration has to be made between the noise terms assigned to the model and the
input approximations (referred to as process noise), and the errors directly re-
lated to the observations. Replacing the set of ODEs in the system equation
with a set of SDEs provides this separation of the model output noise into a
process noise, which is now accounted for in the diffusion terms of the system
equation, and a measurement noise. Thus, the grey box model is introduced:

dXt = f(Xt,Ut, t,θ)dt +σ(Xt,Ut, t,θ)dωt (3.20)

Yk = g(Xk,Uk, tk,θ) + ek, (3.21)

where the entry of the process noise is described by σ(·) ∈ Rn×n; the mea-
surement error ek is assumed to be a l-dimensional white noise process with
ek ∈ N (0,V (Uk, tk,θ)) and {ωt} is a n-dimensional standard Wiener process.
Hence, the grey box model provides the necessary separation between the pro-
cess noise and the measurement noise. This noise separation is illustrated in
Figure 3.1. Similar to (3.19), the observation equation in the grey box model
(3.21) relates the discrete time observations to the state variables at times where
observations are available. When determining unknown parameters of the
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ek k+= σkε

ObservationsDeterministic Model (ODE)
Stochastic Model (SDE)

Figure 3.1: Partitioning of the output noise εk, into the process noise σk and
the measurement noise ek. Replacing the ODEs in the system
equation by SDEs provides an improved model description.

model from a set of data, the continuous time formulation provides the model
with flexibility consisting of possibilities for varying sample times and for miss-
ing observations in the data series.

One form of the grey box model in (3.20) and (3.21) is to consider the functions
f and g linear, i.e.

f (Xt,Ut, t;θ) =A(θ)Xt +B (θ)Ut (3.22)

g (Xt,Ut, t;θ) =CXt (3.23)

where the matrices A, B and C describe the dynamics of the linear system.
Furthermore, the diffusion term is simplified, such that it is only a function
of the unknown parameters in the model. Then the grey box model becomes
linear and time-invariant:

dXt = [A(θ)Xt +B(θ)Ut]dt + σ(θ)dωt (3.24)

Yk =C(θ)Xk + ek. (3.25)

The system equation (3.24) corresponds to the stochastic groundwater model
introduced in Eq. (2.16) as a set of SDEs with a Wiener process to represent the
additional stochastic noise in the system.

This grey box modelling approach is used in Paper A and Paper B. These pa-
pers have the joint objective to introduce the grey box modelling approach as
a tool to analyse and model flows in well fields. Here, the focus is on the drift
term in the system equation, and an effort is made to illustrate the advantage
of applying statistical tools to identify and locate the flaws in a lumped pa-
rameter model structure for a single well in the well field. As an example: in
Paper A the resulting residual series for the model output is autocorrelated,
as Figure 3.2 reveals a significant autocorrelation on the first time-lag, and this
implies that an additional state is needed to obtain an adequate model struc-
ture to describe the water head in the well. Applying this, the simple model
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Figure 3.2: The autocorrelation and partial autocorrelation for the residuals
from modelling the water head in the well of interest.

can be extended towards an expression of the spatio-temporal variation of the
groundwater flow in the whole well field. However, no further model exten-
sions were made by this introduced step-by-step procedure to include more
details of the physical meaning of the system, since this methodology has been
thoroughly presented (see e.g. Kristensen et al., 2004b,a, Jonsdottir et al., 2006b).
Also, for large spatial models based on the grey box approach, a class which
uses the mathematical algorithm behind CTSM is required.

Instead of including additional states into the simple lumped parameter model
for the well field, a little different approach is shown in Paper C, where the
lumped parameters in an existing drift term are investigated and expanded in
order to improve the physical structure of the model. Furthermore, the aim
in Paper C is also to provide the system equation a suitable description of the
uncertainty, for which is obtained by assuming the diffusion term to be time-
variant. The states are not considered to be directly observed and the obser-
vation equation depends on the input variables. Thus, the linear modelling
framework in Eq’s. (3.24) and (3.25) is extended, and becomes

dXt = [A(θ)Xt +B(θ)Ut]dt + σ(Ut, t,θ)dω (3.26)

Yk =C(θ)Xk +D(θ)Uk + ek. (3.27)

where the matrix D(θ) relates the measured input to the output variables. The
challenge is to come up with a suitable description for the diffusion in the
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model, which can be applied to reduce the prediction intervals of the water
levels as time moves further away from the time of decision for the pumping
rate. Thus, the diffusion in the system is expressed by an exponential func-
tion, which is initiated every time a pumping rate is changed for any of the
wells in the well field. This approach provides the model with a measure for
the uncertainty that increases with the decisions taken regarding ability of the
pumps to meet the water demand, but does decrease fairly rapidly when the
time between decisions prolongs.

The effect of improving the existing model structure by extending the lumped
parameters in the simple model, and of including the exponential function
in the diffusion, respectively, is plotted in Figure 3.3. The figure shows very
clearly how the prediction interval for the models is improved as the model
is developing from the lumped parameter model to a more detailed parame-
ter model where the diffusion term is given a proper function in order to cope
with the uncertainty in the model structure.

For the modelling approach of the sewer flow in Paper E and Paper F, the drift
term is assumed to be linear and time-invariant, but the diffusion term in the
system equation has a state-dependency. Hence, the model is written as in
the general case in Eq’s. (3.20) and (3.21), where the functions f and g are
written as in (3.22) and (3.23), respectively. However, for the software CTSM,
used for the parameter and state estimation of the grey box models in order
to obtain feasible estimates, it is a necessary condition that the diffusion σ is
independent of the states Xt. Thus, to estimate the model parameters, the grey
box model is transformed in order to remove the state dependencies from the
diffusion terms in the system equation.

In the sewer runoff model the diffusion for the individual state variable is con-
sidered to be a function of only the state itself, which indicates that the Lam-
perti transform can be used to obtain a state independent system equation (see
Section 3.1.2). Thus, the transformed grey-box model, applied in Paper E and
Paper F, becomes

dZt = f̃
(
Zt,Ut, t;θ

)
dt + σ̃

(
Ut, t,θ

)
dωt (3.28)

Yk = g̃(Zk,Uk, tk;θ) + ek (3.29)

where Zt is a vector including the transformed states at time t and the function
f̃ is now a nonlinear description for the drift terms of the transformed state
space model; g̃ is describing the observation equation, but now as a function of
the transformed states, and σ̃ is a state independent diffusion term. The system
description consists of two linear reservoirs in a series, such as introduced in
(2.8). A state dependent diffusion is included in the system equation for the
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Figure 3.3: Comparison between prediction interval of the three models in
Paper C. The interval for the lumped model is between the two
black lines, the interval for the model where the drift term has
been improved is the light grey area, and the model with the ex-
tended diffusion term is illustrated with the dark grey area. The
observations are marked with red stars, and the pumping rate
for all the wells (with the corresponding well highlighted) are the
dashed lines.

sewer runoff and can be written

dXt = f(Xt,Ut, t,θ)dt +

[
σ1X

γ1
1,t 0

0 σ2X
γ2
2,t

]
dωt. (3.30)

To transform the system equation so that the diffusion term becomes state in-
dependent, the Lamperti transform

Zi,t =
X

1−γi
i,t

1 − γi
i = 1,2

is applied and subsequently Itô’s formula (3.11) provides the transformed states.
In this study, three models are proposed, which are different in the diffusion
term in the system equation (3.30). The diffusion only deviates in the γ param-
eters: Model 1 has a constant diffusion (γi = 0, for i = 1,2, in (3.30)); Model
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Figure 3.4: The prediction intervals for the three proposed models in Paper E.
The dash lines correspond to the interval of a model with a con-
stant diffusion term; the solid lines represent the limits of a model
with state dependent diffusion, with γ ∈ (0.5,1); and the grey area
is the prediction interval where γ1 = γ2 = 1. The measured flow
is displayed with red stars, and the magnitude of the measured
rain from the two closest gauges are the blue and cyan coloured
barplots.

2 has a proportional state dependency (γ1 and γ2 equal 1); and Model 3 has
a value between 0.5 and 1. The model uncertainty, included in the diffusion,
is detected in the output uncertainty. This uncertainty for a single rain event
in the time series is illustrated in Figure 3.4 and it clearly shows the improved
performance obtained by extending the diffusion in the system equation.

3.2 Impulse response function models

In the thesis, an alternative modelling approach is applied to model the water
levels in the wells in the well field. For modelling the water levels as a direct
function of the pumping rates, an Impulse Response Function (IRF) model is
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considered, but an IRF model is very different from the grey box model intro-
duced in the previous section. The IRF has been mentioned in Section 2.3.1
where hydrographs are described, but the unit hydrograph is defined as the
IRF of a catchment outlet flow when a unit impulse of rain enters the water-
shed. Similar phenomenon occurs in the well field, when a particular well is
observed at the same time as the pumping rate is changed in another oper-
ating well penetrating the same aquifer. In the observed well the water level
responds, but the time delay of the response (the retention time) is according
to the physical characteristics of the aquifer and the distance between the two
wells.

An IRF is a non-parametric description of the linear system. For a linear and
time-invariant system, the output Y(t) at time t ≥ 0 can be obtained in contin-
uous time by the convolution integral

Y(t) =
∫ ∞

−∞
θ(τ)U(t − τ)dτ + N(t) (3.31)

where U(t − k) is the measured system input at time t − k, k ≤ t, and N(t) is a
correlated noise term. Here, θ(k) is a weight function that represents the IRF,
considered at the lagged time k.

In Paper D IRFs are used to model the piezometric head in the wells, with well i
being influenced by all pumping wells in the well field. Since water is pumped
from a confined aquifer the model can be considered linear. For a given series
of pumping for the N wells in the well field, the responding water level in well
i becomes

hi(t) =
N

∑
j=1

∫ t

−∞
Qj(τ)θij(t − τ)dτ + bi(t) + Ni(t), (3.32)

where θij is the IRF of well i depending on the pumping rate in well j, and bi(t)
is considered as an upper boundary of the water head in well i and corresponds
to a scenario with no pumping in any of the wells. In continuous time, the
impulse response for the water drawdown is detected as the changes in hi(t)
for a unit impulse of discharge Qj, and since an increase in pumping rate results
in a decrease in the water head, the IRF can be defined as

θij = − ∂hi

∂Qj
i, j = 1, . . . , N. (3.33)

Discretising the convolution integral (3.31) offers an approach for determining
the shape of the IRF, as expressed by a rational polynomials (Box and Jenkins,
1970, Madsen, 2008). However, keeping the model in continuous time enables a
parameterisation that, to some extent, has a reasonable physical meaning, and
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by applying so-called PIRFICT models3 (von Asmuth et al., 2002) the IRFs are
defined as simple parametric analytical expressions. One approach in continu-
ous time is defined by the Hantush formula, describing the penetration in well
i in an aquifer of infinite extent that responds to an operating well j at distance
rij. The IRF is formulated as

θij(t) =
1

4πTt
exp

(
−

r2
ijS

4Tt
− t

cS

)
(3.34)

where the parameters are transmissivity T [L2T] and storage coefficient S [-],
and a parameter of a storage-free aquitard with resistance c [T] covering the
penetrated aquifer.

For the shape of the IRF θij(t), the IRF in (3.34) is simplified with regard to
the physical parameters and an alternative expression is proposed. Since the
shape of the function should only depend on the measured distance rij, the IRF
becomes

θi(t) =− A

tβ
exp

(
− βλi

t

)
, (3.35)

derived from (3.34) where A and β are constant for each well. The characteris-
tics of this expression for the IRF are well suited for modelling the water level
in the wells, e.g., for all wells θi(0) = 0 with first order derivative; global op-
timum is reached at t = λi, corresponding to the peak flow (or peak delay) in
the hydrograph (Figure 2.3); and for t → ∞, −A/tβ → 0 and the IRF asymp-
totically decays to zero. The IRFs are illustrated graphically in Figure 3.5, but
the difference between the impulse response of two pumping wells i and j is
determined by the difference between the peak flows λi and λj.

The Hantush equation is also used to stimulate a description of the diffusion
term in Paper C. This is considered feasible since the equation provides an ex-
ponential decay to reduce the estimated prediction intervals, and also because
it is expressed by the parameters already included in the grey box model.

3.3 Maximum likelihood estimation

The Maximum Likelihood (ML) method is a very flexible and efficient statis-
tical method for estimating unknown parameters in a model. Given the se-
quence of the measured output

YK =
[
YK, · · · ,Yk, · · · ,Y1,Y0

]
(3.36)

3Predefined Impulse Response Function In Continuous Time
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Figure 3.5: The role of parameters A, β and λi in shaping the IRF of equation
(3.35).

ML estimates of the unknown parameters can be determined by finding the set
of parameters θ that maximises the likelihood function

L
(
θ;Y)= p

(Y|θ), (3.37)

i.e. the conditional probability of obtaining the observed sequence given the
parameter set θ (Madsen and Thyregod, 2011). This indicates that the likelihood
function is simply the joint probability distribution function for all observa-
tions, which for time series data can be written

L
(
θ;Yk

)
=

( k

∏
s=1

p
(
Ys|Y s−1,θ

))
p
(
Y0|θ

)
, (3.38)

where p(A, B) = p(A|B)p(B) is applied to express the likelihood as a product
of conditional densities. The parameter estimates can be determined by condi-
tioning on the initial values and solving the optimisation problem

θ̂ = argmax
θ∈Θ

{ln (L(θ;YN|Y0))}. (3.39)

Most often it is not possible to optimise the likelihood function analytically, and
hence numerical methods have to be applied to obtain the optimal parameter
set for the maximised likelihood function (Madsen, 2008).

To estimate the parameters in the stochastic grey box model in (3.20) and (3.21)
a filtering method is applied, which seeks to approximate solutions to the
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continuous-discrete time nonlinear filtering problem. Since the diffusion term
is assumed to be independent of the state variables, the Extended Kalman Fil-
ter (EKF) can be applied. The Gaussian density is completely characterised by
its mean and covariance denoted by

Ŷk|k−1 = E{Yk|Yk−1,θ}

and

Rk|k−1 = V{Yk|Yk−1,θ},

respectively, and by introducing an expression for the innovation:

ǫk = yk − ŷk|k−1

the likelihood function can be rewritten as

L (θ;YN) =




N

∏
k=1

exp
(
− 1

2ǫ
⊤
k R−1

k|k−1ǫk

)

√
det(Rk|k−1)

(√
2π
)l


 p(Y0|θ) (3.40)

where the conditional mean and covariance are calculated using either a Kalman
Filter for linear models or an Extended Kalman Filter for nonlinear models. The
likelihood (3.40) is used in Papers A, B, C, E and F in order to find the optimal
parameter set for the proposed grey box models.

By using the maximum likelihood method to estimate the parameters in the
grey box model in (3.20) and (3.21) is a rather straight forward procedure.
However, it is not easily solved due to the numerical optimization that searches
for the solution in multidimensional parameter space (Kristensen et al., 2004b).
To solve the estimation problem the previously mentioned open source soft-
ware CTSM is used.

For the parameter set in the IRF models (here also referred to as θ) in Paper D
the estimation scheme is a little different, since the objective of the IRF model
is to produce scenarios for decisions to be applied to the controlled pumping
rates, where the time between decisions is ∆t. This indicates that the time be-
tween every two decisions has to be simulated, and included in the parameter
estimation. For the continuous-time IRF models the noise series for the out-
put error can also be considered in continuous-time, given by the stochastic
convolution integral (von Asmuth et al., 2002):

N(t) =
∫ t

−∞
φ(t − τ)dω(τ)

where ω(t) is the Wiener process (see Section 3.1.1) and φ(t) is an exponen-
tial IRF. The sequence of innovations {ǫ(t)}t≥0 is obtained from the simulated
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output error sequence, i.e.

ǫ(t) =
∫ t

∆t
φ(t − τ)dω(τ)

=N(ti|t1)− e−α∆tN(ti−1|t1)

and the conditional likelihood function can be found by a similar expression as
in (3.38), or

L (θ;YK) =
1

(2πσ2
ǫ )

K
2

K

∏
k=1

exp
(−ǫ2(tk)

2σ2
ǫ

)
. (3.41)

with σ2
ǫ as the variance of the innovation series.

3.3.1 Uncertainty in parameter estimates

The maximum likelihood method provides an assessment of the uncertainty
for the parameter estimates, attained from the fact that by the central limit the-
orem the estimator in (3.39) is asymptotically normal distributed with mean θ

and covariance matrix

Σ̂θ =H−1.

The matrix H is the information matrix, given by

hij = −E

{
∂2

∂θi∂θj
ln (L(θ|Yk−1))

}
i, j = 1, . . . , p. (3.42)

Due to the asymptotic Gaussianity of the estimator in (3.39) a t-test can be per-
formed for significance of the estimated parameters. Subsequently, the like-
lihood function can be tested statistically in search for the most appropriate
model by using a likelihood ratio test (Madsen and Thyregod, 2011). For a pro-
posed model, the test can be used to determine if the model performs signif-
icantly better than a more simple model, where the parameter space for the
simple model is a subgroup of the one for the proposed model. A sequence of
such a likelihood ratio tests for model selection provides a stopping criterion
for the model development, resulting in a model that renders the best fit to data
(Bacher and Madsen, 2011).

3.4 Discussion

One of the main advantages of the grey box approach lies in the SDEs for the
model formulation. A classical hydrological model on state space form is rep-
resented by a set of ODEs, where the only noise term for the whole model is
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detected in the observation equation. By replacing the ODEs with SDEs, a noise
term is assigned to each state in the system description that quantifies the lack
of fit for each state of the model. Thus, the presented grey box model intro-
duces a system description that is physically meaningful and the parameters
contain physical interpretation. Also, the approach facilitates that the parame-
ter estimates are calibrated based on the input-output measurements.

The procedure contains statistical tools to verify the model. This indicates that
data for both input and output is required for estimating the model parame-
ters, as if the model structure was purely stochastic. Compared with the white
box models, the necessity of parameter calibration can be omitted if the model
is defined within a well-established hydrological system. However, the param-
eter adjustment in the grey box model is crucial due to the fact that all math-
ematical models are approximations of the true process, where a part of the
lack in fit is due to assumptions in the hydrological parameters of the system.
A further argument is uncertainty in measurements of the input, or forcing of
the system. This is well known for hydrological models (see e.g. Beven, 1989,
Harremoës and Madsen, 1999, Radwan et al., 2004, Refsgaard et al., 2006), but with
the grey box model approach the statistical methods can be observed as verifi-
cation tools for both the model and the parameters in the system, i.e., the sig-
nificance of the parameters and the identifiability of the model is in accordance
with the input-output relation in the available measurements. Accordingly the
statistical methods are utilised for model validation, and a subsequent model
selection if that is required (Kristensen et al., 2004a, Møller et al., 2010a, Bacher
and Madsen, 2011).

The problem of identifying the model structure errors, and errors due to forc-
ing of the system has been pointed out as one of the most difficult challenges
in deriving at conceptual models that adequately can predict the outcome of
the hydrological system (Refsgaard and Henriksen, 2004, Refsgaard et al., 2010).
Moreover, if the model structure error is identifiable, and has significant influ-
ence on the model output, measures have to be considered in order to deal with
the error in such a way that it is not detected in the model output. The grey
box model approach provides a partitioning of the prediction error into error
terms, which are directly related to the model structure and the forcing of the
system, and an output error term. Also, by representing the conceptual model
on a state space form, as a set of SDEs, the model structure error and the forc-
ing uncertainty is further separated and assigned to the states in such a way
that the error term for each state variable can be quantified and, subsequently
formulated to fulfill the physical requirements for the hydrological system.
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The key to successful predictions of hydrological events is a decent underlying
stochastic model. Proposing the grey box model for forecasting supplies short-
term predictions with a sufficient description of the uncertainty. Furthermore,
the included significant physical knowledge will sustain the long-term effects
as the prediction horizon is extended. Thus, the focus in this chapter is on
predictions based on grey box models that trigger the importance of assessing
the uncertainties due to the approximations in the model structure and the
errors in the input (forcing) specification.

4.1 Predictions using grey box models

With a proposed stochastic model the objective is to predict the output at time
k + h. The measured output at time k + h is denoted as Yk+h. In parallel, we
have Ŷk+h|k as the prediction of the output at time k + h, given the available
information at time k where h indicates the horizon for the prediction. With
the given sequence of input up to time k + h as Uk = [Uk, · · · ,U0]

⊤ and the
output sequence up to time k as Y k = [Yk, . . . ,Y0]

⊤, the optimal prediction in a
least square sense is equal to the conditional mean (see proof by Madsen, 2008).
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Hence, the prediction is obtained by

Ŷk+h|k = E
{
Yk+h|Y k,U k+h

}

= g (Y k,U k+h, tk+h,θ) .

If the input is not known for future values a modification is needed (see again
Madsen, 2008).

Concerning the grey box model described in Eq’s. (3.20) and (3.21): Due to
the indirectly observed states in the system equation, the observation equa-
tion is a function of the state variables. Hence, to predict the model outcome,
predictions for the states have to be provided and included in the observation
equation:

Ŷk+h|k = g
(
X̂k+h|k,U k+h, tk+h,θ

)
, (4.1)

where X̂k+h|k is the state predictor. Thus, the challenge in predicting the future
outcome in the system is not directly related to predictions using the observa-
tion equation, but instead to predictions for the state variables in the system
equation. To predict the states only inputs from k to k + h are required. The
state prediction can be accomplished by considering the conditional expecta-
tion of the future state, i.e.,

X̂k+h|k = E
{
Xk+h|X̂k|k,Uk+h, · · · ,Uk

}
, (4.2)

where X̂k|k is the reconstruction of the state at time k, given all measurements
to the same time k (Madsen, 2008). For states that are observable the measured
values are used instead of the reconstruction, i.e. Xk = X̂k|k in (4.2). The state
reconstruction is also referred to as filtering of the unmeasured states in the
model, providing a mean and a variance for the normally distributed state at
each time instant k. For predictions at time k + h the distributional properties
of the state variable at time k must to be taken into account.

Obtaining a sufficient input sequence for the predictions h time steps ahead
can be problematic. However, this is not an issue for predictions of well water
levels in a well field (Papers C and D) because the input is a sequence of de-
cisions for the operating wells, and is determined beforehand. Issues related
to the input are raised for predictions of sewer runoff where the flow is influ-
enced by rain (Papers E and F), but weather conditions are fairly unpredictable
phenomena. Today the most popular measurement devices for rainfall are rain
gauges. The rain gauge provides a time series of rainfall up to time k and
one possibility is to construct a time series model to forecast the input h steps
ahead, depending on past and present values of rain. However, such a model
can easily become rather complex, since the spatio-temporal variation of rain is
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highly dependent on external variables, e.g. meteorological variables such as
wind speed and wind direction. Models for the predicted input is not a part of
my thesis and, thus, in Paper E and especially in Paper F, where the prediction
horizons are 4 hours ahead, the rain is assumed to be known a priori, and is
used as an input to the model to generate the predictions.

4.1.1 Numerical solution of SDEs for predictions

The normal assumption for the model output is only valid for one-step ahead
predictions. Thus, for h > 1 a numerical approach is considered where an Eu-
ler scheme is applied for the SDEs in the system equation (3.20) in order to
simulate predictions for the states in the system (Kloeden and Platen, 1999):

X̂k+∆|k = X̂k|k + f
(
X̂k|k,Uk+∆,θ

)
∆ +σ

(
X̂k|k,Uk+∆,θ

)
∆Wk. (4.3)

∆ is the time step for the Euler approximation, and ∆Wk is a randomly gener-
ated increment of the Wiener process {W}k, i.e. ∆Wk = Wk+∆ − Wk. The Euler
scheme in (4.3) is presented for simulations of one-step ahead predictions, but
to obtain an Euler scheme for h-step ahead, (4.3) is extended and written

X̂k+h|k =X̂k|k +
( h/∆

∑
i=1

f
(
X̂k+(i−1)∆|k,Uk+i∆,θ

))
∆

+
h/∆

∑
i=1

σ
(
X̂k+(i−1)∆|k,Uk+i∆,θ

)
∆Wk+(i−1)∆.

(4.4)

With an increasing prediction horizon the variance of the stochastic term in-
creases and the accuracy of a single point prediction, generated from (4.4), is
reduced.

In Papers C and E only the one-step ahead prediction is considered for the well
water level and the sewer runoff, respectively. The predictions are provided
by using (4.3), whereas the four hour ahead predictions of the sewer runoff in
Paper F utilises the extended Euler scheme (4.4).

4.2 Prediction intervals

It is common procedure for both deterministic and stochastic models to quan-
tify prediction performances by only considering the distance between the fore-
casts and corresponding observations, often referred to as point prediction per-
formance (Madsen et al., 2005). However, the information obtained from the
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point predictions is not sufficient to capture the information embedded in the
considered prediction interval. Thus, to obtain a probability distribution for
the h-step ahead prediction, Eq. (4.4) is used to generate a number of simu-
lations to profile a predictive distribution. The number of simulations has to
be large so that the predictive distributions can generate reasonable prediction
intervals for the state variables. For the predicted output in the observation
equation to be adequately evaluated, a proper assessment for the prediction
uncertainty is imposed in order to cope with the varying state variables in the
model, i.e., a reasonable prediction interval for the model output is obtained
from the simulated prediction intervals for the states in the system equation.
The prediction interval for the output Yk+h is then defined as quantiles of the
simulated outcomes.

In the following, the ideal coverage of the prediction interval is defined as the
nominal coverage 1 − β, β ∈ [0,1]. The upper and lower limits of the interval
prediction are obtained from quantile forecasts determined on the basis of the
large number of simulations for the state predictors. This results in an empir-
ical probability distribution for the model output. If Fk+h|k is the cumulative
distribution function of the predicted output Ŷk+h|k, and τ ∈ [0,1] is the pro-
portion of the relative quantile, the quantile forecast for the k + h prediction is
obtained by

q
(τ)
k+h|k = F−1

k+h|k(τ). (4.5)

It is required that the prediction intervals are properly centered on the prob-
ability density function. Usually, the median to the predictive distribution is
chosen, implying that there is equal probability for each simulation, generated
for the lead time k + h, to be below or above the estimated intervals, i.e., β/2
is left outside the coverage on each side of the prediction interval. This is well
suited for shorter prediction horizons, but for longer horizons this needs to be
assessed by studying the predictive distribution of the forecast quantiles. If
l = β/2 and u = 1 − β/2 are defined as the lower and upper quantiles for the
prediction interval at level 1 − β, respectively, then the prediction interval for
the lead time k + h, issued at time k, can be described as

Î
(β)
k+h|k =

[
q̂
(l)
k+h|k, q̂(u)

k+h|k
]

(4.6)

where q̂
(l)
k+h|k and q̂

(u)
k+h|k are, respectively, the lower and upper prediction limits

at levels β/2 and 1 − β/2 (Pinson et al., 2007, Møller et al., 2008).



4.3 Evaluation of predition intervals 47
4.3 Evaluation of prediction intervals

To evaluate the performance of the grey box model it is important to include
the assessed prediction interval of the model output in the evaluation crite-
rion. The most common evaluation criteria are, e.g., (root) mean square error,
mean average error (Madsen et al., 2005) and in hydrology the Nash-Sutcliffe
coefficient (Nash and Sutcliffe, 1970) is usually applied. However, none of these
criteria can be applied to assess the uncertainty of the prediction since any
quantification related to the prediction interval is omitted. Thus, to include the
interval in the criterion; reliability, sharpness and resolution are introduced,
but these three measures all influence the skill score criterion that is used for
the evaluation. With such a measure for the performance of the predictive abil-
ities of a specific model, different models can be compared and subsequently
decisions can be made that are not only based on the prediction of the model,
but also the interval characteristics.

Reliability, sharpness and resolution have been addressed before, both directly
and indirectly, in connection with evaluation of hydrological models. This has
mostly been done in relation to modelling uncertainties with the Generalized
Likelihood Uncertainty Estimation (GLUE) method (Beven and Binley, 1992); a
method that has been applied for a variety of environmental systems. In gen-
eral, reliability is a measure of bias between the model and the measurements,
since it quantifies the percentages of measurements within a given quantile.
In the following, the reliability is quantified as the proportion of observations
within given coverage, and corresponds to the containing ratio introduced by
Xiong et al. (2009). Jin et al. (2010) also used the reliability and resolution con-
cepts as adopted in the following, but additionally they propose the Average
Relative Interval Length (ARIL) as a measure for the concentration of the pre-
diction interval. The difference between the sharpness and ARIL is that the
ARIL is inverse proportional to the measured flow and, thus, a qualitative mea-
sure of the relative sharpness, whereas the sharpness is a quantitative measure.
However, the aim here is to obtain a quantitative measure that can be applied to
interpret the interval skill score criterion, which then corresponds to an overall
evaluation for the prediction interval.

4.3.1 Reliability

In order for the prediction interval to be of any practical usage for decision
makers, it is a primary requirement that the interval is reliable to such an ex-
tent that the upper and lower limits have to correspond to the nominal cov-
erage rate of 1 − β. To obtain an evaluation of the reliability of the interval, a
counter is defined that rewards prediction intervals capable of capturing the
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observations. For a given prediction interval, as formulated in (4.6), and a cor-
responding measured output yk+h, an indicator variable is obtained by

n
(β)
k,h =

{
1, if yk+h ∈ Î

(β)
k+h|k for k ≤ K − h

0, otherwise.
(4.7)

Considering all observations a binary time series {n
(β)
k,h } is obtained, corre-

sponding to hits and misses of the prediction interval. The mean of the binary
series then represents the actual proportion of hits in the whole time series. For
prediction horizon h the proportion of hits, for a series of length K, is given by

n̄
(β)
h = E

[
n
(β)
k,h

]
=

1
K − h

K−h

∑
k=1

n
(β)
k,h . (4.8)

The accuracy between the nominal coverage and the proportion of hits is de-
fined as the reliability of the prediction interval, denoted by

b
(β)
h = 1 − β − n̄

(β)
h , (4.9)

where the perfect fit is defined as b
(β)
h = 0 and the reliability is fulfilled. When

discrepancy is detected between the empirical coverage and the theoretical one,

the coverage of the prediction interval is biased, for which n̄
(β)
h > 1 − β is con-

sidered as an overestimated bias in the coverage and n̄
(β)
h < 1 − β an underes-

timated bias.

The reliability is illustrated in Figure 4.1, which displays the reliability of the
five different models that are analysed in Paper F. The reliability is plotted as
a function of the coverage and clearly shows that for all models the bias is in-
creased towards overestimation when the coverage is increased to around 40%.
For further increasing coverages the bias is reduced, but for 90-95% coverage
most of the models are considered to be underestimated. To be accurate, only
two models fulfill the reliability; Model 3 for 80% coverage and Model 5 for
90% coverage. However, for the 85-90% coverage all models can be defined
within the range of the reliability and, therefore, these coverages can be con-
sidered optimal.

4.3.2 Sharpness and resolution

Sharpness is a measure of the accuracy of the prediction interval where smaller
values indicate that the model is better suited to generate predictions (Gneiting
et al., 2007). As sharpness approaches zero, more weight is put on the accuracy
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Figure 4.1: Reliability of the five models in Paper F, plotted as a function of
the coverage.

of using point predictions. Thus, the size of the interval predictions serves as
a measure of sharpness of the predictive distribution. The size of the interval
prediction, issued at time k for lead time k + h, is defined as the difference
between the corresponding upper and lower quantile forecast, and averaging
for the whole time series defines the sharpness. For the h horizon and coverage
1 − β, the sharpness is calculated by

δ
(β)
h =

1
K

K

∑
k=1

(
q̂
(u)
k+h|k − q̂

(l)
k+h|k

)
(4.10)

and by calculating δ
(β)
h for relevant coverages, a δ-diagram can be viewed to

summarise the evaluation of the sharpness.

Resolution is defined as the potential for obtaining different predictive distri-
butions if dependence on forecast conditions is taken into account. Since it
is required that the predictive distribution must be reliable, it can be further
stated that the resolution is characterised by its ability to provide distinct pre-
dictive distributions, depending on the conditional reliability.
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For the drainage flows in Paper F the input variables are rain, observed by
rain gauges. Thus, the most obvious forecast condition is to distinguish be-
tween wet- and dry-weather situations. For evaluation, δ-diagrams (and also
reliability) for different groupings of the forecast conditions can be drawn for
comparison for the average shape of the predictive distribution. δ-diagrams
for both the unconditional sharpness and the conditional sharpness for dry
and wet weather situations, are displayed in Figure 4.2. When the prediction
horizon increases, it is expected that the sharpness will increase as well, since
the distribution of the prediction is expanding with the horizon. Without con-
ditioning, the least sharpest prediction is obtained by using Model 2, whereas
the sharpest ones are brought on by Model 1 and Model 3. If the sharpness
is conditioned on the presence of rainfall events, the sharpness is drastically
increased as shift occurs from dry to wet weather situations (lower panels in
Figure 4.2). In wet weather the sharpness is at least twice the size of the sharp-
ness in dry weather, where the shift has different influence on the models. The
sharpness in dry weather is similar to sharpness without conditioning, because
the number of time instants in the dry weather is 90% of the entire time series.
Thus, by only considering the unconditional sharpness (and reliability) the im-
portant performance measures for the rain events in the time series are not
detected. In wet weather, Model 1 is now the only model with the sharpest
prediction, whereas Model 5 is approaching Model 2 both being the model
with the greatest prediction interval.

Based on the measure of sharpness alone, it is difficult to reach conclusions
regarding the prediction performances. Coming up with an appropriate pre-
diction interval is not a straightforward approach since too narrow limits leave
out too many observations, and the reliability of the prediction is lost. With
too wide intervals the predictions become infeasible basis for decision mak-
ing. Since the sharpness is exclusively a property of the prediction interval,
no information is provided for the predictive distribution, as compared to the
observations as these become available at time k + h. As the observations be-
come available, they cannot be disregarded in the performance evaluation of
the prediction intervals.

4.3.3 Unique skill score

To obtain a quantitative measure for the performance of the models, a scoring
criterion is required that takes into account the prediction and corresponding
observation and discrepancies between the model and the measurements. An
appropriate criterion would be the skill score criteria, which gathers all the
information of the proposed model into a single numerical value for the model
performance (Gneiting and Raftery, 2007). Such a performance measure would
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Figure 4.2: The sharpness is plotted as a function of the increasing prediction
horizon – both independent of and conditioned on the weather sit-
uations for the five models in Paper F. Top: The sharpness of the
predictions, without distinguishing between dry and wet weather
conditions; bottom left: Sharpness for the dry-weather flow; bot-
tom right: Sharpness for the wet-weather flow (rain events).

be given by the score Sc(Q,Y) to a predictive distribution Q if the event Y
materialises. The expected score under the probability measure P is defined as

Sc(Q; P) =
∫

Sc(Q;Y)dP(Y) (4.11)
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for Q observed and opposed to the predictive distribution P. A scoring rule
is said to be proper if a prediction corresponds to the forecaster’s judgement.
This indicates that if the aim is to minimise the skill score over a validation set,
the score is proper if for any two distributions Q and Q′

Sc(Q, Q′) ≥ Sc(Q, Q), ∀Q, Q′.

If the equal sign is included in the equation, the scoring rule is said to be strictly
proper.

If probabilistic forecasts are represented by quantile forecasts – by consider-
ing the quantiles q1, · · · ,ql for the proportions τ1, · · · ,τl , respectively – the skill
score criterion in (4.11) can be written

Sc(q1, · · · ,ql ; P) =
∫

Sc(q1, · · · ,ql ;Y)dP(Y) (4.12)

and is referred to as quantile skill score. From the quantile skill score the in-
terval skill score is obtained by only considering the set of quantiles that form
the interval in (4.6) in the skill score in (4.12). The skill score Sc for the interval
prediction, at time instant k, is calculated as (Gneiting and Raftery, 2007)

Sc
(β)
I,k,h =sc( Î

(β)
k+h|k;Yk+h) = (q̂

(u)
k+h|k − q̂

(l)
k+h|k)

+
2
β
(q̂

(l)
k+h|k − Yk+h)1{Yk+h < q̂

(l)
k+h|k}

+
2
β
(Yk+h − q̂

(u)
k+h|k)1{Yk+h > q̂

(u)
k+h|k}.

(4.13)

where the indicator 1(·) equals one if the included statement holds. Otherwise,
it is zero. It can be seen from (4.13) that the skill score is increased for any obser-
vation that is outside the predefined prediction interval. Thus, the skill score
gives a positive penalisation, and with model comparison the best performing
model is the one with the lowest skill score.

The score criterion in (4.13) regards only a single time step in the output series,
but since the objective is to evaluate the prediction in total by a single number,
an extension is required in order to account for the entire series. Usually, this
is done by aggregating the scores for all time instants where observations are
available, either by summation or averaging. The benefits of summing up for
the entire time series are apparent when performance of different models is
compared where the score values become more distinct. This is the case for
the model comparison in Paper C where the results become more decisive by
summing up all score values.

However, considering the average score of the time series the following ap-
plies: Firstly, the average interval score can be directly described by the sharp-
ness and, secondly, the average interval score becomes independent of the
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length of the time series. The average interval score criterion is written
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(4.14)

The second term in this scoring criterion shows that the score is increased for
an observation outside the predicted interval in the magnitude of the distance
between the interval and observation. The indication of the individual obser-
vation in relation to the interval can be merged into an indicator, corresponding
to the reliability indicator (4.7). Thus, the interval score (4.14) can be written as
an indirect function of the prediction interval in (4.6) by including the indicator,
i.e.,

S̄c
(β)
I,h =δ̄

(β)
h +

2
β(K − h)

K−h

∑
k=1

(
1 − n

(β)
k,h
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× (min
∣∣Yk+h − [q̂

(l)
k+h|k, q̂(u)
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∣∣)

(4.15)

where the second term under the summation accounts for the minimum dis-
tance between the observed value and the prediction interval, which is always
the lower or the upper limit of the interval.

The score criterion in (4.15) is used in Paper F, both for comparing the perfor-
mances of the models and to compare the performances of the wet-weather
flow and the dry-weather flow. Even though many more observations were
detected in the dry-weather flow periods, the interval skill scores for the two
different flow regimes can be directly compared.

The score is still a function of the prediction horizon h. This indicates that there

are just as many S̄c
(β)
I,h as there are h. To evaluate the performance, independent

of h, we simply average all horizons, thus obtaining the interval score criterion

S̄c
(β)
I .

To demonstrate the interval skill score, I continue with the evaluation from the
study in Paper F. Table 4.1 displays the score values for the prediction horizons
and the five model proposals, but comparison with the sharpness in Figure 4.2
shows the importance of quantifying the deviation of the individual target miss
from the estimated prediction interval. This can best be detected by observing
Model 1 and 3. These models generated the sharpest prediction intervals, but
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the calculated skill score is rather poor. Even though Model 3 is the best fit
for the first two lead times, the increased score values for the larger prediction
horizons resulted in an overall skill score that is significantly higher than the
one of the optimal prediction model, namely Model 5. Hence, on average, and
for almost all horizons, Model 5 has the lowest skill score and is the favoured
model candidate for the predictions.

4.4 Discussion and conclusions

By using the included model approaches, this chapter has given a general
overview over the methods used for providing predictions. The focus is on
the interval predictions to adequately assess the uncertainty. In particular, pre-
diction intervals for the grey box model is dealt with since the uncertainty of
both the system description and the forcing of the system can be embedded
in the system structure by considering the separation between model and in-
put approximations, and the measurement noise. The improved description
for the uncertainty in the model structure is the key element to obtain suffi-
cient predictive distributions for outputs from hydrological systems, since the
uncertainty varies with the prediction horizon. Hence, simulations using grey
box models provide probabilistic forecasts for future scenarios, such that rea-
sonable prediction intervals can be attained.

A well determined evaluation criterion for the prediction abilities has to ac-
count for the prediction intervals along with the point prediction for the out-
come. However, the predictive ability of the model is comprised in the model
structure. For the evaluation, reliability, sharpness and resolution are tools that
the modeller is provided so that he or she is able to adequately signify the
lack of fit in the model predictions. The evaluation of the models in Paper F
clearly demonstrates this property of the evaluation measures. The resolved

Table 4.1: Skill score values for the 90% prediction intervals in Paper F. The
best score value for each horizon is highlighted.

Prediction Horizon

0.25h 0.5h 1h 2h 3h 4h Average

Model 1 166.0 292.7 491.2 680.8 724.7 732.7 514.7
Model 2 201.9 324.9 455.2 563.6 602.6 610.1 459.7
Model 3 137.2 228.3 391.2 603.8 675.8 691.7 454.7
Model 4 155.1 264.3 429.7 606.4 663.6 673.6 465.4
Model 5 150.4 247.1 383.8 535.2 593.8 608.2 419.7
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evaluation results in a large bias and sharpness for the wet weather conditions,
indicating that the simple linear reservoir model is too simple to describe the
flow from rain to corresponding runoff in the drainage system. These findings
can then be verified by comparing the skill score values for the wet and dry
weather conditions, but the introduced average skill score in (4.15) can be used
directly to compare the differently resolve time series for the same model. For a
model to be equally advantageous for prediction for all groups of conditioning,
the skill score values should be close to one another.
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CHAPTER 5Conlusions and furtherperspetives
The objective of the thesis was formulation of stochastic dynamic hydrolog-
ical systems, where the focus was on modelling and interpreting the uncer-
tainties embedded in the model structure. Two modelling approaches were
applied, a stochastic differential equation based model and an impulse re-
sponse function model. The first approach was formulated as a continuous-
discrete time stochastic state-space model, where the states were represented
by stochastic differential equations, which consist of the drift term that corre-
sponds to the ordinary differential equations describing the dynamics of the
hydrological system, and the diffusion term accounting for the uncertainty in
the time evolution of the states due to, e.g., model approximations and uncer-
tainty in the measurements of the input (forcing). By formulating the diffusion
terms, the uncertainty could be assigned to the related states and, thus, im-
prove the prediction intervals of the model output. This approach is referred
to as grey box modelling because it bridges the gap between the physically-
based model in continuous time and the statistical model in discrete time. The
impulse response function models were applied in continuous time, where the
parameters were provided a physical interpretation by using known equations
from hydrology as impulse response functions. Thus, applying a similar argu-
ment as the one applied to the previous method, the impulse response function
model, as presented here, can in a way also be considered a grey box model.
The unknown parameters in both methods are estimated by the maximum like-
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lihood method. However, these two modelling approaches are rather different,
since the states in the output from the stochastic state-space model are related
to the input variables via the states in the model formulation. For the impulse
response function models the output is a direct consequence of changes in the
input sequence.

The performances of the stochastic differential equation based models were
evaluated by three measures: reliability, sharpness and resolution. For the per-
formance comparison, a more global approach was exploited; the skill score
criterion, which gathers the properties of the prediction in a single number.
The criterion accounts for the prediction interval, but not only the point pre-
diction of the output, i.e., the assessed uncertainty is dealt with in the evalu-
ation criterion. The skill score penalises predictions with too comprehensive
estimates for the prediction interval. Also, a measurement that is detected out-
side the prediction interval is penalised proportionally in accordance with the
deviation from the interval.

Two case studies were used, although within fairly contrasting hydrological
fields: well field modelling and sewer runoff modelling. For the well field
case study, both modelling methods were applied to a water head response in
operating wells in a well field, where the pumping rates from the wells were
the only available input series. Both approaches gave promising results for
predicting the water head in the wells along with appropriate measures of un-
certainties, despite the fact that the available data for modelling was rather
limited and defected, and required substantial cleaning before it was approved
for modelling purposes (Dorini et al., 2011). The two model approaches have its
advantages when it comes to groundwater management. The stochastic state-
space approach can adequately describe the embedded uncertainty and is the
optimal selection for forecasting and control of the well field. Due to the drift
of the model being formulated from the main physical structure of the hydro-
logical system, the long-term effects are also attained in relation to the details
of the drift term. However, the model only includes wells that penetrate the
same aquifer, and the parameter estimation of the stochastic state-space model
is rather time consuming with the tools available today. On the other hand, for
the impulse response function models the main advantage lie in simulations
for the entire well field using a model that is robust and can generate results
in a very short time. Uncertainties do not have the same constructive interpre-
tation as is the case for the stochastic state-space formulation of the grey box
model.

Considering the grey box model as a possibility for future modelling of ground-
water management has several benefits, but further work is required to fully
describe the properties of the well field. For the stochastic state-space model,
the approach is limited to a single aquifer and, therefore, rather site-specific. A
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natural next step would be to include interactions between the various aquifers
in the well field that are penetrated and supply water to the water distribution
network. The modelling approach would then take a step towards a more gen-
eralised framework for stochastic modelling of well fields. Consequently, the
approach becomes feasible for real-time control of the water systems, where the
uncertainty of the physical characteristics and the forcing of the system need
to be comprehended and included in the model structure. Also, the available
data for the case study in the thesis contained so-called on-off pumps, only,
but these types of pumps are being replaced by frequency pumps that can be
tuned to a preferred discharge rate. For future modelling of the stochastic well
field model this has to be incorporated in the uncertainty of the model struc-
ture, where one option is to consider a state dependent diffusion in the state
descriptions.

For the sewer runoff modelling, the stochastic differential equation based model
was considered. The suggested diffusion terms in the model included a state
dependency that was taken care of by Lamperti transforming the states to ob-
tain state independent diffusion terms. This resulted in a model with varying
prediction intervals to describe the increasing uncertainty of the flow as rainfall
is detected in the catchment. Both the model and its parameters were physi-
cally interpretable and identifiable from data, but the evaluation measures for
the model (reliability, sharpness and resolution) revealed a lack of fit for larger
prediction horizons when rain events occurred. This is not surprising, since
the rainfall-runoff process is a fairly complex hydrological phenomenon that is
hardly totally obtainable with a single series of linear reservoirs, as well as the
rain gauges available for the study are located outside the catchment, which
causes an increasing uncertainty in the rain input. Thus, to obtain improved
and more general results for the sewer runoff from the catchment, the next step
would be to extend the drift term in the model structure, but the model exten-
sions for the drift term also have to be accounted for in the diffusion term, since
the extensions indicate that more physical constraints have to be fulfilled and
reflected in the diffusion of the model structure. Furthermore, as the uncer-
tainty of the flow is highly dependent on the rain events, it is also feasible to
account for the rain input in the diffusion terms in the model structure.

To summarise, the simple grey box model, where the diffusion is given more at-
tention is a reasonable approach to predict the outcome of the hydrological sys-
tems where measures of the embedded uncertainties, in form of model approx-
imations and uncertainty in the system forcing, are required. The framework
enables a stepwise procedure to detect the lack of fit in the grey box model,
and combined with the uncertainty assessment introduced in this thesis, the
grey box model approach provides more robust models that are better suited
for forecasting and control in managing hydrological systems.
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1 Introdution 69
Grey Box Modeling of a Groundwater Well Field

Fannar Örn Thordarson1, Henrik Madsen1, Henrik Madsen2

Abstract

A modelling framework, called grey box modelling, is presented,
which combines prior physical knowledge of dynamic ground-
water well field systems with available information embedded
in data. The mathematical complexity of the system needs to be
simplified, and one way is a lumped parameter model where the
partial differential equation is replaced by a finite set of ordinary
differential equations. In the classical situation when the model
structure is based on physical knowledge and any information
from available data is not taken into account, this approach is
called white box modelling. The opposite of white box models
are black box models that are exclusively based on data, where
prior physical information is not taken into account. Benefiting
from both modelling approaches, the grey box approach com-
bines the information from the prior physical knowledge and
information embedded in the data. In the grey box modelling
framework it is possible to give direct physical interpretation
of the estimated parameters. This paper introduces the grey
box modelling approach and suggests a maximum likelihood
method for parameter estimation where the likelihood function
is evaluated using a Kalman filter technique. The model and
model parameters are validated by applying statistical methods
using all the available data.

1 Introduction

Traditionally, in groundwater well field hydrological modelling the spatio- tem-
poral variation is described by deterministic partial differential equations with
several input and output variables, e.g. discharge from the wells and the piezo-
metric heads at the boundaries. However, for many practical applications, like

1DTU Informatics, Technical Unversity of Denmark; Richard Petersens Plads (bg. 305), DK-2800
Kgs. Lyngby, Denmark

2DHI, Agérn Allé 5, DK-2970 Hørsholm, Denmark



70 P a p e r A
those connected to control, optimization and forecasting, it is essential to re-
duce the complexity of the mathematical expressions and to enable a rigorous
stochastic description of the dynamics.

A popular approach for simplification is to consider a lumped parameter model
where the partial differential equation is replaced by a finite set of ordinary dif-
ferential equations. It is convenient to use a state-space model formulation of
the ordinary differential equations, which then introduces a set of state space
variables describing the dynamics of the considered system. In the classical
approach the state-space model is formulated using all the available physical
information, i.e. the known physical characteristics and well-established mod-
els of subprocesses. This modelling approach is often termed white box mod-
elling, since all aspects of the model are formulated using prior physical knowl-
edge and since any information embedded in observations is disregarded. A
serious drawback of the classical approach is the difficulties involved with ob-
taining a reasonable parametrization. Generally the total model has a rather
large number of parameters, and, due to the unavoidable idealizations, sim-
plifications and unknown parameters, introduced both into the models of each
of the individual subprocesses and into the coupling between the various sub-
processes, it is very difficult to predict the accuracy of the total model.

For the opposite approach, which often is termed a black box approach, the
model is based on groundwater well field data and statistical methods. This
implies that both the model structure and the parametrization is deduced and
validated by applying a series of statistical methods using all the available
data. The use of statistical methods also enables a possibility for using rigorous
stochastic dynamical models, which then provide methods for predicting the
uncertainty of the model predictions. Since the well field data are sampled at
discrete times, the model is most frequently formulated in discrete time as a
difference equation. However, one serious drawback of the discrete time for-
mulation is that information about the physical parameters is partially hidden
in the discrete time parametrization. It is most often impossible, based on a
discrete time formulation, to find a reasonable continuous time model, due to
observational errors, embedding problems, or limitations in the flexibility of
the model. If it is impossible to obtain a suitable continuous time formulation,
it is also impossible to change the sampling time properly. Hence, it is desir-
able to use a formulation and an estimation method, where the parametrization
is kept in continuous time. Furthermore, a continuous time stochastic model
ensures a more reasonable physical interpretation of the parameters, and it al-
lows to use the knowledge of e.g. physical constants or balance relations to
improve the parametrization. Finally, if the estimation takes place in contin-
uous time, information about the uncertainty due to quantization of physical
characteristics may appear directly as a part of the estimation procedure.
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The suggested grey box approach consists of models which are stochastic state-
space models consisting of a set of stochastic differential equations (SDE’s) (Øk-
sendal, 2003) describing the dynamics of the system in continuous time and a
set of observation equations in discrete time. Grey box modelling enables ef-
ficient model building, which gives a powerful method for combining prior
physical knowledge regarding the system with information embedded in data
series. In this paper, this approach will be introduced and applied for ground-
water models, with emphasis on modelling of groundwater well fields. The
main modelling framework will be illustrated, as well as the suggested maxi-
mum likelihood estimation method where the likelihood function is evaluated
using an extended Kalman filter. Finally, a simple example will be given to
illustrate a simple grey box approach for a single well that can be extended to
consider other neighboring wells, and, in the near future, hopefully describe
the spatio-temporal variation of the well field.

2 Grey box approach for groundwater modeling

Translating the ordinary differential equation (ODE) model into a stochastic
state-space model is often a rather straightforward procedure, where the SDE
models are replaced with the ODE models with the addition of one or more al-
gebraic equations describing how measurements are obtained at discrete time
instants. Most often the models are formulated as continuous-discrete time
state-space models and in its most general form it is written as

dxt = f(xt,ut, t,θ)dt +σ(t,θ)dω (1)

yk = h(xk,uk, tk,θ) + ek (2)

where t ∈ R is time (tk, k = 0, . . . , N are sampling instants); xt ∈ Rn is a vector of
state variables; ut ∈ Rm is a vector of input variables; yk ∈ Rl is a vector of out-
put variables; θt ∈ Rp is a vector of possibly unknown parameters; f(·) ∈ Rn,
σ(·) ∈ Rn×n and h(·) ∈ Rl are nonlinear functions; {ω} is a n-dimensional
standard Wiener process, and {ek} is a l-dimensional white noise process with
ek ∈ N (0,S(uk, tk,θ)). The standard Wiener process is a continuous stochas-
tic process with stationary and independent Gaussian time increments, which
have the mean value zero and a covariance S equal to the magnitude of the
increments (Jazwinski, 1970).

The first term on the right side of equation (1) is called the drift term, and the
second term the diffusion term. The drift is the descriptive term, representing
the physical structure of the system, Any prior physical knowledge regarding
the model can be included, since the parameters in the ODE models usually
provide some physical interpretation of the system. Furthermore, most experts
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in hydrogeology are familiar with this way of modelling groundwater flow,
where all parameters provide the model some physical assessment.

The diffusion term of the SDE model is considered to provide a suitable inter-
pretation of the errors that exist due to the fact that the mathematical model
is often not describing the true process exactly. However, the gap between
the true process and the model should be reduced and by estimating the diffu-
sion in the model, any unrecognized phenomena or un-modelled inputs can be
found and considered in the model (Madsen and Holst, 2000). The most serious
lack is related to some specific state description in the model, and by extend-
ing this particular state description by additional state variables, more generic
methods for systematic improvement of the model structure is attained.

The observation equation (2) relates the discrete time observations to the state
variables at time points where observations are available. When determining
unknown parameters of the model from a set of data, the model equations
in (1) and (2) enables the model with flexibility consisting of possibilities for
varying sample times and missing observations in the data series. The model
provides a separation between the process noise and the measurement noise,
which allow the parameters to be estimated in a prediction error setting using
statistical methods, like the maximum likelihood, which is introduced in the
next section.

3 Parameter estimation and model validation

In hydrological modelling two estimation methods are often used, the Out-
put Error method (OE) and the Prediction Error method (PE). The OE method
minimizes the sum of squared deviation between model simulation and corre-
sponding observations, whilst the PE method minimizes the sum of squared
one step prediction error. Comparison shows that for simulations the two
methods perform quite similar, but the estimated parameters are less biased
with the PE method. Furthermore, uncertainty information is provided by the
PE method, for which gives an advantage in short-term predictions (Jonsdottir
et al., 2006). The maximum likelihood method presented below is a PE method.

Given the model structure in (1) and (2), the unknown parameters can be de-
termined by finding the parameters that maximize the likelihood function of a
given sequence of measurements, i.e. by Maximum Likelihood method. The
rule P(A ∩ B) = P(A|B)P(B) is applied to express the likelihood function as a
product of conditional densities, and by representing the measured sequence
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by Y = [yk, . . . ,y0] the likelihood function is the joint probability density

L (θ;YN) = P (YN |θ) =
(

N

∏
k=1

P (yk|Y k−1,θ)

)
P (y0|θ)

To obtain an exact estimation of the likelihood function, the continuous-discrete
filtering problem needs to be solved, and the initial probability density func-
tion P(y0|θ) must be known and parameterized, and all subsequent condi-
tional densities must be determined to successively solve Kolmogorov’s for-
ward equation (Kloeden and Platen, 1999). In practice, however, this approach
is not computationally feasible and an alternative is required. Since the SDE’s
in (1) are driven by a Wiener process, which has Gaussian increments, the con-
ditional densities can be approximated by Gaussian densities. For linear mod-
els the Kalman filter provides the exact solution for the filtering problem, and
for nonlinear models the problem is approximated by applying the extended
Kalman filter (Madsen et al., 2004).

The Gaussian density is completely characterized by its mean and covariance,
which are denoted by ŷk|k−1 = E{yk|Yk−1,θ} and Rk|k−1 = V{yk|Yk−1,θ}, re-
spectively, and by introducing an expression for the innovation ǫk = yk − ŷk|k−1
the likelihood function can be rewritten as

L (θ;YN) =




N

∏
k=1

exp
(
− 1

2ǫ
⊤
k R−1

k|k−1ǫk

)

√
det(Rk|k−1)

(√
2π
)l


P(y0|θ)

where the conditional mean and covariance are calculated using an Extended
Kalman Filter. Finally, the parameter estimates can be determined by condi-
tioning on the initial values and solving the optimization problem

θ̂ = argmin
θ∈Θ

{− ln (L(θ;YN|y0))}

With the unknown parameters of the model estimated by the ML method,
along with corresponding standard deviations, statistical tests can be performed
to check if the parameters are significantly different from zero, which may in-
dicate that some improvement is needed for the model structure.

One of the important aspects of the modelling framework is its predictive abil-
ity, which implies that the prediction errors are examined for any systematic
pattern for further extension of the model. Most importantly, the sample auto-
correlation function and sample partial autocorrelation function of the residu-
als are investigated to detect if two or more consecutive residuals are depen-
dent or, in contrast, can be regarded as white noise (Kristensen et al., 2004, Mad-
sen, 2008). Correlation between the residuals indicates that the model is not
adequate.
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For the groundwater well field there is strong relation between any two or
more neighboring wells, i.e. withdrawal from one well is monitored also in the
other wells. Relating the model more on the measured piezometric heads in the
wells and apply statistical methods to improve the model structure, a model is
obtained which is adjusted to the objectives and more able to cope with real-
time measurements. A model for a single well in the field can, therefore, easily
be extended to consider other wells in the surroundings and, eventually, the
entire well field.

4 Grey box well field modeling: a simple test case

By discharging water from one particular well does most often have some in-
fluence on the other wells in the surroundings. By pumping from well no.1
clearly affects the water elevation in well no.2. A lumped parameter model is
formulated to see if well no.2 can be totally described by well no.1. The grey
box model for the relation between the wells is

dh1 =

[
T1−∞

C1
(h∞ − h1) +

T1−12
C1

(h12 − h1)−
Q

C1

]
dt + σ1dω1 (3)

dh12 =

[
T1−12

C12
(h1 − h12) +

T12−∞

C12
(h∞ − h12) +

T12−2

C12
(h2 − h12)

]
dt + σ12dω12

(4)

dh2 =

[
T12−2

C2
(h12 − h2) +

T2−∞

C2
(h∞ − h2)

]
dt + σ2dω2 (5)

where h1 and h2 are state variables for the pressure heads in the operating
well and the well of interest, respectively, and h12 is a state variable for the
water table elevation between the two wells, whilst h∞ is the static water table
elevation. The parameters T and C in the model represent the hydraulic trans-
missivity from one state variable to the next and lumped parameters for the
storage coefficient of the aquifer, respectively. Q is the discharge rate from well
no.1, kept at 90 m3/min until it is turned off.

The pressure head in well no.2 is observed, so the observation equation for well
no.2 is

H2,k = h2,k + ek (6)

If the elevation in the observed well was exclusively depending on the dis-
charge from well no.1, the residual analysis would clarify that no autocorre-
lation exist. However, Figure 1 shows that the residuals cannot be considered
white noise, and indicate that some important features are not counted for in
the model structure. Therefore, the observed well cannot be exclusively de-
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Figure 1: The conceptual model, autocorrelation and partial autocorrelation
for the residuals from well no.2.

scribed by the discharge in well no.1, and the model structure needs to be im-
proved by taking into account a new state variable, e.g. leakage coefficient,
other neighboring wells or possible boundaries in the well field. Thus, from
this simple case the model can be extended systematically, such that the essen-
tial prior physical knowledge regarding the whole groundwater well field is
combined with available information to get more accurate results to describe
the spatio-temporal variation of the well field.
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5 Conclusion

A grey box approach of groundwater flow models has been presented, which
combines the best from deterministic and stochastic modelling for identifi-
cation of models for model-based control of groundwater well fields. The
grey box approach is based on flexible and statistical methods for continuous-
discrete time stochastic state-space models, which are just as appealing as or-
dinary differential equation models from an engineering point of view. One
of the most important aspects of the approach is its constructive features for
performing model validation by means of statistical tests and residual analysis,
where the significance of parameters may provide information about the valid-
ity of the proposed model. Based on these methods it has been demonstrated
that the rather simple grey box model can be extended towards an operational
description of the spatio-temporal variation of the groundwater well field.
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Predictions for Groundwater Well Fields using

Stochastic Modeling

Fannar Örn Thordarson1, Henrik Madsen1, Henrik Madsen2

Abstract

A stochastic modelling framework for identifying groundwater
well fields is presented, which combines prior physical knowl-
edge of dynamic groundwater well field systems with avail-
able information embedded in data. The model is a concep-
tual stochastic model, formulated in continuous-discrete time
state space form that facilitates a direct physical interpretation
of the estimated parameters. The parameter estimation method
is a maximum likelihood method, and the model parameters are
validated by applying statistical methods using all the available
data. The statistical tools are used to identify the deficiencies in a
model that is considered too simple. Even though the predictions
seem adequate, statistical methods show that the model needs to
be extended to be able to provide accurate predictions for the
groundwater level in all wells.

Key words:
Groundwater, Well field model, Stochastic differential equations, Grey box model, Pre-
diction, Parameter estimation, Maximum likelihood method

1 Introduction

It is essential to ensure high quality drinking water in the future, which then
calls for reliable operation and management of the groundwater resources at
well fields. One of the foundations of the groundwater resource management
is the mathematical model that describes the behavior of the aquifer penetrated
by one or several wells. For control, optimization and forecasting, the complex-
ity of the mathematical expressions needs to be reduced to enable more rigid
stochastic representation of the dynamics.

1DTU Informatics, Technical Unversity of Denmark; Richard Petersens Plads (bg. 305), DK-2800
Kgs. Lyngby, Denmark

2DHI, Agérn Allé 5, DK-2970 Hørsholm, Denmark
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The groundwater elevation in the well field varies in both time and space and is
traditionally described by the governing equation for groundwater flow, which
most frequently is facilitated by a deterministic partial differential equation
(Anderson and Woessner, 2002). With multiple discharge locations in the well
field the utility of the governing equation becomes highly complex. A popular
approach for simplification is to consider a lumped parameter model where
the partial differential equation is replaced by a finite set of ordinary differen-
tial equations in state-space form, which then introduces a set of state-space
variables describing the dynamics of the well field. The state-space model is
formulated using all the available prior physical knowledge, which include the
known physical characteristics of the considered system and any auxiliary pro-
cesses connected to the well field. This approach disregards any stochasticity
related to the variation in time and space with a serious drawback of obtaining
a reasonable parametrization. The total model is often characterized by having
a large number of parameters and due to unavoidable idealizations, simplifi-
cations and unknown parameters, it is difficult to predict the accuracy of the
total model. This modelling approach is often referred to as a white-box ap-
proach, since the model structure is completely transparent and the variation
in the available data is neglected.

On the contrary is the black-box approach where the model is formulated by
only considering the available well field data and statistical methods are ap-
plied to reduce and validate the structure and the parametrization for the ground-
water well field. The used of statistical methods enables a possibility for using
rigorous stochastic dynamical models which then provide methods for predict-
ing the uncertainty of the model predictions. However, the data is sampled at
discrete time and a drawback of the discrete time formulation is that informa-
tion about the physical parameters is partially hidden, and due to measure-
ment errors or limitations in model flexibility, a reasonable continuous time
model cannot be obtained.

It is desirable to obtain a modelling approach that reduces the gap between
the conventional models based on physical characteristics and the pure statis-
tical discrete time approach. Using formulation and estimation method, where
the parametrization is kept in continuous time, a continuous time stochastic
model is obtained where the estimated parameters do have a direct physical
interpretation. Hence, in relation to the well field model any knowledge of
physical constants and water balance relations can be exploited to improve the
parametrization. This modelling approach is referred to as the grey-box ap-
proach, since being a combination of the other two approaches.

This paper presents a formulation and estimation of a simple continuous time
stochastic model for the groundwater well field that explicitly describes how
the measurements and model errors enter into the model, and, due to contin-
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uous time formulation, the model facilitates a direct physical interpretation of
the estimated parameters. Based on the proposed method it is demonstrated
that the rather simple continuous time stochastic model constitutes an opera-
tional description of the spatio-temporal variation for simulations and predic-
tions for the considered groundwater well field.

2 Continuous-Time Stochastic Model for Ground-

water Well Field

By considering the lumped parameter approach in state-space form, repre-
sented by a finite set of ordinary differential equations (ODEs), the translation
into a set of stochastic differential equations (SDEs) is often a rather straight-
forward procedure. This is usually obtained by replacing the ODE models
with the SDE models, which in addition also includes one or more algebraic
equations describing how measurements are obtained at discrete time instants.
Most often the models are formulated as continuous-discrete time state-space
models and in its most general form it is written as

dxt = f (xt,ut, t;θ)dt + σ (t,ut;θ)dωt (1)

yk = h(xk,uk, tk;θ) + ek (2)

where t ∈ R0 is time (tk,k = 1, . . . , N are sampling instants); xt ∈ Rn is a vector
of state variables; ut ∈ Rm is a vector of input variables; yt ∈ Rl is a vector
of output variables; θ ∈ Rp is a vector of unknown parameters; f(·) ∈ Rn,
σ(·) ∈ Rn×n and h(·) ∈ Rl are nonlinear functions; {ω} is a n-dimensional
standard Wiener process, and ek is a l-dimensional white noise process with
ek ∼ N (0,S(ut, tk,θ)). The standard Wiener process is a continuous stochas-
tic process with stationary and independent Gaussian time increments, which
have the mean value zero and a covariance S equal to the magnitude of the in-
crements (Jazwinski, 1970). Equation (1) is called the system equation, whereas
equation (2) is the observational equation.

The first term on the right side of the system equation is usually called the
drift term, since it represents the physical structure of the system, determined
and formed from the system of ordinary differential equations. Hence, any
prior physical knowledge regarding the physical structure is included in the
drift term where the parameters provide some physical interpretation of the
system. Furthermore, the physical characteristics of the drift term are expres-
sions most hydrogeologists are familiar with from formulating the traditional
groundwater flow models.

The second term on the right side of the system equation is the diffusion term
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of the SDE model, which provides a suitable interpretation of the errors that
exist due to the fact that the mathematical model is often not describing the
true process exactly. However, the gap between the true process and the model
should be reduced and by estimating the diffusion in the model, any unrecog-
nized phenomena or unmodelled inputs can be detected and directly or indi-
rectly considered in the model. Frequently is this discrepancy related to some
specific state description in the model, and by extending this particular state
description by additional state variables, more generic methods is obtained for
systematic improvement of the model.

The observation equation (2) then relates the discrete time observations to the
state variables at time points where observations are available. When deter-
mining unknown parameters of the model from a set of data, the model equa-
tions in (1) and (2) enables flexible estimation that can account for varying sam-
ple times and missing observations in the data series. The model provides a
separation between the process noise and the measurement noise, which allow
the parameters to be estimated in a prediction error setting, using statistical
methods and the maximum likelihood method.

3 Parameter Estimation

A solution to the well field prediction problem is to optimize a set of parame-
ters, such that the model for the groundwater levels in the well field sufficiently
fits the available data. The most direct terminology is to minimize the error be-
tween the model output and the observed output for the well field. For such
an objective, mainly two estimation methods have been applied for optimizing
the parameters in hydrological studies; the Output Error method (OE) and the
Prediction Error method (PE).

The OE method minimizes the sum of squared simulation error and is applied
for white-box models with well described physical characteristics, without con-
sidering variation in the available data. The parameters estimated by the OE
method are, in general, not provided with any uncertainty. Furthermore, the
OE method can only be considered for offline estimation, i.e. the estimates are
only depending on the initial values; for online estimation the state estimates
are updated for every time instants. The PE method seeks for minimizing the
sum of squared one-step prediction error to obtain the best fitted model for the
groundwater level in the well field, and the PE method includes both offline
and online estimation. Moreover, the PE method also provides an uncertainty
for the estimates, which is well suited for short-term predictions.

Given the model structure in (1) and (2), the unknown parameters can be de-
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termined by finding the parameters that maximize the likelihood function of
a given sequence of measurements, i.e. by the Maximum Likelihood (ML)
method. From probability theory the rule of independent probabilities can be
applied to express the likelihood function as a product of conditional densities,
and by representing the measured sequence by YK = [yK, · · · ,y0] the likelihood
function is the joint probability density

L (θ;YK) = p (YK|θ) =
(

K

∏
k=1

p (yk|Y k−1,θ)

)
p(y0|θ).

To obtain an exact estimation of the likelihood function, the continuous-discrete
filtering problem needs to be solved, and the initial probability density func-
tion p(y0|θ) must be known and parameterized, and all subsequent condi-
tional densities must be determined to successively solve Kolmogorov’s for-
ward equation (Kloeden and Platen, 1999). In practice, however, this approach
is not computationally feasible and an alternative is required. Since the SDE’s
in (1) are driven by a Wiener process, which has Gaussian increments, the con-
ditional densities can be approximated by Gaussian densities. For linear mod-
els the Kalman filter provides the exact solution for the filtering problem, and
for nonlinear models the problem is approximated by applying the extended
Kalman filter (Madsen et al., 2004).

The Gaussian density is completely characterized by its mean and covariance,
which are denoted by ŷk|k−1 = E{yk|Y k−1,θ} and Rk|k−1 = V{yk|Y k−1,θ}, re-
spectively, and by introducing an expression for the innovation ǫ = ŷk|k−1 − yk

the likelihood function can be rewritten as

L (θ;YN) =

( N

∏
k=1

exp
(
− 1

2ǫ
⊤
k Rk|k−1ǫk

)

√
(det(Rk|k−1))

√
(2π)l

)
p (y0|θ)

and thereof, the parameter estimates can be determined by conditioning on the
initial values and solving the optimization problem

θ̂ = argmax
θ∈Θ

(log(θ;YN|y0)) .

With the unknown parameters of the model estimated by the ML method,
along with corresponding standard deviations, statistical tests can be performed
to check if the parameters are significantly different from zero, which then in-
dicates that some improvement is needed for the model structure. The param-
eters of the diffusion term in equation (1) are included in the ML estimation.

One of the main aspects of the modelling framework is its predictive ability,
which implies that the output errors are examined for any systematic pattern
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for further extension of the model, as well as investigation of the sample auto-
correlation function and sample partial autocorrelation function of the residu-
als to detect if two or more consecutive residuals are dependent or, in contrast,
can be regarded as white noise (Kristensen et al., 2004). Correlation between
the residuals indicates that the model is not adequate for prediction, since sys-
tematic errors are detected in the model that can affect the model prediction
drastically. An adequately parameterized model is characterized by having
uncorrelated residuals (Madsen, 2008).

4 An Example

The following is an example to illustrate the important features of the contin-
uous time stochastic model described above; the lumped model for the well
field, the parameter estimation and model prediction. The well field has three
pumping wells, which all pump from the same aquifer. These three wells are a
part of water distribution network with 21 operating wells attached, where all
wells are pumping from the same aquifer. The total well field is divided into
three groups due to geographical location. Here, one of these is studied.

The conceptual model is sketched in Figure 1a, showing the three wells located
on a straight line, that is, well No. 2 is located on the line between well No.
1 and well No. 3. This simplifies the model by assuming that drawdown in
well No. 3 when pumping from No. 1 is detected in well No. 2 as well. This
assumption is also valid when the water level changes in well No. 1 when
pumping from well No. 3.

The objective is to predict the piezometric heads in the wells when pumping
from a confined aquifer. However, since the lumped parameter model is con-
sidered for the model structure, the parameters are lumped vertically, from
datum to the piezometric head, and the suggested model for the groundwa-
ter well field is expected to consist of a number of reservoirs where the water
levels in the reservoirs are the state variables in the state-space representation
(Jacobsen et al., 1997). As illustrated in Figure 1b, the only measured state vari-
ables are the water-levels in the wells. The water levels between any two wells,
and at the boundaries, are unobserved state variables, which will be estimated
in relation to the observations in its two adjacent operating wells. The behavior
of the water table between two operating wells is nonlinear, but by assuming
several linear reservoirs for the water table to represent the flow from one well
to another, the water table can be linearly approximated. The water level, or
the reservoirs, in the unobserved states does never dry out, indicating that at
least one of the unobserved reservoirs between every two observed wells is
infiltrated with additional water.
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Figure 1: Conceptual model for a well field with 3 operating wells: (a) The
classical illustration of the model. (b) The lumped model repre-
sented as number of linear reservoirs.

Considering the states as given in Figure 1b, and with the index i indicating
the state of interest, the suggested stochastic state space model, as in equation
(1), is represented as follows: The pumping wells are the observed states (h3,
h7 and h11 in Figure 1b) and their dynamics are described as

dhi,t =

[
K

Ai
hi−1,t −

2K

Ai
hi,t +

K

Ai
hi+1,t −

1
Ai

Qi,t

]
dt + σidωi,t

with K assumed to be the lumped hydraulic conductivity and Ai is consid-
ered as the areal closest to the well directly affected by the discharge. Here,
and in all the following system equations for the well field, the σi values are
constants representing the variation of the system noise for state description
i, where i = 1, . . . ,13, and corresponding noise term dωi is assumed to be in-
dependent standard Wiener process, and also assumed independent from the
measurement noise in the observation equation.
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The state variables illustrating the recharge of the aquifer between operating
wells (h5 and h9) become

dhi =

[
K

SLi
hi−1,t −

1
SLi

(
2K +

1
Kin f

)
hi,t +

K

SLi
hi+1,t −

hin f

SLiKin f
Qi,t

]
dt+ σidωi,t

The same goes for the recharged boundary states (h1 and h13), except for one
term is neglected in each case; for h1 the first term in the square brackets is
omitted, and for h13 the last term inside the square brackets. S is the storage
coefficient for the lumped flow and Li is the estimated size of reservoir i. hin f

is the estimated boundary condition, i.e. the water level approaches the undis-
turbed water table if no pump is active in the well field for a reasonably long
time. The term Kin f is the estimated resistance for the flow from the boundaries
to the reservoirs.

For all the remaining states, the intermediate states of the water level in the
reservoirs is represented as

dhi =

[
K

SLi
hi−1,t −

2K

SLi
hi,t +

K

SLi
hi+1,t

]
dt + σidωi,t.

There are three observation equations since there are three measured water
levels in the wells, i.e.

Y1,k = h3,k + e1,k

Y2,k = h7,k + e2,k

Y3,k = h11,k + e3,k

where the e1, e2, e3, correspond to the measurement noises.

The parameter estimation is shown in Table 1. The estimation for the hydraulic
conductivity and the storage coefficient are reasonably estimated, but com-
pared to results from a pumping test for the aquifer the estimates are orders
of magnitudes higher. This is explained by the fact that these two estimated
parameters are lumped vertically and correspond to routing of water and stor-
age in the aquifer, as well as all the layers above it. Therefore, it is impos-
sible to compare results from pumping tests and the lumped estimates. The
two estimated values, K and S, correspond to the individual reservoir in the
lumped model, where K is assumed as routing coefficient per length unit and
the storage S is considered as the total storage per length unit in each reservoir.
Model extension that takes consideration to the different layers in the concep-
tual model can be implemented into the introduced stochastic model, but no
such attempt is made in this particular study.

By performing t-tests the parameters can be checked for being significantly dif-
ferent from zero. Status for significance of each parameter is displayed in the
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last column in Table 1, and it shows that the variances for the system noises, re-
garding the boundary conditions, are not significant (σ1 and σ13). For extending
the model further, focus should be on the state descriptions for the boundary
conditions, since from the parameter estimation it can be concluded that these
states are not entirely fulfilled with the present description. The most probable
cause is related to the other two groups of wells in the total well field and to
get a better understanding of the boundary conditions for this small group of
three wells, correlation to the other groups need to be exploited.

It is interesting to see how adequate the model is to predict the water level
in the three wells. Figure 2 displays a comparison between the observations
(solid line) and corresponding model output (dashed line) for the pumping
wells. Although it appears as the prediction follows the observations rather
well, there is a clear difference for all three wells where the greatest deviation
is in relation to abrupt changes in the water level, i.e. when a pump is switched
on or off. Figure 3 shows that the difference between the model and the obser-
vations is serially correlated, which indicates that an improved model should
be obtained by addition of a reservoir between operating wells.

This example shows how the presented lumped stochastic model can be used
for parameter estimation and prediction for a groundwater well field. It is

Table 1: Estimated values for several parameters in the stochastic well field
model. K:[m/min], S [-]; Ai [m2]; hin f [m].

Parameter P. test θ std(θ) Significant

K 0.0420 1.09 0.03 YES
S 0.0012 2.08 0.36 YES
A3 - 10.25 0.71 YES
A7 - 5.48 0.29 YES
A11 - 6.26 0.53 YES
hin f - 7.14 0.36 YES
σ1 - 0.04 0.03 NO
σ3 - 0.36 0.05 YES
σ5 - 0.03 0.02 YES
σ7 - 0.29 0.02 YES
σ9 - 0.17 0.02 YES
σ11 - 0.21 0.02 YES
σ13 - 0.02 0.01 NO
S1 - 0.00 0.00 NO
S2 - 0.00 0.00 NO
S3 - 0.00 0.00 NO
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Figure 2: Comparison between measurements (solid line) and predictions
(dashed line) for all operating wells.

also shown how statistical methods can be applied to detect deficiencies in a
model, as well as suggest which state descriptions require improvement. By
optimizing the parameters with the ML method, the model is able to predict
the water levels in the wells within the limited region, but from a statistical
point of view an improved model is need to obtain more adequate results.

5 Conclusion

A continuous time stochastic model for a groundwater well field has been
presented. This modelling framework combines the best from deterministic
and stochastic modelling for identification of models, for model-based con-
trol of groundwater well fields. The model basis are the state descriptions in
the stochastic state-space model, derived from stochastic differential equation
models, which are just as appealing as ordinary differential equation models
from an engineering point of view. The maximum likelihood method provides
uncertainty to the estimates, which is highly important for performing model
validation by means of statistical tests and residual analysis. Based on these
methods it has been demonstrated that the rather simple stochastic model can
be constructed to give sufficient results for the physically interpretable param-
eters. However, statistical tests showed that the model requires an extension
to compose an operational description of the spatio-temporal variation of the
groundwater well field, which eventually will improve the groundwater level
predictions in the well field.
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Figure 3: Autocorrelation functions for the residuals for all operating wells.
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Abstract

The operation and management of a well field requires a reliable
model for the groundwater flow to guarantee the robustness of
the system. These models are usually physically-based, compu-
tationally intensive, and do not account for the various sources
of uncertainty. Most often is the model structure highly com-
plex, and needs to be reduced for the model to be feasible for
control, optimisation and predictions of the system and the em-
bedded uncertainty. By applying a grey box approach, a model is
obtained that is operational for the well field management. The
well field is presented by a system equation on a state space form
where the states are represented by a set of stochastic differential
equations, which consist of a drift term to describe the system dy-
namics in form of ordinary differential equations, and a diffusion
term for the uncertainties in the model structure and the forcing
of the system. Combining the system equation with a measure-
ment equation for the observable states form the grey box model,
which is simpler than the traditional physically-based ground-
water flow models and identifiable from data. In this paper, the
grey box model approach is described for groundwater flow in
a confined aquifer that is penetrated by several pumping wells.
A lumped parameter grey box model is introduced, and show-
ing how this model can be improved; first, by extending the drift
term in the model to account for missing and necessary dynamic
behaviour in the physical system; and second, by extending the
diffusion term to bound the prediction intervals of the model out-
put. The maximum likelihood method is used for parameter esti-
mation, and a quantile skill score criterion for performance eval-
uation, showing great improvements as the model is extended.

Key words:
grey box modelling, stochastic differential equations, groundwater flow, well field man-
agement, uncertainty assessment

1Informatics and Mathematical Modelling, Bldg. 305 DTU, DK-2800 Kgs. Lyngby, Denmark
2DHI, Agérn Allé 5, DK-2970 Hørsholm, Denmark
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1 Introduction

This paper introduces grey box modelling of a well field that discharges ground-
water from several wells, which all pump from the same confined aquifer. The
grey box approach combines physical knowledge about the system with statis-
tical modelling to obtain a stochastic model of the system. Physical knowledge
provides a detailed structure of the system dynamics, often formulated as dif-
ferential equations with physical parameters that can be estimated from litera-
ture, laboratory experiments or by model calibration. However, the physically-
based model has approximation errors; which come from approximations re-
garding the model structure, uncertain model parametrisation, uncertainties in
initial and boundary conditions that are not observable but have influence on
the system, and deficient measurements (see discussion by, e.g., Harremoës and
Madsen, 1999, Rosbjerg and Madsen, 2005, Refsgaard et al., 2006).

Accuracy of the model is vital, especially for models that are utilised for pre-
dicting the future evolution of the physical system. Therefore, the use of statis-
tical modelling prevents overparametrisation of the model (Beven, 1996). The
physically-based models are often called white box models because of their
transparency in the model structure. On the other hand, the statistical models
do not have a structural identity, since the structure is exclusively based on the
data and, hence, named black box models in contrast with the white box label
of the physical models. The grey box approach bridges the gap between phys-
ical and statistical modelling, and facilitates a modelling framework in which
prior physical information can be combined with information embedded in
data (Bohlin and Graebe, 1995, Harremoës and Madsen, 1999, Kristensen et al., 2004,
Bacher and Madsen, 2011). Since the grey box model is determined from the
physical structure of the system, it is expected that the model is somehow valid
beyond the range covered by the measured data. Therefore, it is also expected
that a grey box model is able to make better long-term predictions than black
box models.

Groundwater modelling is widely applied in control, management and opti-
misation of aquifer systems (Hansen et al., 2011, Hendriks-Fransen et al., 2011,
Bauser et al., 2010, Ahlfeld and Baro-Montes, 2008, Kollat and Reed, 2006, Siegfried
and Kinzelbach, 2006). To maintain feasibility in the control strategies for the
pumps, the underlying model needs to be reliable. The key element of the in-
troduced grey box model is the drift term of the model structure to describe
the flow dynamics in the aquifer. The stepwise procedure from the governing
equation for groundwater flow to formulation of the grey box model is illus-
trated in Section 2. This includes also the parameter estimation of the grey box
model. In Section 3 the data, used in the following case study is described. The
proposed models are discussed in detail in Section 4 and, also how the models
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are related. Included are the estimation results for the model parameters and,
eventually, the performance of the predictions of the models is evaluated and
compared in order to decide on the most adequate model structure. The paper
is then summarised with some concluding remarks in Section 5.

2 Stochastic well field model

The groundwater dynamics in a well field is described by the governing equa-
tion for groundwater flow (Bear, 1979):

SS
∂h

∂t
=∇ · κ∇h + R (1)

where h [L] is the hydraulic head, κ [LT−1] is the tensor matrix of the hydraulic
conductivity, SS [L−1] is the specific storage and R [T−1] represents any ex-
ternal stress affecting the groundwater flow. With given initial conditions and
boundary conditions, and a given sequence for the stresses affecting the aquifer
(R), the water level h can be determined by solving the governing equation in
both time and space.

2.1 State space formulation

The governing equation (1) is a Partial Differential Equation (PDE), which can
be solved by numerical methods; finite difference method, finite element method
or finite volume method (see e.g. Anderson and Woessner, 2002, Carrera, 2008). To
solve the groundwater flow equation numerically, the well field is discretised
into a number of grid cells, i.e. the PDE is replaced by a finite set of Ordinary
Differential Equations (ODEs). Hence, for the ODEs it is advantageous to use a
state space formulation to describe the dynamics in the aquifer by a set of state
space variables. Furthermore, a stochastic state space model includes a specific
description of the measurement errors by the so-called measurement equation
(Madsen, 2008).

To formulate the groundwater flow in a state space form, the governing equa-
tion (1) is initially approximated by discrete cells. By integration for each cell
with respect to its volume, a representation of the water balance in cell i is ob-
tained by including flow between cell i and all J neighbouring cells (the relation
between the cells is sketched in Figure 1). Applying the divergence theorem
(Adams, 1999) an ODE for cell i is attained (Narasimhan and Witherspoon, 1976,
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Figure 1: A sketch for cell i and the J neighbouring cells, with explanation for
the parameters related to cell i.

Rozos and Koutsoyiannis, 2010), and is written

SS,iVi
dhi

dt
=

J

∑
j=1

κi,j Ai,j

di,j

(
hj − hi

)
+ RiVi (2)

where Vi is the volume of cell i and Ri accounts for the external stresses af-
fecting the same cell. Ai,j is the cross-sectional area for the flow between cell
i and any neighbouring cell j, di,j is the distance between these two cells, and
movement of the water between the cells is characterised by the hydraulic con-
ductivity κi,j.

To further simplify the state-space, assumptions have to be considered regard-
ing the cross-section Ai,j. For a confined aquifer, Ai,j is constant and the state
variable is described by a linear function since the boundaries for the aquifer
do not evolve in time. Hence, the cross-section can be approximated by Ai,j =
bi,jEi,j where bi,j is the thickness of the aquifer (bounded by confining layers
above and below) and Ei,j is the length of the cross-section (see Fig. 1). For
unconfined aquifers, however, the thickness of the aquifer varies as a function
of the water levels in the two cells i and j, thus, Ai,j = Ai,j(hi,hj) and, hence,
the dynamic description of the water level in cell i becomes nonlinear. In the
following, a confined aquifer is considered, and further simplifications for the
groundwater flow in the aquifer are from now on exclusively related to con-
fined aquifers.

Defining the thickness of the confined aquifer as b, and by assuming the thick-
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ness to be homogeneous, (bi,j = bi = b), the transmissivity of the aquifer can be
defined as Ti,j = κi,jb, as well as the storage coefficient Si = SS,ib. Also, the base
area of the cell can be obtained by Ai = Vi/b. Including Ti,j, Si and Ai in Eq.
(2), as well as replacing the constant Ai,j with bEi,j for a confined aquifer, the
ith state in the state-space formulation is written

Si Ai
dhi

dt
=

J

∑
j=1

Ti,jEi,j

di,j

(
hj − hi

)
+Wi, (3)

where Wi represents the sum of all sources and sinks in the ith cell (where sinks
are presented with a negative sign).

The pumping rate Qi in a well needs to be transferred to the cell, and conse-
quently provides a description for the water drawdown in the aquifer as water
is withdrawn from the well. This is taken care of by using the storage coef-
ficient, which, in theory, accounts for this transfer (Gupta, 2008). If a water is
discharged from a well, the affected cell needs to be recharged to keep the wa-
ter balance. For a well field that only includes wells for absorbing water from
the aquifer, the recharge must happen through the boundaries of the system.
Here, this simply means that for a unbounded system the water level, far away
from the well field, remains at a constant level as if no pumping occurred in
the well field. Thus, the aquifer is constantly recharged though the barriers of
the system, with a varying rate, depending on the difference between the water
level hi and H0, which represents an upper boundary for hi. The recharge of
state i can be considered to be from above, through an area of the same size as
the base area Ai.

Thus, the sum of sources and sinks can be formulated as

Wi = −SiQi + Ri Ai(H0 − hi) (4)

where, here, the external stress Ri corresponds to a leakage coefficient for the
recharge of cell i. Replacing Wi in (3) with (4), the description of the state be-
comes

dhi

dt
=

1
Si Ai

J

∑
j=1

Ti,jEi,j

di,j

(
hj − hi

)
+

Ri

Si

(
H0 − hi

)− 1
Ai

Qi

= −
(

1
Si

J

∑
j=1

Ti,jEi,j

Aidi,j
− Ri

)
hi +

1
Si Ai

J

∑
j=1

Ti,jEi,j

di,j
hj +

Ri

Si
H0 −

1
Ai

Qi. (5)

Traditionally, the objective of solving the governing equation in well field ap-
plications is to provide a simulation for the water drawdown in the entire well
field as the water heads in the wells respond to the water discharges from the
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aquifer. This means that a large number of cells needs to be simulated. How-
ever, according to the model conceptualisation given above, predicting the fu-
ture response in the wells only requires the states that are directly connected to
the discharge wells, and with n wells connected in a well field the suggested
state space model, at time t, becomes

d




h1(t)
...

hn,t


 =




− 1
S1

( 1
A1

∑
n
j=1

T1,j E1,j
d1,j

+ R1
)

· · · T1,n E1,n
S1 A1d1,n

...
. . .

...
Tn,1En,1

Sn Andn,1
· · · − 1

Sn

( 1
An

∑
n
j=1

Tn,j En,j
dn,j

+ Rn

)







h1,t
...

hn,t


dt

+




R1
S1

− 1
A1

· · · 0
...

...
. . .

...
Rn
Sn

0 · · · − 1
An







H0
Q1,t

...
Qn,t(t)


dt.

(6)

On a matrix form this can be written

dht = [A(θ)ht +B (θ)Qt]dt (7)

where θ ∈ R
p is a vector of the parameters in the model and the matrices

A(θ) ∈ Rn×n and B(θ) ∈ Rn×m describe the variation in the system dynamics
for changes in the states and the input, respectively.

2.2 Grey box models

As previously stated, grey box models bridge the gap between physically-
based models and statistical models. Hence, as the physical laws for models are
typically formulated in continuous time and any observable data is in discrete
time, the grey box model is merged in a continuous-discrete time description
facilitated by the stochastic grey box model. The system description is in con-
tinuous time and to account for stochasticity in the system, it is formulated as a
set of Stochastic Differential Equations (SDEs). This formulation of the system
dynamics is herafter referred to as system equation of the state-space model.
The states are partially observed in discrete time with a measurement noise, as
described by the discrete time measurement equation.

The general expression for the grey box model, where the state variables are
represented by the vector ht ∈ Rn and the variables for the model forcing by
the vector Qt ∈ R

m, is written

dht = f (ht,Qt, t;θ)dt + σ (Qt, t;θ)dωt (system equation) (8)

Yk = g (hk,Qk, tk;θ) + ek (measurement equation) (9)
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where t ∈ R0 is the time variable and k, for k = 1, . . . ,K, is the time instants for
available observations; and Yk ∈ Rl is a vector of the measured output vari-
ables. The functions f(·) ∈ Rn, σ(·) ∈ Rn×n and g(·) ∈ Rl are, in general, non-
linear functions; {wt} is a n-dimensional standard Wiener process; and {ek} is
a l-dimensional white noise process with ek ∈ N(0,S(Qk, tk,θ)). The first term
on the right-hand side of Eq. (8) is called the drift term, corresponding to the
ODE for the dynamic structure of the system, while the second term is called
the diffusion term. By only considering the ODEs in the system equation, the
output error is usually autocorrelated. With the additional diffusion term to
the ODEs in the system equation, a separation is provided between the model
error and the measurement error, where the model noise contains the error for
the approximated model description and deficient model forcing. This usu-
ally results in an uncorrelated measurement error, and a model structure that
is adjusted to the output measurements.

A simplified version of the grey box approach is obtained by considering the
drift term in the system equation to be linear and time-invariant. Also, the
function g(·) is linearly related to both ht and Qt, hence the grey box model in
Eq’s. (8) and (9) can be written:

dht = [A(θ)ht +B (θ)Qt]dt + σ (Qt, t,θ)dωt (10)

Yk =C (θ)hk +D (θ)Qk + ek (11)

where the matrices C(θ) ∈ R
l×n and D(θ)∈ R

l×m relate, respectively, the state
variables and the input data to the measured output. The drift term in the
system equation (10) corresponds to the state-space formulation for the well
field model in (7). Thus, the system equation (10) is formulated by the ODE
in (6) plus an additional diffusion term. However, the diffusion term σ(·) in
(10) is considered to be time-varying and can also be expressed by a nonlinear
function of the input variables.

2.3 Parameter and state estimation

For estimating the model parameters the Maximum Likelihood (ML) method is
used. The likelihood function can be evaluated by applying Kalman Filtering
techniques for continuous-discrete time state space models (Kristensen et al.,
2004, Jazwinski, 2007). For a sequence of observations, Y k = [Yk, · · · ,Y0], the
likelihood function L is calculated as a product of one-step ahead predictive
conditional densities for all the observations (Madsen, 2008). Hence, an opti-
mum parameter set θ is seeked, such that a maximum value is found for the
likelihood function

L (θ;Y k) =

(
k

∏
s

p (Ys|Y s−1,θ)

)
p (Y0|θ) . (12)
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For the linear state space model as specified by (10) and (11), all the densi-
ties are Gaussian. Then, for the grey box model, the objective is to maximise
a likelihood function, containing a product of one-step conditional Gaussian
densities. The one-step ahead prediction mean Ŷk|k−1 = E{Yk|Y k−1,θ} and
the covariance Rk|k−1 = V {Yk|Y k−1,θ} characterise the Gaussian density and,
hence, the likelihood function in (12) can be rewritten

L (θ;Yk) =




k

∏
s=1

exp
(
− 1

2ǫ
⊤
k R−1

s|s−1ǫs

)

√
det(Rs|s−1)

(√
2π
)l


 p(Y0|θ)

where ǫk = Yk − Ŷk|k−1 and the conditional mean and covariance are recur-
sively computed using the Kalman filter Ṫhus, by conditioning on Y0 the pa-
rameter estmates can be obtained by maximising with respect to the parameter
θ, i.e.

θ̂ = argmax
θ∈Θ

(
ln (L(θ;YK|Y0))

)
.

The states are also included in the updating procedure of the Kalman filter,
such that an estimation of the unobserved states is provided, as well as gaps in
the data series for the observable states can be bridged by the filtering method
(Kristensen and Madsen, 2003, Kristensen et al., 2004, Jonsdottir et al., 2006).

3 The test case and available data

The case study considers the well fields connected to the Søndersø Waterworks,
which is located in the Northern part of Zealand, Denmark. A map of the Søn-
dersø lake and its surroundings is shown in Figure 2, including all operating
wells connected to the waterworks. The waterworks consist of three subgroups
of wells, where two are located close to the lake and the third one is along the
river Tibberup, which diverts water from Søndersø lake. The whole water-
works delivers 8 million m3 of water each year, abstracted from aquifers in the
well field by 21 abstraction wells. However, observations from each well are
only available from the wells at Søndersø East and West well fields, and not for
the wells along Tibberup river, and since the objective of the model is to inter-
pret the water level in the individual well, the 10 wells along the river Tibberup
are excluded in the following.

The available data consist of measurements from 11 wells, where a cluster of 8
wells is on the North and East shore of lake Søndersø and 3 wells are located
South of the lake. For the study, the requirement is that the wells should all
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Figure 2: Map of the Søndersø waterworks and surroundings. The 21 wells,
attached to the waterworks, are marked with dots; the East wells
with “Ø”, the West wells with “V”, and the wells along Tibberup
river are marked “7A”-”17A”.

be pumping from the same aquifer. One of the wells is not pumping from the
same aquifer as the remaining wells. In Figure 2 this well is marked Ø20A, and
it is excluded in the following.

The 10 wells all abstract water from the limestone aquifer 20-50 meter below
surface. The aquifer is neither in hydraulic contact with the lake nor the Tib-
berup stream. For each well, the discharge rate for each minute is registered,
along with corresponding water drawdown in the well. The data used for es-
timation spans the period from December 8th, 2008, to January 26th, 2009, and
with the one minute resolution the period consist of 120,260 time instants. The
available data for the limestone aquifer wells is displayed in Figure 3. The
negative correlation between the head in the wells and the corresponding dis-
charge is clearly seen in the figure. The figure also shows the correlation be-
tween water levels in different wells, as changes in a particular well have influ-
ence on the other wells, penetrating the same aquifer, and the strength of this
correlation appears to be inversely related to the distance between wells. This
corresponds to the model obtained in Eq. (6) for the water levels in the wells.
Moreover, as seen in (6) the grey box model requires measurements for the dis-
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Figure 3: Available data for modelling the limestone aquifer. In each panel
the black line is the water drawdown in the well (axis to the left)
and a corresponding discharge flow rate is presented by the grey
area (axis to the right).
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tance di,j between wells i and j, but for the Søndersø well field these measures
are available and are, therefore, not required in the parameter estimation.

One important observation from Figure 3 is the missing data in the time series
used for the modelling approach. No water level measurements are available
for Well 4 and Well 8. However, these wells cannot be neglected from the model
since the wells are abstracting water from the same aquifer and, consequently,
their water discharges have significant influence on the water levels in all other
wells. Therefore, the water level of Wells 4 and 8 is not considered in the vector
of measured variables for the grey box model. Furthermore, the water level
measurements for Well 3 are partly missing, but the missing time series is esti-
mated by applying Kalman filter updating of the state for Well 3 in the system
equation.

4 Results

For illustrating the benefits of the grey box approach, three models are pro-
posed and compared.

4.1 Model 1: lumped parameter model

The first model in the study is a lumped parameter model of the stochastic
groundwater model, introduced in Section 2. A lumped parametrisation pro-
vides a more condensed description of the system, where both the model and
the parameters are identifiable from data.

The ith state in the lumped parameter model (hereafter called Model 1) is sim-
ilar to the one given in (5), but with few assumptions regarding the parame-
ters. First, it is difficult to distinguish between the transmissivity Ti,j and cor-
responding cross-sectional length Ei,j. Therefore, instead the transmissivity for
each cross-sectional unit, i.e. the product Ti,j = Ti,jEi,j, is estimated. Further-
more, the aquifer is assumed to be homogeneous and isotropic, and since all
wells pump from the same aquifer the transmissivity T is considered to be the
same between any two wells. Second, the storage coefficients S is a parameter
that characterises the aquifer and is assumed to be the same for all states in the
system equation. Third, semipervious confining layers are the main source of
recharge of cells, and for recharging the cells this source is assumed to have the
same charateristics everywhere in the well field, implying that the leakage co-
efficient R can be considered as a constant term. Fourth, to further reduce the
number of parameters the area A, the base area of a cell that includes a single
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well, is assumed to be the same for all cells. This is a rather harsh assump-
tion, since the boundaries of each cell should correspond to no-flow lines, but
such boundaries usually require continuous adjustment due to changes in the
aquifer flow (Narasimhan and Witherspoon, 1976, Rozos and Koutsoyiannis, 2010).
However, due to parsimonious reasons this simplification is adopted as well.
Hence, assumptions are listed as follows:

1. T = Ti,jEi,j, for i, j = 1, . . . ,10; i 6= j,

2. S = S1 = S2 = · · · = S10,

3. R = R1 = R2 = · · · = R10,

4. A = A1 = A2 = · · · = A10,

and by including these in Eq. (5), the ith state in the system equation becomes

dhi =

[
−
(

9T

SA

n

∑
j=1j 6=i

1
di,j

+
R

S

)
hi +

T

SA

n

∑
j=1j 6=i

hj

di,j
+

RH0

S
− Qi

A

]
dt + σidωi,

(13)

where the diffusion parameter σi is a constant term, estimated along with the
model parameters by the ML method. The measurement equation for Model 1
is considered to be directly observable for wells with available data for the wa-
ter level. Of the 10 wells included in the system equation, only 8 are observed
(see Fig. 3), indicating that the measurement equation for well i becomes

Hi = hi + ei (14)

where Hi represents the measured water head in well i. On a matrix form the
grey box model can then be written

dht = [A(θ)ht +B (θ)Qt]dt + σdωt (15)

Hk =C (θ)hk + ek. (16)

This expression for the stochastic well field model is a subset of the more gen-
eral version in Eq’s. (10) and (11), where the diffusion σ(·) = σ is a constant
diagonal matrix and D(θ) = 0 since the input variables are not considered to
have direct influence on the observed output.

The parameter estimates for Model 1 is shown in Table 1. The estimates for
the area A and H0 are seemingly physically interpretable. If A is assumed to
be a circle, with a pumping well at origin, the radius would be approximately
23m. H0 is a little higher than the maximum water level in the wells, implying
that water is constantly being recharged in the well field. For a single length
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unit of the cross-section (Ei,j = 1) the estimated transmissivity in the aquifer T
can by interpreted physically, and compared with pumping test results from
the Søndersø well field, where the average transmissivity was 30.5m2/h, the
estimate is seemingly adequate. Both the storage coefficient S and the leakage
R are also physically meaningful, but the estimate of S is too high (the storage

Table 1: Estimation Results for Models 1-3. Bold face numbers refer to param-
eter estimates, and below each estimate is a corresponding standard
deviation (parenthesis).

θ̂ Units Model 1 Model 2 Model 3

Drift parameters
S [-] 2.7·10−2 4.3·10−3 4.7·10−3

(0.5·10−2) (0.2·10−3) (0.2·10−3)
T [m·m2/h] 26.16 13.41 14.14

(3.80) (1.28) (0.98)
TE1 [m2/h] 11.46 11.72

(0.10) (0.07)
TE2 [m2/h] 28.85 29.35

(0.28) (0.19)
T3 [m2/h] 1.620 1.711

(0.028) (0.029)
TW [m2/h] 103.0 104.8

(5.5) (5.0)
R [h−1] 1.3·10−4 3.1·10−5 3.0·10−5

(0.5·10−4) (0.3·10−5) (0.1·10−5)
A [m2] 1598.0 1411.5 1731.9

(295.6) (128.9) (88.2)
A3 [m2] 4.13 5.36

(0.35) (0.49)
H0 [m] 15.28 11.42 10.96

(1.88) (0.51) (0.29)

Diffusion parameters
σ1 0.451 0.122 0.123

(0.010) (0.002) (0.002)
σ2 0.130 0.092 0.094

(0.003) (0.002) (0.002)
σ3 1.254 0.844 0.830

(0.026) (0.023) (0.023)
σ5 0.729 0.462 0.472

(0.014) (0.010) (0.010)
σ6 0.611 0.188 0.192

(0.012) (0.005) (0.005)
σ7 0.246 0.121 0.125

(0.005) (0.003) (0.003)
σ9 0.232 0.122 0.126

(0.047) (0.003) (0.003)
σ10 0.117 0.099 0.101

(0.003) (0.002) (0.002)
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coefficient from the previously mentioned pumping test was 2.64·10−4) and,
consequently, the estimated leakage coefficient is a little higher than expected.

Regarding the estimated diffusion parameters, the estimates seem to be rather
high for some of the wells in the system equation (σ1, σ3, σ5 and σ6). A large
estimate of the diffusion parameters propagates through the system equation
and is observed as a large variance of the predicted water levels. This means
that the prediction interval for the water heads is proportional to the estimated
diffusion in the system equation. The prediction intervals for the available
water heads are displayed in Figure 4 (enclosed by the black dash lines). The
plots show that the intervals are too large for any application of the water head
predictions in the wells, especially if a sequences of observations of a water
head is missing in the time series (see the infeasible estimates for Well 3 in
Fig. 4).

It is obvious from both the estimated parameters and the evaluated prediction
interval, that Model 1 is not able to provide reliable water head predictions
with a reasonable assessment of the embedded uncertainty. Thus, the stochas-
tic well field model requires an improvement.

4.2 Model 2: Including well equation

Assuming the states to be the measured water levels in the measurement equa-
tion (14) is inconsistent with the approach for the forcing in the system equation
(13), since the system is assumed to be the aquifer where the discharge variable
is transferred to the aquifer with the storage coefficient S. This has to be cor-
rected in the measurement equation because the system is not representing the
head in the well but the head in the cell that includes the well. Hence, the
observation equation for well i needs to contain a function for the well losses
that are present when water is pumped from well i. Then the measurement
equation (14) becomes

Hi = hi − DiQi + ei (17)

where Di is a function for the loss in the water head between the well and the
cell. This head difference can be described with a well-loss functions, consist-
ing of a linear term for the aquifer loss and nonlinear term for the well loss
that, respectively, correspond to the head loss through the well screening and
the head loss from the perimeter of the cell to the well screening (Hansen et al.,
2011). In this study however, the function is considered to be time-invariant
and linearly related with the pumping rate, since the heads in the wells appear
to approach a steady-state condition. Thus, the well loss and the aquifer loss
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Figure 4: Comparison for 95% prediction intervals between Model 1 (black
dashed lines) and Model 2 (grey shaded area). The observed values
for the water level are connected by the black solid line and the
predictions for Model 1 and Model 2 are shown as dark grey dash
and solid lines, respectively. The light grey dash line is the pumping
rate for the corresponding well (read from the right label in each
plot).
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as represented with an aggregated loss function:

Di =
ln
(

ri
rw,i

)

2πTi
(18)

where Ti is the transmissivity for the flow from the aquifer to the well, rw,i is the
radius of the well, and ri is the radius of the part of the aquifer that is affected
by the discharge. The loss function (18) is uniquely defined for each well. If the
estimated area A in the model is approximated to be a circle, ri can be replaced
in the loss function, and the measurement equation for well i is written

Hi = hi −
log
(√

Ai/π
rw,i

)

2πTi
Qi + ei. (19)

Thus, the updated grey box model consist of the system equation in (13), but
the observation equation is now identical to the one represented in (11) where
D(θ) is a matrix with the well losses Di on its diagonal. This model will be
referred to as Model 2 in this study. The transmissivity Ti refers to the trans-
missivity from distance ri to the well, including the flow through the well filter.
This transmissivity should be distinguished from T, but to prevent a possible
overparametrisation by assigning a new parameter to each well the geograph-
ical location is considered to find a reduced number of transmissivity param-
eters for the estimation. Two parameters of transmissivity are introduced for
the wells on the east side, marked TE1 for wells 1, 5 and 6, and TE2 for wells 2
and 7; and one for the wells on west side: TW .

Furthermore, the data in Figure 3 reveals that the variation in the water draw-
down for Well 3 is one of the largest (similar to the variation for Well 1), but
for a much lower pumping rate. This indicates that the characteristics for Well
3 are not the same as for the other wells and an adjustment is needed in the
parametrisation with focus on Well 3. The increasing flow to the well is mainly
caused by the transmissivity T and the area A, and from the data it becomes
clear that these two parameters have to be estimated for Well 3 separately from
the other wells. Hence, we introduce the parameters T3 and A3 in the estima-
tion to characterise the water drawdown in Well 3.

The estimation results for Model 2 are shown in Table 1, and compared to the
results for Model 1 some great improvements are achieved. By considering the
measurement equation as a well equation for Model 2 the recharge has been
reduced since both H0 and R are estimated much smaller than in Model 1.
Also, the storage coefficient S is corrected towards a lower value. The lumped
parameter estimate for the transmissivity in the aquifer T is now only a half
of the previous estimate. By distinguishing between the transmissivities in
well screening and the lumped transmissivity in the aquifer, T becomes a more
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unique property of the aquifer. The result for the estimated transmissivities
TE1, TE2, T3 and TW are clearly distinct, since the estimates are not remotely
close. The deviation between the east side transmissivities is the smallest, but
far from being considered the same. The small value for T3 is as expected, be-
cause changes in the water head in Well 3 are (almost) exclusively related the
discharge in the Well 3. In contrast, the wells on the west side are highly de-
pending on the discharges from some of the other wells, which is reflected in
the high estimate for TW . The area A is similar for both models. By particularly
estimate the base area for Well 3 a fairly small value is obtained for A3, which
corresponds to the large variation in the water head for such a low pumping
rate. For the diffusion parameters, a prominent decrease in the parameter esti-
mates is attained in favour of Model 2. Especially for uncertainty parameters
that were estimated to be unrealistically high in Model 1 are now significantly
improved, i.e. σ1, σ3, σ5 and σ6 are reduced by approximately 30 − 75%.

Changes in the one-step prediction and the improvement for the prediction in-
tervals can be visualised for each well in Figure 4. It is difficult to observe the
difference between the two predictions, but that is mainly due to the fact that
these two predictions are almost identical, as well as identical to the black solid
line, representing the observations of the water level. It can be discussed which
of these two is the better candidate for the prediction, but the main conclusion
is that they give almost the same predictions and the performance improve-
ment is determined by the prediction intervals. By comparing the region em-
bedded within the black dash lines (Model 1) and the grey shaded area (Model
2), a large decrease of the prediction intervals is detected, where the reduc-
tion for each well is in accordance with the reduction of the related diffusion
parameter from Table 1. This correction for the intervals is mainly due to the
inclusion of a well function in the measurement equation in the grey box model
approach. Also, the missing data in the water level of Well 3 are now estimated
sufficiently by including the well function in the measurement equation of the
grey box model. Model 1 is not able to provide sufficient estimates for the states
in the model, but with Model 2 the states and their uncertainties are adequately
assessed.

4.3 Model 3: Formulating the diffusion

Although the physical parameters for Model 2 are seen to be reasonably es-
timated, and it appears from Figure 4 that the one-step prediction is able to
fit the observations, the main concern regarding Model 2 is however the esti-
mation of the prediction interval. The model improvement from Model 1 to
Model 2 shows a large reduction in the estimated interval, but still it is too
wide when the water heads approach a steady-state condition. The challenge
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here would be to give a “right” interpretation of the prediction interval as time
between changes in the pumping is prolonged. In the model structure the dif-
fusion requires a functional form, such that the state uncertainties are rapidly
increased as pumps are either switched on or off, but subsequently decreased
until a steady-state is reached and the uncertainty is at its minimum.

With the on-off setting for the pumps, a feasible function for the diffusion
would be an Impulse Response Function (IRF), inspired by the physical pa-
rameters already included in the model structure. For a pumping well, one
such physically-based IRF is related to the Hantush formula, and describes a
penetrating well in an unbounded aquifer. The Hantush formula can be de-
fined by

Mi =− 1
4πTi,jτi,t

exp

(
−

d2
i,jSi

4Ti,jτj,t
− Riτi,t

Si

)
(20)

where all parameters have been defined in Section 2, and τi,t = t − ti,0, where
ti,0 corresponds to the preceding time instant pump i was turned on or off.
The first term in the exponential function expresses the delayed influence on
well i when pumping from well j at distance di,j. However, the data shows that
these influences are vanishing when compared with the instantaneous changes
in well i for the same pumping at well j. The effect of the changes in the dis-
charge are observed in almost all the other wells instantaneously. Thus, the
first term in the exponential function can be disregarded in the diffusion term
of the grey box model, and only one time variable τt is used as an input to the
grey box model, accounting for all on-off shifts in the discharges for all wells in
the study. Further, due to parsimonious reasons, the time-varying term, mul-
tiplied to the exponential function in Eq. (20), is considered to be a constant
and accounts for the span of the uncertainty when τt is initiated. With this
simplified Hantush formula, the diffusion becomes

σi,i (Qt, t;θ) = σi exp
(
−R

S
τt

)
. (21)

By including this formula for all 10 states in the system equation (10), the dif-
fusion terms are now input dependent and nonlinear, in addition to the linear
and time-invariant drift term in the model in (6). Combined with the same
measurement equation as for Model 2, the third model proposal for this study
is obtained (hereafter referred to as Model 3).

It is not surprising that the estimated parameters in Model 2 and Model 3 (see
Table 1) are quite alike, since the physical system is identical. The physical es-
timates that are expected to be adjusted when moving from Model 2 to Model
3 are the ones used in the diffusion formulation; S and R, but neither S nor
R are significantly affected by this modification in the model structure. More
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interesting is to see how the uncertainty has been modified, and a comparison
between the two models is shown in Figure 5 where, now, the black dashed
lines are the limits for the prediction interval of Model 2 and the grey region is
the prediction interval for Model 3. In each panel in the figure the one-step pre-
diction is plotted for the two models (dark grey lines, dash and solid for Mod-
els 2 and 3, respectively), and since the physical structure of the models is the
same, and the parameter estimates very similar, the predictions also become
very alike (for most of the plots in Fig. 5 it is difficult to distinguish between
the predictions since they almost overlap). The figure shows very clearly how
the uncertainty of the water level in each well is reduced as the time between
changes in the pumping rates increases. The exponential decay is especially
noticable for the wells where the uncertainty is rather high, as the reduction is
more rapid (Wells 5 and 7). Also, the decreasing prediction interval seems to
adjust to the accuracy of a corresponding prediction, i.e. decreasing noise be-
tween the prediction and the measurement results in a faster reduction of the
prediction interval. This is a consequence of the estimated diffusion param-
eters in Model 3, which represent the amplitude of the diffusion. By further
extending the diffusion term, the prediction interval could be improved, but at
the expense of the parametrisation of the diffusion matrix σ(·) in (10). Further
extensions for the diffusion term in the grey box model are not considered in
this paper.

The improved predition intervals for the water levels can be clearly seen; first
in Figure 4 when comparing Models 1 and 2, and then again in Figure 5 for
comparison of Model 2 and 3. However, only considering results seen from
figures are not enough to evaluate the adoption of the prediction interval in
the model. Thus, a quantification of the prediction performance is required.

4.4 Evaluating the prediction intervals

The classical way of evaluating predictions is by quantifying the deviation be-
tween the predictions and corresponding measurements. Many methods have
been proposed to find the “right” measure of model performance; e.g. the
mean square error (MAE), the root mean square error (RMSE), the mean av-
erage error (MAE) and the standard deviation error (SDE) (see Madsen et al.,
2005). The most popular criterion though for evaluating hydrological mod-
els is the Nash-Sutcliffe coefficient (Nash and Sutcliffe, 1970). For the grey box
model, or models that apply the maximum likelihood method for estimating
the unknown parameters, it is straight forward to use the likelihood, given in
Section 2.3, since the optimal parameter set is simply obtained when the like-
lihood is maximised. All these methods (and many more) provide a single
number for the quantification and are good representitives for the evaluation
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Figure 5: Comparison for prediction intervals between Model 2 (black dashed
lines) and Model 3 (grey shaded area). The observed values for the
water level are connected by the black solid line and the predictions
for Model 2 and Model 3 are shown as dark grey dash and solid
lines, respectively (it is difficult to see the difference between the
predictions because the lines overlap). The light grey dash line is
the pumping rate for the corresponding well (read from the right
label in each plot).
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of so-called point predictions. Here, however, the aim is to quantify the predic-
tion intervals by a single number, similar to the methods described above for
the point prediction.

The method used in the following compares the prediction 95% quantiles with
the available output data. This can be inspected visually by comparing the pre-
diction limits in Figures 4 and 5 with the included measurements, but to quan-
tify the performance of the predition interval a scoring criterion is required that
merges all relavant information from the interval into a single number. For a
model to be even considered as an adequate candidate, a reliability require-
ment has to be fulfilled, i.e. the proportion of the observed data inside the esti-
mated prediction interval should be the same as the predetermined coverage of
data (here, the coverage is 95%). For any deviation between the coverage and
the observed proportion the reliability of the model is lost and a bias is detected
between the model and the observations. Further, the prediction intervals must
have narrow regions, since too large intervals will reduce the accuracy of the
predicted outcome and create unwanted scenarios for decision makers. The
size of the prediction interval is often referred to as sharpness (Gneiting et al.,
2007).

To quantify the performance of the model both the reliability and the sharp-
ness have to be accounted for in the evaluation. The sharpness does not pro-
vide any information regarding the observed values since only the upper and
lower limits of the prediction interval are considered. In contrast, the reliabil-
ity provides information about the observed data, but only as an indicator of
hits and misses of the observed values within the prediction interval and fails
to inform about the size of the region. However, what is not accounted for in
these two performance measures is the deviation between an observation that
fails to be within the prediction interval and the interval itself. Hence, this ad-
ditional feature should be combined with both reliability and sharpness in a
single number (called the skill score) for the performance evaluation. Thus, a
proper skill score criterion is applied for the prediction interval (restricted by
an upper and a lower quantile). For an upper quantile u and a lower quantile
l, for a coverage β, the interval score (Gneiting and Raftery, 2007) is calculated

Scβ(l,u;Y) = (u − l) +
2
β
(l −Y)I{Y < l}+ 2

β
(Y − u)I{Y > u} (22)

where I{·} is an indicator variable equal to one if the statement inside the
brackets is fulfilled, but zero otherwise. This is an attractive approach because
the sharpness is included directly (u − l) and observations that are outside the
prediction interval are penalised in accordance with the span of this departure
away from the closest interval limit. Thus, the best model candidate for the
1-step prediction interval is the model with smallest score value.
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The skill score criterion (22) for all the available water level data, evaluated
for all three models, are listed in Table 2. The table also lists the proportion of
observations that were detected ouside the estimated prediction interval (α).
It is not surprising that the skill score for Model 1 is significantly larger than
the score for the other two models for most wells, since the size of the predici-
tion interval, or the sharpness, is much larger. This can best be detected by
observing wells 2 and 10 in Figure 4 where the limits of the prediction region
for Model 1 approaches the interval for Model 2, and correspondingly the skill
score values for the models are closer to each other. Even though, for all ob-
served wells, the proportion of misses for Model 1 (α1 in Table 2) is smaller
than the corresponding proportion of misses of the other models, it is not ap-
parent in the resulting score values when penalisation in the score related to
the size of the interval (u − l) is taken into account. This rules out Model 1 as
the best model candidate for the prediction interval of the water drawdown in
the observed wells.

The score results for Model 2 and Model 3 are quite similar where, for almost
all wells, Model 3 is performing a little better. It is only for Well 3 where Model
2 is outperforming Model 3. The reduction of the prediction interval in Model
3 is due to the exponential decay as the duration between on-off regulations for
the pumps is increased. Proportion of misses for these two models are almost
identical for all wells, implying that the difference in the skill score is related to
the sharpness of the models. Hence, formulating the diffusion term in the grey
box model as a function of the input signal (Model 3) results in more narrow
prediction intervals and an improvement in the model performance.

Table 2: Performance evaluation by using skill score criterion. A skill score
is calculated for each well for comparison of the models, where the
best model candidate has the lowest score value. Also in the table,
the proportion of observations outside the predition interval (α) is
shown.

Well 1 Well 2 Well 3 Well 5 Well 6 Well 7 Well 9 Well 10

Model 1 Sc
(1)
β 3918 1105 8831 5842 5341 2139 1828 963

α1 0.013 0.024 0.016 0.019 0.018 0.019 0.020 0.047
Model 2 Sc

(2)
β 1180 813 4442 3746 1918 1056 969 815

α2 0.026 0.044 0.025 0.020 0.028 0.044 0.039 0.060

Model 3 Sc
(3)
β 1132 782 4479 3590 1853 1016 955 789

α3 0.026 0.043 0.025 0.020 0.028 0.043 0.039 0.060
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5 Conclusions

The study has demonstrated how the grey box model can by applied for mod-
elling water heads in wells, which pump water from a confined aquifer in a
well field. The grey box model consists of a system equation and a measure-
ment equation, and by replacing the governing equations with a set of stochas-
tic differential equations in the system equation the model structure for the
groundwater flow was simplified, but without losing the essential physical in-
terpretation of the system. The parameters in the simplified model were suffi-
ciently estimated, and from the estimation results both the drift term and the
diffusion term of the system equations were further developed to obtain an
improved stochastic model structure for the well field. Three grey box models
were estimated, which all differed in the model structure and were gradually
improved to cope with both the dynamics in the aquifer and the uncertain-
ties embedded in the structure of the system. The first model was a lumped
parameter model and showed the feasibility of the model approach. For the
second model a well function was included, which led to improved param-
eter estimates and, consequently, a refinement of the system dynamics. The
third model had a diffusion term that varied with changes in the on-off setting
of the pumping rates, and showed further improvement of the second model,
especially for the uncertainty of the one-step prediction intervals. Finally, the
performances of the models were quantified by using the skill score criterion,
which verified these findings for the three models. The grey box model pro-
vides a simple structure for the dynamics of the system where both model and
its parameters are identifiable from data, and, thus, it is believed that such
models will be well-suited for online forecasts and control of well fields.
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Stochastic simulation and robust optimal

management of well fields using Impulse Response
Function models

Gianluca Fabio Dorini 1 Fannar Örn Thordarson1, Henrik Madsen1

Abstract

Simulation-based groundwater management models are valu-
able tools for sustainable exploitation of the natural resource.
They allow for pre-evaluations of the impact of management so-
lutions, so that optimality can be assessed. Unfortunately, due
to a wealth of uncertainties, simulations often mismatch the ac-
tual system, and this ultimately compromises the reliability of
the management models. This inherent limit can be partially
overcome by using statistical methods to describe the dynamics
and to quantify model uncertainty. In this paper we present a
multi-period management methodology for a system of pump-
ing wells. The uncertainty in stress-response estimation is han-
dled by employing a special class of Transfer Function-Noise
model, known as Predefined Impulse Response Function In Con-
tinuous Time. Model parameters are estimated from observed
multivariate records using a maximum likelihood method. The
method is embedded within a two-steps procedure, whose pur-
pose is to ease the computational burden caused by the depen-
dency between numerical complexity and the number of pump-
ing wells. We consider a chance-constrained optimization prob-
lem, which is formalized as convex programming. The optimal
solution is computed using Interior Point methods. The method-
ology is tested on a well field, nearby Copenhagen (DK). The
reliability of the management model is proved by testing the
accuracy on both estimation set and validation set. An exam-
ple of head-constrained water supply problem is formulated and
solved for different confidence levels of constraints fulfillment.
The overall level of uncertainty, i.e. the variance of the objective
function is always within the 2% of its own mean value.

Key words:
Simulation, Optimization model, Breakthrough curves, Uncertainty, Time-series, Change-
constrained model
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1 Introduction

In many areas of the world, groundwater is the main water resource. Con-
sequences of inadequate management of groundwater aquifers, such as de-
pletion, contamination and land subsidence, are undesirable, particularly for
their high social impact (Tung, 1987, Georgakakos and Vlatsa, 1991). The value
of an effective groundwater management methodology is given by the impor-
tance of a sustainable use of the natural resource. In literature, groundwater
management problems, such as optimal control of aquifer hydraulics, are of-
ten addressed using simulation models combined with optimization. Simula-
tion allows for a description of the stress-response relationship in the aquifer
(Tung, 1986). Optimization utilizes simulation to determine pumping strategies
(scheduling), which are best in terms of performance, and feasible in terms of
operational constraints fulfillment (Wagner, 1999).

Groundwater simulation in management models requires to solve the govern-
ing equations, and this is done either by an external simulation model or by us-
ing the response matrix approach (see for instance Das and Datta, 2001). Simula-
tion models, (also called transient distributed groundwater models, mechanis-
tic models, numerical groundwater models, or distributed parameter ground-
water simulation models), are typically deterministic partial differential equa-
tions solved numerically by finite difference or finite element methods. Some
examples of commercial software packages are MODFLOW (Harbaugh et al.,
2000), MIKE-SHE (Madsen et al., 2008) and SUTRA (Voss, 1984). The response
matrix approach (Gorelick, 1983) is based on the concept of Impulse Response
Function (IRF) models and linear systems theory. The IRFs describe the re-
sponse of the water table to an impulse stress (such as pumping, precipita-
tion, etc.) in a set of specified observation points. The response matrix is
constructed using IRFs and is computationally more efficient than numeric
solvers. However, the use of response matrix is limited to cases where linear-
ity is assessed (e.g. Tung, 1986, 1987, Chang et al., 2007). For the vast majority
of cases, methodologies deal with complex aquifer systems, employing den-
sity dependent transport models, and they are based on the use of transient
distributed models (Wagner and Gorelick, 1987, Andricevic, 1990, Georgakakos and
Vlatsa, 1991, Wagner et al., 1992, Morgan et al., 1993, Wagner, 1999, McPhee and
Yeh, 2006, Kalwij and Peralta, 2006, Bayer et al., 2007, 2010). The advantage of
the simulation-optimization approach is that impacts of the management solu-
tions can be evaluated and compared without having to be tested in the real
aquifer. Clearly, the reliability of the stress-response estimations is essential for
the applicability to real-life case studies.

Uncertainty in groundwater hydraulic management and remediation is mainly
due to the difficulty of measuring the spatially-distributed parameters of the



1 Introdution 123
governing equations. Over the past 30 years, lot of research has been carried
out to handle the uncertainty limiting the reliability of groundwater manage-
ment models (e.g. Das and Datta, 2001). The earliest methods were commonly
based on sensitivity analysis, to study the effects of uncertain parameters vari-
ation on the optimal scheduling (Maddock, 1974, Aguado et al., 1977, Willis, 1979,
Gorelick, 1982, Kaunas Jr. and Haimes, 1985). In the eighties, the mainstream
became statistical analysis, with the advantage of capturing the effect of the
uncertainty of the parameters on the model sensitivity. With statistical anal-
ysis, unknown parameters are assessed using estimation techniques based on
field measurements and laboratory experiments (e.g. Tung, 1986). Estimates
are always encumbered with some uncertainty. Some methodologies mainly
focus on hydraulic conductivity or transmissivity (Tung, 1987, Andricevic, 1990,
Wagner et al., 1992, McPhee and Yeh, 2006). Spatial variability of conductivity
is explicitly considered by Bayer et al. (2007) and Bayer et al. (2010). In other
works, especially those involving remediation problems, uncertainty is han-
dled over the entire parameters set (Wagner and Gorelick, 1987). Georgakakos
and Vlatsa (1991) also considered uncertain boundary conditions. Chang et al.
(2007) considered uncertain lame coefficient for a problem concerning subsi-
dence control. Wagner (1999) and He et al. (2008) characterized uncertainty for
pollutant concentrations.

In optimal groundwater management, decision variables are commonly pump-
ing rates, which can be time invariant or transient. Performances are estimated
using one or more objective functions, which depend on decision variables and
hydraulic heads. In order to be taken into account within the decision pro-
cess, the uncertainty must be propagated from the source to the optimization
framework. This can be done in different ways. Tung (1986), Wagner and Gore-
lick (1987), Wagner (1999), Chang et al. (2007) used the first order analysis, the
second moment analysis, and the first-order variance-estimation method; An-
dricevic (1990) used the extended Kalman filter; Georgakakos and Vlatsa (1991)
used the small perturbation method; McPhee and Yeh (2006) used the Gaussian
quadrature approximation; Wagner et al. (1992) used the Monte Carlo sampling;
Morgan et al. (1993) used the matrix decomposition-based methods; Kalwij and
Peralta (2006) used the multiple-realization approach; Bayer et al. (2007, 2010)
used the stack ordering technique. As effect of the uncertainty propagation,
both objective function values and constraints fulfillment are random events.
In order to make the problem solvable, an equivalent deterministic formula-
tion is required. Probabilistic objective functions are usually transformed into
deterministic ones, by taking their expectations. Similarly, constraints can be
set to be satisfied with a given probability. This concept is referred to as Chance
Constrained optimization (CC), and it has been widely applied in groundwater
flow management.

Despite the number and the variety of publications, most of the above listed
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methodologies have been successfully tested on synthetic systems, but not val-
idated in real-case study applications. Few exceptions are in water quality
(Kalwij and Peralta, 2006, Bayer et al., 2010). We argue that this is caused by
the inherent difficulty to effectively match real-world systems with transient
distributed models. The limitation lies within the spatial discretization of the
aquifer domain into cells, and the time discretization, which are necessary for
the numerical integration. From this point of view, the response matrix ap-
proach would be preferable, as the IRFs are continuous-time models. How-
ever, in groundwater management this is hardly exploited, as IRFs are usually
determined by performing multiple simulations of unit pumping stress (and
contaminant loads for remediation), using again a transient distributed model
(Heidari, 1982, Das and Datta, 2001).

IRFs can alternatively be determined, directly from observed data by means
of ARMAX or Transfer Function-Noise (TFN) time series models (see e.g. Box
and Jenkins, 1970). The structure of TFN models is not necessarily based on
the groundflow equation. TFN models estimate an output time series, such as
groundwater head in one well, by linearly transforming a multivariate input
series, such as pumping stresses in a well field. Uncertainty in output estima-
tion is handled by modeling the residuals of the model as an auto-correlated
stochastic process (see for instance von Asmuth et al., 2002). TFN models have
been successfully applied in many fields of hydrology, (e.g. Tankersley et al.,
1993, Gehrels et al., 1994, van Geer and Zuur, 1997). In groundwater simulation,
TFN models are often preferred over the use of transient distributed model,
not only for their simplicity, but also because their predictions are more accu-
rate (Hipel and McLeod, 1994). Furthermore, the noisy component allows for a
description of the uncertainty, and also for the extension of the applicability of
TFN models to cases where linearity conditions are not fully met.

In this paper we present a TFN model-based groundwater hydraulic manage-
ment methodology, which is designed to be reliable in real case-study appli-
cations. We consider a transient problem of minimum energy use, where a
set of linear constraints must be fulfilled (Section 2). The TFN model allows
for a CC problem formulation, with quadratic objective function and linear
constraints (Section 4). The optimal solution is computed using Interior Point
methods (IP), which are extensively employed for practical applications, (see
e.g. Ben-Tal and Nemirovski, 2001). We use a special class of TFN models, which
were developed to deal with hydrologic problems (von Asmuth et al., 2002). In
these models, known as Predefined Impulse Response Function In Continuous
Time (PIRFICT), the IRFs are defined as simple parametric analytical expres-
sions (Section 3.1). Model parameters are estimated with a maximum likeli-
hood method. Depending on the type of stress, (precipitation, evaporation,
pumping wells, rivers fluctuation), different expressions are used (von Asmuth
et al., 2008). Here, we propose a particular IRF class of expressions to adapt
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PIRFICT models to a field of pumping wells (Section 3.2). The parameter es-
timation procedure is designed to deal with an arbitrary number of pumping
wells (Section 3.3). The methodology is tested using recorded measurements
taken at the well field of Søndersø, located northwest of Copenhagen, Denmark
(Section 5).

2 The management problem

We consider a well field having N pumping wells. We denote with qi(t) the
pumping stress in well i at time t, and with the vector q(t) = (q1(t), . . . ,qN(t))

⊤

the stresses in the whole well field. The aquifer response to q(t) at well i is the
piezometric water level hi(t), and the collection of wells responses is the vec-
tor h(t) = (h1(t), . . . ,hN(t))

⊤. The aquifer’s water head response to the pump
stresses is described by the groundwater flow equation:

Ss
∂h

∂t
=∇(κ∇h) + w + q (1)

where Ss and κ are respectively the spatially variable specific storage [L−1] and
hydraulic conductivity tensor [LT−1]. The term w accounts for diffuse sources
and sinks such as precipitation, evapotranspiration, and river/lakes/sea-level
fluctuations. Assuming that both initial condition and time-varying boundary
conditions are known, the aquifer’s response h(t) to a given series of stresses
q(t) can be simulated by solving equation (1) in space and time. If the aquifer
is confined, the response of well i at time t to a stress j, where j = 1, . . . , N, at
time t′ ≤ t is linear, i.e.

θij(t − t′) =
∂hi(t)

∂qj(t′)
(2)

where θij is the IRF of well i to pumping stress j. Let t = 0 be the starting time
of the simulation, and b(t) = (b1(t), . . . ,bN(t))

⊤ be the wells water head for the
no-pumping (namely q(t) = 0 for t ≥ 0); then hi(t) is given by

hi(t) =
N

∑
j=1

∫ t

−∞
qj(τ)θij(t − τ)dτ + bi(t)

=
N

∑
j=1

δij(t) + bi(t)

(3)

where δij(t) is the drawdown caused by pump rate qj(t). Simulation allows for
the estimation of the impact on the aquifers of different pumping strategies,
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and therefore it can be employed as a model for decision support in well field
management.

We consider a management model where q(t) and h(t) vary along the con-
tinuous planning time horizon t ∈ [0, T). Such horizon is broken down into
K = T/∆t time intervals of equal duration ∆t, denoting the decision time step.
In what follows we often refer to as time, both continuous time variable t and
discrete time variable k. Decisions are the pump flows over time, and they
are taken at the beginning of each time step. More specifically, the decision
variable is a discrete-time vector qk = (q1k, . . . ,qNk)

⊤ defining the pump rates
during the k-th decision time step, i.e. qi(t) = qik, for t ∈ [(k − 1)∆t,k∆t). Simi-
larly, we define hk = (h1k, . . . ,hNk)

⊤, whose i-th component denotes the average
head response of well i, along the k-th time step, namely:

hik =
1

∆t

k∆t∫

(k−1)∆t

hi(τ)dτ. (4)

If the aquifer is confined, the continuous-time IRF θij(t) of equation (2) is turned
into a discrete-time function:

θij,k−k′ =
1

∆t

∫ k∆t

(k′−1)∆t
θij

(
t′ − τ − (k − 1)∆t

)
dτ ≤ 0, (5)

hence we can estimate the i-th response in discrete-time hik by replacing the
convolution of equation (3) with the expression

hik =
N

∑
j=1

k

∑
k′=1

qk′θij,k−k′+1 + bik

=
N

∑
j=1

δijk + bik

(6)

where δijk is the discrete-time drawdown and the discrete-time no-pumping
bk = (bk1, . . . ,bkN) is obtained by integrating the continuous-time no-pumping
b(t) = (b1(t), . . . ,bN(t))

⊤, using equation (4). Equation (6) can be performed
efficiently, as the discrete IRF θijk can be determined at once for all i, j,k and
then stored into the computer memory. Such approach is known as impact
matrix (Gorelick, 1983).

The goal of the management is to fulfill a set of constraints, with minimum
operational cost. The considered operational cost of pump i at time k is the
amount of energy required to lift the water from the aquifer level hik to the
storage level hs:

pik =
ρw∆t

ηi
qik (hs − hik) (7)
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where ρw is the density of water [M L−3], and ηi is the efficiency. Assum-
ing linearity (as expressed in equation (6)), the total energy consumption P =

∑
K
k=1 ∑

N
i=1 pik, is a quadratic function of the stresses q1, . . . ,qK.

Constraints may take the form of linear functions of hydraulic head, stresses
and time (e.g. Ahlfeld and Mulligan, 2000). Some examples are, stress bounds
(e.g. qik ≤ quk, where u is a pump rate constraint); bounds on total stress (e.g.
∑

N
i=1 qik ≥ Dk) for water demand (Dk) fulfillment; head bound constraints (e.g.

hik ≤ huk) for mining and control dewatering or subsidence control; head dif-
ference constraints (e.g. hik − hjk ≥ ∆k) to control salt water or polluted water
intrusion within the aquifer. Let Nq and Nh be the number of stress constraints
and head constraints, respectively. For k = 1, . . . ,K the constraints are defined
as

Chk ≤ fk and Dqk ≤ gk (8)

where C is a Nh × N matrix, fk are vectors with Nh components, D are Nq ×
N matrices, gk are vectors with Nq components. The optimal solution of the
management problem is the scheduling, i.e. a sequence of decisions q1, . . . ,qK,
minimizing the quadratic function

P∗ = min
q1,...,qK

K

∑
k=1

N

∑
i=1

ρw∆t

ηi
qik (hs − hik) (9)

subject to linear constraints (6) and (8). Such problem is a quadratic program-
ming problem with linear constraints, whose solution can be computed, for
instance, using interior point methods (IP). We remark that in this paper we
refer to as pumping wells even in case of simple monitoring wells, i.e. with
no pumps installed. Those wells are located in points in which constraints are
imposed.

Solving the management problem requires the continuous-time IRFs to be esti-
mated, in order to construct discrete-time IRFs by computing the integral (5). It
is important to remark that, following the linearity and time-independent dy-
namics, such operation only requires to be done once. This is normally done us-
ing a transient distributed groundwater model whose accuracy in predictions
is limited by several sources of uncertainty. However, if uncertainty cannot be
completely eliminated it can be handled using statistical methods, so that man-
agement solutions can be assessed taking into account the model accuracy. We
do this by using TFN time series models, to determine the IRFs directly from
observed data, hence without using transient distributed groundwater models.
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3 Modeling uncertainty using Transfer Function Noise

time series models

3.1 PIRFICT models

We use TFN models to estimate a groundwater head h(t) in a monitoring well,
by linearly transforming N input series of pumping stresses q(t). Consider
a monitoring well in a confined aquifer; as discussed in Section 2, when no
pumping, the head follows a certain pattern b(t), which is caused by other
sources of stress. In the ideal situation when no source of stress has affected
the aquifer for all t ∈ (−∞,+∞), the water level b(t) at that well is a constant
b. Let us introduce a source of stress R(t) which is not necessary a pumping
stress. This affects the water level in the monitoring well, which deviates from
b in time, by an amount given by the convolution

h(t) = b +

t∫

−∞

R(τ)θ(t − τ)dτ

where θ is the IRF to the stress, of the aquifer piezometric level, at the consid-
ered well. Calibrating a TFN model consists on determining the shape of the
IRF. In time series analysis, IRFs are usually discrete-time rational polynomial
expressions (see e.g. Madsen, 2008). The PIRFICT models form a special class
of TFN, where the IRF is defined as a parametric analytical expression in con-
tinuous time. The advantage of the continuous time domain is that both model
identification and parameter estimation are independent of the sampling fre-
quency of the observed data. Furthermore, the sampling frequency of the input
time series can be irregular. von Asmuth and Maas (2001) noticed the similarity
between the shape of IRFs and probability density function of continuous ran-
dom variables. von Asmuth et al. (2002) proposed a Pearson type III distribution
function for distributed types of stress, such as precipitation, evaporation, and
barometric pressure. For other types of stress, such as the influence of pump-
ing wells, or surface water fluctuations, they proposed IRF models that are
inspired to physical laws. The IRF of a pumping (or injecting) well, located
at distance r from the monitoring well, with pump rate q(t), is inspired to the
Hantush formula describing penetrating well in an aquifer of infinite extent,
with transmissivity T [L2T] and storage coefficient S [-], covered by a storage-
free aquitard with resistance C [T]:

h(t) = b −
t∫

−∞

q(t − τ)

4πTτ
exp

(
− r2S

4Tτ
− τ

CS

)
dτ (10)
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being the convolution between q(t) and a term whose structure is the shape of
the proposed IRF:

θ(t) =−A

t
exp

(
− β2

γ2t
− γ2t

)
(11)

where A, γ and β are simply parameters without a physical meaning. Similarly
for surface water fluctuations, von Asmuth et al. (2008) proposed a parameter-
ized version of the polder function of Bruggeman (1999). A similar approach
in groundwater simulation can be found in paper by Tung (1986), where either
the Cooper-Jacob equation, or the Theis equation were proposed as IRF. Also,
Tung (1987) used the Thiem equation.

The main difference between these approaches and the TFN model approach,
lies within the parameter estimation. In fact, for both cases, the IRF param-
eters were transmissivity and storage coefficient, which were estimated based
on pumping tests averaged over a large and representative aquifer volume. Es-
timation of TFN models is instead exclusively focused in matching the stress-
response observation, i.e. ignoring the system’s hydrology. Parameters of PIR-
FICT models are estimated from a time series of observed stresses and water
levels at the monitoring well, and the IRF can be used for simulation, i.e.

h(t) = b + n(t) +

t∫

−∞

R(τ)θ(t − τ)dτ

where the term n(t) is the residual [L], namely the deviation between the mea-
surements and the model output, conditioned on the initial value h(0). Ideally
are the residuals detected as white noise terms, indicating that the proposed
IRF model is the best possible description of the measured output, and the re-
maining noise is dedicated to fluctuations in the measurements. However, this
is seldom the case and the residual series is a combination of the measurement
noise and model noise, where the latter can be related to incomplete model
structure, undetected input variables or corrupted measurements in the input
series. The rigid structure of the IRF models disables the possibility of extend-
ing the model, due to the choice of which type of pre-defined curve should be
used to approximate the real IRF. Thus, to account for any structural behavior
in the residual series, the colored noise n(t) can then be modeled as a stochastic
process, given by the stochastic Itô integral

n(t) =

t∫

−∞

φ(t − τ)dW(τ) (12)

where W(t) is a continuous white noise (Wiener) process [L] (see e.g. Oksendal,
2003). This integral convolution representation was applied by von Asmuth et al.
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(2002), who proposed an exponential noise model as parametric IRF:

φ(t) =
√

2ασ2
ne−αt (13)

with the parameter α determining the decay rate and σ2
n denoting the variance

of the residuals. When more than one stress is operating, the overall response
of the monitoring well is simply given by the superposition of the responses to
individual stresses

h(t) = b + n(t) +∑
i

t∫

−∞

Ri(τ)θi(t − τ)dτ.

Normally, aquifers are affected by all the aforementioned stress sources, which
operate in parallel. Consequently, the data utilized for parameter estimation
are multivariate time series, of simultaneous measurements of the monitoring
well levels and each individual stress. von Asmuth et al. (2008) estimated a re-
sponse model of a well in the Netherlands, to four types of stress: precipitation
and evaporation (4 parameters), a pumping well (4 parameters), and fluctua-
tion of a river (4 parameters); for a total of 12 parameters.

3.2 PIRFICT models for well field management

The application of PIRFICT to optimal management of a well field having N
pumping wells, requires a estimation of N independent models, i.e. one for
each well. Each well model should take into account the pumping stress of all
N wells, (including the effect of the pumping well on itself), and all other types
of stress. However, since the purpose of optimization is to simulate future
scenarios, this requires the future stresses to be know in advance.

Pumping stresses are known in advance, as they are decision variables. Other
stresses instead, such as precipitation or temperature, require predictions lead-
ing to a consequential increase in uncertainty. Alternatively, we can decide not
to explicitly take into account the non-pumping stress inputs, but instead they
are embedded in the residual series n(t):

h(t) = ∑
N

i=1 δi(t) + b + n(t) (14)

where δi(t) is the drawdown caused by pump rate qi(t), i.e.

δi(t) =

t∫

−∞

qi(τ)θi(t − τ)dτ. (15)
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The effect of no-pumping stress, and the effect of all above mentioned sources
of uncertainty, can be assessed by performing stochastic simulations of the
residual model of equation (12). In particular, assuming that n(t) is known
up to time t = 0, then each instance of n(t) for t > 0 is generated by a random
simulation

n (t |0 ) = n(0) +
t∫

0

φ(t − τ)dW(τ)

considering that dW is a Wiener process, and the expression (13), the condi-
tional probability distribution n(t|0) is a normal distribution with mean n(0),
and time-dependent variance:

Var{n(t|0)}=2ασ2
n

∫ t

0
e−α(τ−t)dτ

=σ2
n(1 − e−αt).

(16)

Consequently, the estimation h (t |0 ) given the stresses q1(t), . . . ,qN(t), is nor-
mally distributed with mean

E{h(t|0)}=
N

∑
i=1

δi(t) + b + n(0)

=
N

∑
i=1

(δi(t)− δi(0)) + h(0)

(17)

and variance as expressed in equation (16). We notice that the parameter b is
irrelevant. We use this to evaluate time varying intervals entirely containing
the stochastic simulation of h(t |0 )

h(t|0) ∈
[ N

∑
i=1

(δi(t)− δi(0)) + h(0)± σn

√
1 − e−αtQ

N (0,1)
1−ρ

]
(18)

at the 1− ρ confidence level, where Q denotes the quantile function of standard
normal distribution.

For the shape of the IRF θi(t), we propose an alternative expression of the IRF
in equation (11). As suggested by the Hantush formula (10), the response to a
pumping stress qi(t) should only depend on the distance between the pump-
ing well and the monitoring well. For all pumping wells, the scaling factor A
and the term c, should be the same. Based on that, we derive the following
parametric expression:

θi(t) = − A

tβ
exp

(
− βλi

t

)
(19)



132 P a p e r D
where all curves of this family are zero at time t = 0, with zero first order
derivative; they have a global minimum, the peak delay, which is reached at
time t = λi; and finally they asymptotically decay to zero, the same way as
−A/tβ → 0 for t → ∞; (see Figure 1). The difference between the impulse re-
sponse of two pumping stresses i, j is specified by the difference in their peak
delays λi,λj. The resulting model has N + 4 parameters, i.e.

m = (A, β,λ1, . . . ,λN ,α,σn)
⊤.

3.3 Parameter estimation

To estimate the parameters in the IRF model the maximum likelihood method
is used. This is the same procedure as von Asmuth et al. (2002) and von Asmuth
and Bierkens (2005) applied to calibrate their models, where the aim was to de-
sign a methodology to deal with more general cases where the data is irreg-
ularly sampled in time. Here, for the sake of brevity, we describe the simpler
case of regular sample time interval, and we focus on computational aspects re-
lated to the fact that we are dealing with an unspecified number N of pumping
wells.

The estimation of the parameters in m is based on the sequence of the obtained
residuals for a given sequence of M instant measurements of the well field
activity for the i-th well, O = [n(t1), . . . ,n(tM)], with a regular time interval ∆ts.
Starting from any initial parameter set m0, the residuals can be calculated as

n(ti|t1) = A
N

∑
j=1

(
δ̄j(ti)− δ̄j(t1)

)
+ h(t1)− h(ti) (20)

where δ̄j(ti) is the j-th drawdown from equation (15) divided by the common
scale factor A, namely δ̄j(ti) = δj(ti)/A. Equation (12) with the exponential IRF
in equation (13) can be rewritten as (see for instance von Asmuth and Bierkens,
2005):

n(ti|t1) =e−α∆ts n(ti−1 |t1 ) +
∫ t

t−∆ts

√
2ασ2

ne−α(t−τ)dW(τ)

=e−α∆ts n(ti−1|t1) + ν(ti),
(21)

which is an Ornstein-Uhlenbeck process, where ν(ti) is the innovation at time
instant i. Innovations can be approximately considered to be normally inde-
pendently distributed random numbers, with mean equal to zero and variance
σ2

ν = (1 − e−2α∆ts)σ2
n. From equation (21) a sequence of innovations is given,
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Figure 1: The role of parameters A, β and λi in shaping the IRF of equation
(19)

νM = (ν(t1), . . . ,ν(tM)), and the conditional likelihood function is obtained as
the joint probability density

L
(
m;νM

)
=p
(
ν(tM)|νi−1,m

)

=
(
2πσ2

ν

)− M
2

M

∏
i=1

exp
(−ν2(ti)

2σ2
ν

)
.

(22)

From this, we derive the log-likelihood

l
(
m;νM

)
= log

(
L(m;νM)

)

=− M

2
log
(
2πσ2

ν

)− 1
2

M

∑
i=1

ν2(ti)

σ2
ν

,
(23)

which is the objective function to maximize in order to obtain maximum like-
lihood estimates for the parameters in the IRF models. The standard deviation
σν is immediately obtained from the optimality condition ∂Lν/∂σν = 0

σ2
ν = S2

ν(ν(ti) |m,O ) =
1
M

M

∑
i=1

ν2(ti), (24)

hence, the variance of the innovations coincides with its mean square sum
S2

ν(ν(ti) |m,O ). We notice, by replacing equation (24) into (23), that the maxi-
mum of the log-likelihood (23) is attained when σ2

n is minimum, therefore pa-
rameter estimation is alternatively facilitated by minimizing S2

ν(ν(ti) |m,O ).
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The model estimation requires N + 3 independent parameters A, β,λ1, . . . ,λN ,α
to be estimated.

The model is estimated on a set of observations using the Levenberg-Marquardt
optimization algorithm (Marquardt, 1963). The algorithm starts from an initial
parameter set m0 and improves on iteratively, until function (24) is minimized.
Normally function S2

ν is non-convex function of m, hence if the initial parame-
ters estimate is distant from the optimum, then any optimization algorithm is
likely to get stuck in some local minimum rather than finding the global opti-
mum. Such complexity grows with the number of parameters to estimate, i.e.
it grows with the number of pumping stresses N. Consequently, the feasibil-
ity of the proposed PIRFICT approach to model well field systems is bounded
by the number of wells. This inherent limit can be partially overcome if the
Levenberg-Marquardt algorithm is initialized with a good first initial guess for
the parameters m0. This can be done by again solving the problem of maxi-
mizing S2

ν, subject to a constraint on the peak delays λ1, . . . ,λN , which are set
as function of the distance rj between the monitoring well and the j-th pump-
ing well

λi = (cri)
m i = 1, . . . , N (25)

where c and m are parameters that are common to all pumping stresses. This
equals to replace the IRF in equation (19) with the function

θ̃j(t) = − A

tβ
exp

(
− β(crj)

m

t

)
. (26)

The idea of the peak delays being function of the distance is suggested by the
Hantush formula in homogeneous aquifer (10). Clearly, for real case studies,
this is only partially realistic, as the aquifers are usually non-homogeneous.
On the other hand, the additional constraint in equation (25) reduces the prob-
lem complexity by making the degrees of freedom of the variable to optimize
independent of N. The simplified problem has in fact only 5 independent pa-
rameters A, β,m, c,α. Consequently, using Levenberg-Marquardt algorithm to
maximize S2

ν, subject to the constraint in equation (25), is likely to yield a good
initial parameter estimates m0. We call pre-PIRFICT this simplified model. We
then improve on m0 using again Levenberg-Marquardt algorithm to maximize
S2

ν, this time without the constraint (25).

The validation of the stochastic model is tested by the verifying the autocorre-
lation of the innovation series. By this we can visually detect if any model noise
remains in the residual series and needs to be accounted for in the model for-
mulation. A model is considered sufficient when it grasps all aspects of the sys-
tem and the remaining residuals can be considered as a white noise sequence,
but white noise terms are independent and Gaussian distributed which indi-
cates that a series of white noise terms should show no autocorrelation.
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4 Chance Constrained formulation of the manage-

ment problem

In this section the PIRFICT methodology is integrated within the management
problem described in Section 2, to model the uncertainty in stress-response
estimate. We consider an aquifer system having N pumping wells and a mul-
tivariate time series of M observations. The residual series for the N models
are then described as O = (n1, . . . ,nN). These is the same residuals as obtained
in Section 3.3, but here the response is multivariate instead of being univariate.
The data in O is used to estimate the parameters m1, . . . ,mN in all N indepen-
dent PIRFICT models, according to the procedure described in previous sec-
tion. The i-th model is identified by notation mi = (Ai, βi,λi1, . . . ,λiN,αi,σni

)⊤.
Similarily as done in Section 2, we consider a management period T, a decision
time steps ∆t, and we define a management problem having K = T/∆t decision
steps. Assuming that q(t),h(t) are known up to time t = 0, based on equations
(15) and (17) the aquifer heads b(t) = (b1(t), . . . ,bN(t))

⊤ for the no-pumping,
q(t) = 0 for t > 0, are given by the convolution

bi(t) =
N

∑
j=1

∫ 0

−∞
qj(τ)θij(t − τ)dτ −

N

∑
j=1

0∫

−∞

qj(τ)θij(−τ)dτ + h(0). (27)

The discrete time heads b1, . . . ,bK are obtained from b(t) using formula (4).
The discrete time IRFs θijk are constructed using equation (5), and the discrete
time head-response estimate h1, . . . ,hK are

hik =
N

∑
j=1

k

∑
k′=1

qk′θij,k−k′+1 + bik + nik

=
N

∑
j=1

δijk + bik + nik

=h̄ik + bik + nik

(28)

where h̄k = (h̄1k, . . . , h̄Nk)
⊤ is the expected response for all N wells at time step

k. The system formulation is identical to the one in Section 2, except for the
additional random element nk, accounting for all sources of uncertainty. The
i-th component nik is the discretized Ornstein-Uhlenbeck process estimated ac-
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cording to equation (21), resulting in the following AR(1) process

nik =
e−αi∆t

∆t
ni,k−1 +

1
∆t

∆t∫

0

√
2αiσ2

ni
e−αiτdW(τ)

=
e−αi∆t

∆t
ni,k−1 + νik

=ᾱini,k−1 + νik

where the discrete-time innovations, νik, are normal distributed white noise
terms with mean zero and variance

σ2
νi
=

(
1 − e−2αi∆t

∆t2

)
σ2

ni
= (1 − ᾱ2

i )σ
2
ni

. (29)

Thus, the distribution of nki

nik =
k

∑
j=1

νijᾱ
k−j
i

is normal with mean zero and variance

Var{nik}= (1 − ᾱ2
i )σ

2
ni

k

∑
i=1

ᾱ
2k−2j
i . (30)

With a stochastic stress-response, the operational cost of pump i at time k is a
random variable

pik =
∆tρw

ηi
qik(hs − h̄ik + nik)

= p̄ik +
∆tρw

ηi
qiknik

(31)

and, therefore, the total operational cost

P =
K

∑
k=1

N

∑
i=1

(
p̄ik +

∆tρw

ηi
qiknik

)

=P̄ +
K

∑
k=1

N

∑
i=1

∆tρw

ηi
qiknik

(32)
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is also a random variable. The stochastic term of equation (32)

N

∑
i=1

K

∑
k=1

qiknik =
N

∑
i=1

(
qi1νi1 + qi2(ᾱiνi1 + νi2) + · · ·

+ qiK(ᾱ
K−1
i νi1 + · · ·+ ᾱiνi,K−1 + νiK)

)

=
N

∑
i=1

(
νi1

K

∑
k=1

qikᾱk−1
i + νi2

K

∑
k=2

qikᾱk−2
i

+ νi3

K

∑
k=3

qikᾱk−3
i + · · ·+ νiKqiK

)

is a sum of uncorrelated normal distributed numbers with mean zero. There-
fore, P is normal with mean P̄ and variance

Var{P}=
N

∑
i=1

(
1− ᾱ2

i

)
σ2

ni

∆t2ρ2
w

η2
i

( K

∑
k=1

q2
ikᾱ2k−2

i +
K

∑
k=2

q2
ikᾱ2k−4

i + · · ·+ q2
iK

)
(33)

hence the total operational cost in the deterministic case coincides with the
expected total operational cost in the stochastic case. Following this, we set
as objective of the stochastic optimization problem, the scheduling q1, . . . ,qK

attaining the minimum expected total operational cost

P̄∗ = min
q1,...,qK

K

∑
k=1

N

∑
i=1

∆tρw

ηi
qik(h

s − h̄ik) (34)

Besides the constraint of eq (28), any feasible scheduling should fulfill the linear
constraints of eq (8). Now, stress constraints Dqk ≤ gk can still be imposed as
they only affect the decision variables. The head constraints instead

Chk ≤ fk ⇒ Ch̄k + Cnk ≤ fk (35)

are fulfilled probabilistically, P{Chk ≤ fk} ≥ 1− ρ, as the stochastic component
of the j-th constraint ∑

N
i=1 Cjinik, is normal with mean zero and variance

Var
{
∑

N

i=1 Cjinik

}
= ∑

N

i=1 C2
jiVar{nik} (36)

Hence, as for the total operational cost, the head constraints in the determinis-
tic case, coincides with the expected head constraints in the stochastic case. Al-
though we could impose such expectation constraint Ch̄k ≤ fk, it would result
in a not robust optimization problem. In fact the optimal scheduling is usually
located on some extreme points of the feasible solutions space. Consequently,
there are always some linear constraints j that for some times k are satisfied by
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the optimal solution with strict equality ∑

N
i=1 Cjih̄ik = f jk. In this case the con-

straints are violated if ∑
N
i=1 Cjih̄ik > 0, hence with probability 0.5. Robustness

can be achieved by reformulating the problem so that head constraints are set
to be fulfilled within given level of confidence. We do that by computing the
quantity Ijk(ρ) identifying the 1− ρ confidence interval of ∑

N
i=1 Cjinik, obtained

from equations (35) and (36):

N

∑
i=1

Cjinik ∈
[
±
√

∑
N

i=1 C2
jiVar{nik}Q

N(0,1)
1−ρ

]

=
[
−Ijk(ρ),+Ijk(ρ)

]
(37)

We compute vector Ik(ρ) = (I1k(ρ), . . . , INh,k(ρ))
⊤ to define the stochastic prob-

lem where the optimal scheduling, q1, . . . ,qK is bounded to fulfill the head con-
straints for the entire realization of the AR(1) process n1, . . . ,nK, at the 1− ρ con-
fidence level. The resulting stochastic formulation of the management problem
is the minimization of the expected total operational cost of eq (34), subject to
the model constraint of eq (28) and the linear constraints

Ch̄k ≤fk + Ik(ρ)

Ch̄k ≤fk − Ik(ρ)

Dqk ≤gk.

(38)

This formulation is known as chance constrained (CC). Similar CC formula-
tions can be found in the literature; for instance Tung (1986) considered an in-
dex of confidence of type ρkj, i.e. depending of time and location.

Even the CC optimization formulation is a quadratic programming problem
subject to linear constraints, and therefore the optimal solution P̄∗ can be com-
puted using IP methods. The impact in computational complexity for handling
uncertainty is the increase in the number of linear constraints, i.e. from Nq + Nh

to Nq + 2Nh. It has been shown how uncertainty can be easily handled within
the PIRFICT models, and then propagated all the way to the total operational
cost P∗, through stochastic optimization. The variance Var{P∗} of the nor-
mally distributed P∗, is calculated using equation (33), and quantifies the level
of uncertainty of the optimal well field management solution.

5 Case study

We test the presented methodology in the Søndersø well field, located north-
west of Copenhagen (DK), with an annual discharge of 8 mill m3 of water.
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Figure 2: The Søndersø water distribution network.

The system, shown in Figure 2, collects three groups of pumping wells, re-
spectively 9 wells located in the East (labeled starting with ’Ø’), 3 located in
the West (V1A,V2A,V3A), and 10 located in the South. The well field covers
approximately an area of 4.3×3.7 km. The model contains 8 geological layers
(four different clay layers, a sand layer and three different chalk layers). The
pumping is mainly done from the chalk layers and partly from the sand layer.
Data at disposal are pump rates, at individual wells level for the East and West
side, and aggregated for the South part. Hydraulic heads measurements in the
wells are also available, except for Ø17A, V3A, and the entire south branch.
Based on the data availability, we test a management model for the pump op-
eration in the East and West part. In this exercise we consider the south part
as an external well field. The 10 pumps in the south are of the siphon types,
capturing water from a superficial layer. Their interaction with the rest of the
system, is modest and it can be accounted for in the residuals.

5.1 Estimation results

The available measurements is a dataset of stress-responses sampled every
∆ts = 1 minute, over a period of approximately 10 months. For a total of
397,625 records. Pump rate measurements are available for all 11 wells of the
considered subsystem, whereas hydraulic heads are not available for wells 4
and 9. The 70% of the time series were utilized to calibrate 9 PIRFICT models,
i.e. for wells 1, 2, 3, 5, 6, 7, 8, 10, and 11. The remaining 30% of the time series



140 P a p e r D
is used for model validation.

As described in Section 3.3, the parameter estimation procedure consists in
two successive optimizations. The first optimization identifies the pre-PIRFICT
models; each of them having 5 independent parameters to estimate (A, β,m, c,α).
These estimates (Table 1) are then utilized to produce a first estimate m0 for
the second optimization by using formula (25), namely λi = (cri)

m for all i =
1, . . . , N. The second optimization identifies the PIRFICT models; each model
having N + 3 independent parameters to estimate, A, β,γ1, . . . ,γN ,α; parame-
ters are listed in Table 2.

Examples of stochastic simulations are in Figure 3, where head responses hi(t)
are represented in terms of confidence interval, and their expectations h̄i(t)
are broken down into individual drawdown levels δij(t), quantifying the con-
tribute of each pump. Note that head responses and drawdown levels in the
figure are not in the same scale (i.e. drawdown levels are in a smaller scale).

Table 1: Parameter estimates for the Søndersø well field pre-PIRFICT model,
and pump efficiencies

parameter well1 well2 well3 well5 well6 well7 well8 well10 well11

A [m × minβ] 0.004 0.003 0.009 0.005 0.0006 0.005 0.003 0.003 0.002
β [-] 1.01 0.958 1.15 1.05 1.08 1.03 0.911 0.967 0.899
m [-] 0.62 0.46 0.62 0.68 1 0.55 0.87 0.45 0.48
c [min1/m × m−1] 0.0041 0.003 0.0094 0.0047 0.00063 0.0049 0.0026 0.003 0.002
α [-] 0.006 0.002 0.05 0.07 0.01 0.01 0.01 0.004 0.01
σn [m] 0.277 0.212 0.54 0.405 0.165 0.378 0.653 0.305 0.346
Sn [m] (calibration) 0.311 0.333 0.544 0.401 0.165 0.385 0.659 0.388 0.349

Table 2: Parameter estimates for the Søndersø well field PIRFICT model.

parameter well1 well2 well3 well5 well6 well7 well8 well10 well11

A [m × minβ] 0.004 0.003 0.0001 0.005 0.0007 0.004 0.002 0.003 0.003
β [-] 1.05 1.07 1.56 1.11 1.01 1.24 1.27 1.67 0.914
λ1 [min] 1e-006 6.73 76.74 62.36 33.15 44.97 28.90 19.01 17.59
λ2 [min] 20.35 7e-005 42.39 43.44 30.74 42.49 23.17 23.55 17.65
λ3 [min] 22.98 12.80 4e-007 19.74 18.50 28.88 17.30 22.00 17.73
λ4 [min] 40.15 17.84 42.25 18.18 11.89 25.41 13.05 20.94 17.82
λ5 [min] 44.88 19.11 87.25 1e-007 4.59 19.86 11.35 17.19 17.99
λ6 [min] 29.54 21.73 44.54 9.92 5e-011 17.11 9.55 24.29 25.57
λ7 [min] 44.61 23.08 127.68 25.51 11.02 9e-006 4.48 15.81 18.49
λ8 [min] 99.78 67.61 86.82 63.12 19.33 33.76 8e-010 60.20 19.50
λ9 [min] 30.81 13.46 41.85 24.26 26.00 33.85 15.82 4.79 8.76
λ10 [min] 43.75 27.56 138.10 42.02 41.21 34.51 24.86 8e-005 6.26
λ11 [min] 57.92 29.15 64.74 55.62 37.24 41.74 23.61 8.62 7e-005
α [-] 0.004 0.002 0.002 0.02 0.009 0.006 0.003 0.008 0.01
σn [m] 0.298 0.349 0.496 0.405 0.197 0.385 0.295 0.366 0.345
Sn [m] (calibration) 0.282 0.252 0.45 0.389 0.171 0.385 0.265 0.317 0.297
Sn [m] (validation) 0.251 0.273 0.614 0.301 0.156 0.389 0.27 0.242 0.256
max q [m3 × h−1] 81.4 81.4 59.4 81.4 81.4 59.4 54.4 81.4 81.4
ηi [-] 0.7 0.6 0.8 0.7 0.7 0.6 0.7 0.7 0.7
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Figure 3: Stochastic simulations of well 2 and 7. The responses h2(t),h7(t) are
decomposed into drawdown components δ2,i(t),δ7,i(t). The dataset
utilised for the simuations are part of calibration set for well 2 and
part of the validation set for well 7.

The models accuracy in stress-response estimation is assessed using the simu-
lated residuals of the PIRFICT models. The root squared error Sn of the resid-
uals ni(t) varies within the range of half a meter, whereas the water heads
variations hi(t) can be above 8 meters, as it can be observed in Figure 3. Re-
liability of the PIRFICT model is also assessed by the fact that Sn is similar in
calibration set and validation set (Table 2).

As discussed in Section 3.3, a good first estimate m0 should be ideally close
to the m attaining the maximum likelihood. A way to assess the goodness of
m0, is therefore to assess the similarity between pre-PIRFICT models and PIR-
FICT models. We do this by comparing the peaks delay, and the root squared
errors. For the PIRFICT models, the peaks delay still tend to grow with the
distance, even though they are not constrained to do so (Table 2). In terms
of root squared error (see Sn(calibration) on Tables 1 and 2), the pre-PIRFICT
models and PIRFICT models perform rather similarly. These similarities sug-
gest that parameters estimate of pre-PIRFICT models are actually a good first
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initial parameters estimate for the PIRFICT model.

5.2 Stochastic optimization

We use the estimated PIRFICT models to define and solve a CC management
problem for the well field of Søndersø. Since it was not possible to estimate a
model for wells 4 and 9, due to the lack of data, the management problem in
this exercise is defined on a well field with 7 pumping wells. However, for the
sake of consistency with the numbering system adopted throughout this paper,
we still consider a well field of N = 11 pumping wells, with no pumps and no
constraints on wells 4 and 9.

The pump efficiencies ηi and maximum rate, max qi, are listed in Table 2; the
pumps storage level is hs = 15 meters. Note that parameters are missing for
wells 4 and 9. The management period covers a time horizon of K = 30 decision
time steps of a duration of ∆t = 3 hours. Stress constraints Dqk ≤ gk are the
pumps range and a water demand of 972 m3 to be fulfilled in each time step,
namely

0 ≤ qik ≤ max qi i = 1, . . . , N

∑
N
i=1 qik ≥ 972 m3 (39)

for all k = 1, . . . ,K. Response constraints are lower bounds imposed on wells
water level to prevent aquifer from drought withdrawal exceedences, i.e.

hik ≥ −4m i = 1, . . . ,8
hjk ≥ 5m j = 10,11 (40)

for all k = 1, . . . ,K. In this simple exercise we assume that the aquifer is undis-
turbed, i.e. no pumping well was operating before time t = 0. The discrete
time heads for the no-pumping bk are therefore constant. The discrete time
IRFs, θijk, are constructed using equation (5). The innovations autocorrelation
plot in Figure 4, for which the time lag coincides with the decision time step,
i.e. 3 hours, shows the validation of the white noise assumption for all 9 PIR-
FICT models. Traditionally are alternative statistical tools also considered for
model checking, where the residual series plays a central role. These meth-
ods reveal structural trends in the residual series, which can often be seen by a
simple plot of the innovations; where, e.g., any periodicity in the series can be
verified with cumulative periodograms, as well as the fit of the model can by
quantified by Portmanteau lack-of-fit test (Madsen, 2008). However, since the
main interest is on the pre-determined decision time step, which is many times
greater than the resolution in the available data, the aggregated autocorrelation
function for the innovations is considered to give an overview of the lack of fit
for the individual decision time step.
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Figure 4: Autocorrelation functions for the innovations of the 9 PIRFICT

models of the Søndersø well field system. The solid lines denote
the 95% confidence interval, showing that the white noise assump-
tion is valid.

We determine the variances σ2
vi

of the innovations νik and the coefficients ᾱi us-
ing formula (29). Then we determine the variance Var{nik} of the discrete-time
residuals nk using formula (30). We then re-formulate the response contraints
in equation (40), in terms of robustness with confidence level 1 − ρ according
to equations (36), (37), and (38):

hik ± Iik(ρ) =hik ±
√

Var{nik}Q
N(0,1)
1−ρ ≥−4m

hjk ± Ijk(ρ) =hjk ±
√

Var
{

njk

}
Q

N(0,1)
1−ρ ≥ 5m

(41)

for all k = 1, . . . ,K. The resulting stochastic formulation of the management
problem is the minimization of P̄ (equation (32)), which is a quadratic function
of 9 × 30 = 270 variables qik. The problem is subject to 9 × 30 + 30 = 300 stress
constraints of equation (39), plus 9 × 30 = 270 response constraints of equation
(40), which double in the robust re-formulation of equation (41). Thus, there
are in total 300+ 2 × 270 = 840 constraints.

The problem is solved numerically, using the IP methods. Examples of opti-
mal scheduling, with different confidence levels ρ are in Figure 5 and 6. The
figures show how the optimal scheduling reduces the stresses whenever the
(1 − ρ) water head confidence interval intersects the constraint. The reduction
in total pump rate is compensated by increasing stress in wells whose head is
not close from the constraints. For increasing values of ρ the confidence interval
expands in length, reducing the range of feasibility, and ultimately increasing
the expected total operational cost P̄ ; this can be observed in Table 3. Although,
as expected, the value of the objective function deteriorates as the confidence
level increases, this trade-off is neglectable. In fact, the increment of P̄ , be-
tween the minimum confidence level ρ = 1, coinciding with the deterministic
problem formulation and ρ = .01 is less than 0.05%. Table 3 also displays the
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Figure 5: Optimal management of Søndersø well field with low constraint
fulfilment confidence level (1 − ρ = 0.5). Top charts: solid lines are
the optimal scheduling qik for all k = 1, . . . ,30; dashed lines are maxi-
mum pumps rates. Bottom charts: solid lines are average responses
h̄ik for all k = 1, . . . ,30, and their (1 − ρ) confidence intervals are the
grey lines; dashed lines are management constraints.

Table 3: Stochastic optimization of the management problem in the Søndersø
well field, for different levels of confidence ρ in head constraints ful-
filment.

1 − ρ P̄ [Kwh]
√

Var{P} [Kwh] P̄/
√

Var{P} (%)

0.99 2192.0 41.536 1.895
0.975 2191.7 41.533 1.895
0.95 2191.6 41.531 1.895
0.9 2191.4 41.529 1.895
0.75 2191.2 41.527 1.895
0.5 2191.1 41.527 1.895
0 (deterministic) 2190.9 41.527 1.895



6 Disussion and onlusions 145

Figure 6: Optimal management of Søndersø well field with high constraint
fulfilment confidence level (1 − ρ = 0.99). Top charts: solid lines are
the optimal scheduling qik for all k = 1, . . . ,30; dashed lines are maxi-
mum pumps rates. Bottom charts: solid lines are average responses
h̄ik for all k = 1, . . . ,30, and their (1 − ρ) confidence intervals are the
grey lines; dashed lines are management constraints.

standard deviation
√

Var{P} of the normally distributed total operational cost
P . Such measure ultimately quantifies the impact of all sources of uncertainty
discussed in Section 2. For this exercise, the uncertainty causes a dispersion
of the value of the objective P which is always around the 2% of its expected
value P̄ . It can also be seen that, in this case, the trade-off between ρ and P̄ is
neglectable, allowing for high confidence level in constraints fulfillment.

6 Discussion and conclusions

This paper describes a groundwater hydraulic management methodology, which
is designed for real case-study applications. We consider a problem of mini-
mum expected total energy consumption for a transient scheduling in a system
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of pumping wells. The problem is subject to a set of linear constraints, which
are functions of hydraulic head, stresses and time. This problem formulation
is applicable to a variety of management routines, such as water demand ful-
fillment, pump rate limits control, mining, dewatering, etc.

Ground water head response to multiple pumping stress is here simulated us-
ing the Predefined Impulse Response Function In Continuous Time (PIRFICT).
The PIRFICT models are Transfer Function-Noise (TFN) time series models,
having the Impulse Response Functions (IRFs) defined as simple parametric
analytical expressions which are not related to the systems physics. In this pa-
per we propose a particular IRF class of expressions to adapt PIRFICT models
to a system of pumping wells. The methodology is applied to a system of N
pumps/observation wells, which requires calibration of N models. Data re-
quirement is limited to wells relative distance and a multivariate dataset of
observed hydraulic heads and pump rates. Those types of data can be eas-
ily recorded during the routine well pumps operation, hence this methodol-
ogy does not require specific tests in situ. Although in this work we consider
samples taken at regular time intervals, the same methodology can deal with
unevenly sampled data records (see von Asmuth et al., 2002, von Asmuth and
Bierkens, 2005).

Uncertainty in hydraulic heads response to multiple pumping stress is handled
within the residual series, modeled as an Ornstein-Uhlenbeck process. The pa-
rameter estimation of each of the N PIRFICT models is performed by maxi-
mizing a likelihood function of the innovations. For the models proposed, the
likelihood function has N + 3 independent variables, which is maximized us-
ing the Levenberg-Marquardt algorithm. Since the likelihood function is non
convex, it has multiple minima, hence the risk for the adopted optimization
technique to fail finding the global maximum grows with the number of pumps
N. This can be partially overcome if the Levenberg-Marquardt algorithm is ini-
tialized with a good first estimate of the parameter set. We provide an initial
parameter estimate by firstly reducing the parameterization, and then by ap-
plying the same estimation procedure, obtaining a maximum likelihood func-
tion with only five independent variables.

Input of the management model are; the planning horizon, the decision time
step, the pumps efficiency and capacity, the management constraints. The N
estimated PIRFICT models are integrated into impact-matrix-type structure,
producing a discrete time stress-response model. The continuous time resid-
uals are integrated into an autoregressive model AR(1). Due to uncertainty in
stress-response estimation, both objective functions and head constraint func-
tions values, are random variables with normal distribution. We define an
optimization problem, where the objective function is the expected total en-
ergy use for pumping, which is quadratic function of the pump rates. Head
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constraints are replaced by the extremes of their confidence interval, where
the confidence level is set as parameter. Problem of this type are referred to
as Chance Constrained optimization (CC). In this form, the CC problem is a
quadratic programming problem, and we solve it using Interior Point meth-
ods (IP). The IP methods are extensively employed for practical applications,
as they are often capable of solving problems within a number of operations
not more than polynomial of the problem dimensions. The overall level of un-
certainty is quantified by the variance of the objective function.

The methodology is tested using recorded measurements taken at the well field
of Søndersø, located northwest of Copenhagen (DK). The management model
is defined for a system with N = 7 pumping wells. The accuracy of the PIR-
FICT models is assessed using the simulated residuals of the PIRFICT models.
The root squared error of the residuals varies within the range of half a me-
ter, whereas the water heads variations can be above 8 meters. This result is
obtained on both calibration set and validation set. Validation of the normal
assumptions of the head-response estimation was assessed by considering the
autocorrelation of the innovations, evaluated with lag equal to the decision
time step.

The management period covers a time horizon of 30 decision time steps, each
of a duration of 3 hours. In each time step a water demand must be fulfilled,
whilst the water head in the wells are constrained above a minimum level. The
resulting CC formulation of the management problem is the minimization of a
quadratic function of 270 variables, subject to 840 linear constraints. The prob-
lem is solved for different confidence levels of constraints fulfillment, using the
IP methods. Although, as expected, the value of the objective function deteri-
orates as the confidence level increases, this trade-off only causes the objective
function to range within a modest range, i.e. about its 0.05%. The overall level
of uncertainty, i.e. the variance of the normally-distributed objective function
is within the 2% of its own mean value.
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state dependent diffusion
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Abstract

Generating flow forecasts with uncertainty limits from rain
gauge inputs in sewer systems require simple models with iden-
tifiable parameters that can adequately describe the stochastic
phenomena of the system. In this paper a simple grey box model
is proposed that is attractive for both forecasting and control pur-
poses. The grey box model is based on stochastic differential
equations and a key feature is the separation of the total noise
into process and measurement noise. The grey box approach is
properly introduced and hypothesis regarding the noise terms
are formulated. Three different hypotheses for the diffusion term
are investigated and compared: one that assumes additive diffu-
sion; one that assumes state proportional diffusion; and one that
assumes state exponentiated diffusion. To implement the state
dependent diffusion terms Itô’s formula and the Lamperti trans-
form are applied. It is shown that an additive diffusion noise
term description leads to a violation of the physical constraints
of the system, whereas a state dependent diffusion noise avoids
this problem and should be favoured. It is also shown that a log-
arithmic transformation of the flow measurements secures pos-
itive lower flow prediction limits, since the observation noise
is proportionally scaled with the modelled output. Finally it is
concluded that a state proportional diffusion term best and ade-
quately describes the one step flow prediction uncertainty and a
proper description of the system noise is important for ascertain-
ing the physical parameters in question.
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stochastic differential equations, Lamperti transform, parameter estimation, rainfall-
runoff, urban drainage
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1 Introduction

The increasing challenges in the urban drainage sector, caused by climate change,
stricter environmental regulations and growing urbanisation, have triggered
a need for online models to be used for warning and control purposes, (see,
for example, Krämer et al, 2007, Ocampo-Martinez and Puig, 2009, Puig et al.,
2009, Giraldo et al., 2010). However, the inherent uncertainties associated with
the model predictions are, rarely accounted for, although there seems to be a
consensus from several sources regarding uncertainty in modelling, prediction
and simulation with urban drainage models (Lei and Schilling, 1996, Willems
and Berlamont, 2002, Kuczera et al., 2006, Kleidorfer et al., 2009, Freni and Mannina,
2010, Deletic et al., 2011).Uncertainty is recognised in input data, in the choice
of model structure, parameters and measurements for calibration.

In urban rainfall-runoff modelling, input uncertainties refer to the inadequate
measurements of the rain input which is a consequence of spatio-temporal
variation of the rainfall events, (Willems, 2001, Vaes et al., 2005, Pedersen et al.,
2010), as well as errors and biases due to mechanical limitations of the rain
gauges, (Barbera et al., 2002, Molini et al., 2005, Shedekar et al., 2009). Rainfall
is commonly monitored with the nearest available tipping bucket rain gauges
(Willems, 2001, Vaes et al., 2005, Pedersen et al., 2010) and as yet only rarely with
radars.

Model structure and parameter uncertainty essentially refers to the model de-
sign and the parameter estimation method, see the discussion in Harremoës
and Madsen (1999). Design and performance analysis is typically based on dis-
tributed commercial deterministic models like MOUSE (Mike Urban)1, SWMM2

and InfoWorks3. Such models are often termed white box models, since the
considered system is formulated using only the available physical knowledge
and any stochasticity in relation to time and space is disregarded. In contrast
to the white box models, the black box models are built solely on the consid-
eration of the available data in order to derive a relation between observed
input and output. This implies that physical knowledge about the system is ig-
nored and both the model structure and the parameterisation are derived and
validated by statistical methods, giving the possibility for developing rigor-
ous stochastic dynamical models that can then provide methods for assessing
the prediction uncertainty of the model. Black box models usually provide
sufficient short-term predictions when compared to the response time of the
system; the system changes are slow, the input errors are significant, but the
output errors are small (Gelfan et al., 1999). There are several examples of black

1www.dhigroup.com
2 http://www.epa.gov/nrmrl/wswrd/wq/models/swmm/
3www.innovyze.com
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box models that have been used to predict flows in sewers, see e.g. Tan et al.
(1991), Carstensen et al. (1998), El-Din and Schmith (2002), Jonsdottir et al. (2007).

Model-based optimal control of sewer systems presents a case where neither
the white box nor the black box approach is ideal. On one hand, a white box
model is needed, which is sufficiently accurate to be used for several time steps
prediction over wide ranges of state space. On the other hand, black box mod-
els provide access to well-developed tools for structural uncertainty identifica-
tion. The corresponding model development procedure is guaranteed to con-
verge if certain conditions of identifiability of parameters and persistency of
excitation of inputs are fulfilled (Kristensen et al., 2004a). In this paper, we use
stochastic state space models, also termed grey box models, which consist of a
set of stochastic differential equations, (SDEs), describing the dynamics of the
system in continuous time and a set of discrete time measurement equations.
This methodology provides a way of combining the advantages of black and
white box models by allowing prior physical knowledge to be incorporated
into the model structure, and subsequently apply statistical methods for pa-
rameter estimation and model validation. This typically yields models with
both fewer and physically meaningful parameters. As opposed to white box
models, parameter estimation in grey box models tends to give more consis-
tent results and less bias, because random effects due to process and measure-
ment noise are no longer absorbed into the parameter estimates, but specifi-
cally accounted for by the diffusion and measurement noise terms (Kristensen
et al., 2004b). Furthermore, simultaneous estimation of the parameters of these
terms provides an estimate of the uncertainty of the model, upon which further
model development can be based.

In the present paper a formulation and an estimation of a simple continuous-
discrete time stochastic flow model for a sewer system are proposed, which ex-
plicitly describe how the measurement and model errors enter into the model.
Over the past decades the proposed grey box methodology has been applied
in diverse disciplines, e.g. pharmacology (Tornøe et al., 2004), chemical engi-
neering (Kristensen et al., 2004b,a), district heating (Nielsen and Madsen, 2006),
hydrology (Jonsdottir et al., 2001, 2006), for modelling oxygen concentration
in streams (Jacobsen and Madsen, 1996), and within urban drainage systems
to model pollutant mass to wastewater treatment plant (Bechmann et al., 1999,
2000), flow prediction (Carstensen et al., 1998) and estimation of copper loads
in stormwater systems (Lindblom et al., 2007). Generally, the focus of previous
studies has been on the physically-based part of the SDE model, the so-called
drift term. However, in this article the main focus is on developing the stochas-
tic part of the SDE, the so-called diffusion term, since this part of the SDE is
significant for a proper uncertainty description of the flow predictions in an
urban drainage system.
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Following this introduction, the grey box methodology and important trans-
formations of model states and observations are outlined in Section 2. Section
3 then presents a case study of an urban drainage system with flow measure-
ments affected by both diurnal wastewater variation and rainfall runoff and
infiltration inflow. Included here is a description of the catchment area, the
data and three model proposals that differ with respect to the diffusion term
formulation alone. In Section 4, it is investigated which of the three models best
describes the flow predictions and it is checked if that model can be statistically
validated. Finally conclusions are drawn in Section 5.

2 Grey box modelling

In order to ease the introduction of the grey box methodology we will begin
by presenting the conceptual sewer flow model that later on will be confronted
with data from a real catchment area. A conceptual representation of the model
is depicted in Figure 1 and a nomenclature of the model is found in Table 1.

2.1 State-space formulation of the conceptual sewer flow model

The commercial physically distributed urban drainage models MOUSE (Mike
Urban), SWMM and InfoWorks all build on partial differential equations (PDEs)
for pipe flow calculation. However, when calculating the flow at a specific
point in the sewer system PDEs can often be simplified by substitution with a
set of ordinary differential equations (ODEs), and related to the discrete time
observations, using a state-space formulation. It is well known that the rainfall-
runoff relationship can be modelled with linear reservoirs in series, (Jacobsen
et al., 1997, Mannina et al., 2006, Willems, 2010). Hence, the proposed lumped
conceptual model for the sewer runoff system displayed in Figure 1 consists
of linear reservoirs that are based on ODEs. The first reservoir (S1) represents
the first state variable in the model, receiving runoff from the contributing area
A caused by the rainfall registered at the two rain gauges P316 and P321. The
weighting parameter α is defined to account for the fraction of the measured
flow that can be attributed to rain gauge P316. Furthermore, we assume that the
measured flow from the contributing area A is fully described by the two rain
gauges, implying that the contribution from rain gauge P321 is equal to 1 − α.

The second reservoir (S2), and correspondingly the second state variable in the
two-state model, receives outflow from the first reservoir and diverts it to the
flow gauge downstream from the catchment. The purpose of the reservoirs in
the model is to simulate the time delay from a rainfall event is being registered
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Table 1: Nomenclature of the conceptual flow model.

Symbol Description Unit

Inputs:

P316,t Rain gauge input m/h
P321,t Rain gauge input m/h

Rainfall-runoff model parameters:

A Impermeable fast runoff area ha
K Retention time, fast runoff h
α Rain gauge weighting coefficient -

Wastewater flow model parameters:

a0 Average waste water flow m3/h
s1,s2 Sine constants -
c1,c2 Cosine constants -

Model states:

S1,t State of first linear reservoir m3

S2,t State of second linear reservoir m3

Process noise:

σ1 Standard deviance, state 1 m3

σ2 Standard deviance, state 2 m3

Model output:

Yk Observed flow at time step k m3/h

Observations:

YN N number of flow observations m3/h

Observation noise:

ǫk N(0, S) m3/h

Time:

k Time step counter -
t Continuous time h
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Figure 1: The conceptual model; a system of two linear reservoirs.

at the rain gauges until a corresponding runoff is observed at the location of
the flow meter. The time delay is due to both overland runoff time, transporta-
tion in the sewer, and in case of heavy rain also internal storage of water in
detention basins.

The wastewater flow D is periodic with a diurnal cycle, i.e. in dry weather
conditions the observed flow variation is described by the diurnal variation in
the wastewater production. The following harmonic function is used:

Dk =
2

∑
i=1

(
si sin

i2πk

L
+ ci cos

i2πk

L

)
(1)

where L is the period of 24 hours and the parameters s1, c1, s2 and c2 are non-
physical parameters to be estimated.

To fully describe the wastewater flow a constant term for the average dry
weather flow a0 must be added to Equation (1). However, it was decided to
attach a0 to the first state S1 to secure the physical interpretation of the system,
i.e. water is always passing through the system, securing that the reservoirs do
not dry out.

By considering the conceptual model displayed in Figure 1 it follows that a
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state-space formulation of the model can be described as

d

[
S1,t
S2,t

]
=

[
αAP316,t + (1 − α)AP321,t + a0 − 2

K S1,t
2
K S1,t − 2

K S2,t

]
dt (2)

and the observation equation can be formulated as

Yk =

(
2
K

S2,k + Dk

)
+ εk. (3)

The term K in the system Equation (2) represents the mean retention time of the
system, i.e. the average time between a rainfall event being registered and the
corresponding flow rise being measured by the flow gauge. Diverting the flow
through two reservoirs indicates that two retention time coefficients could be
used; accordingly, one for the flow from S1 to S2 and a second one for the flow
from S2 to the flow measurement station. However, we assume that the two
retention times are identical and multiplying with the number of reservoirs in
the series, the mean retention time for the flow through the whole sewer sys-
tem is obtained. It is noted that the second state S2 appears in the observation
equation whereas the first state S1 is unobserved, i.e. a hidden state. It is fur-
thermore seen that the error between observed and predicted flow is described
by the output error term εk that is assumed to be a white noise process with
εk ∈ N(0,S), where N(0,S) is a normal distribution with zero mean and vari-
ance S.

2.2 Grey box representation of the conceptual model

The model formulation as described by the equations (2) and (3) does not dis-
tinguish observation error from input and model structural error. In the grey
box methodology this distinction is made by introducing a diffusion term also
referred to as a process noise term that specifically accounts for model struc-
tural deficiencies and input errors in a lumped way. In equation (4) shown
below a constant diffusion term has been introduced.

d

[
S1,t
S2,t

]
=

[
αAP316,t + (1 − α)AP321,t + a0 − 2

K S1,t
2
K S1,t − 2

K S2,t

]

︸ ︷︷ ︸
drift term

dt +

[
σ1 0
0 σ2

]

︸ ︷︷ ︸
diffusion term

dωt, (4)

and the observation equation then changes to

Yk =

(
2
K

S2,k + Dk

)
+ ek. (5)

The diffusion term adds two standard deviations (σ1 and σ2) that account for
prediction uncertainty on S1 and S2. ωt is in this case a 2-dimensional standard
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Wiener process, i.e. dωt ∼

√
dtN(0,1), where N(0,1) is a normal distribution

with zero mean and unit variance. The deterministic part of the state equations
are referred to as the drift term. In Equation (4) the input uncertainty is primar-
ily related to σ1 because the rain input enters this first reservoir, whereas the
model structural uncertainty will appear in both σ1 and σ2. The only change in
the observation equation (Equation 5) is that εk is substituted with ek because
now the total output error (εk in Equation (3)) has been divided into a process
noise represented by σ1 and σ2 and an observation noise term (ek).

In the grey box terminology it is also possible to let the uncertainty on the state
predictions depend on the current state level, the inputs or some parameters
instead of using a constant diffusion term. In the case of urban drainage sys-
tems it seems reasonable to expect that the uncertainty on the state prediction
must somehow be related to the rain input. We will return to this in Section 3.2
and now introduce the grey box methodology in its general form:

dXt = f(Xt,ut, t,θ)︸ ︷︷ ︸
drift term

dt +σ(Xt,ut, t,θ)︸ ︷︷ ︸
diffusion term

dωt (6)

Yk = h(Xk,uk, tk,θ) + ek, (7)

where Equation (6) is the system equation, describing the dynamic time evolu-
tion (t ∈ RO) of the physical state of the system in continuous time and Equa-
tion (7) is again the observation equation that relates the model output to the
obeservations Yk ∈ Rl at discrete sampling instants tk (k = 1, . . . , N) for N num-
ber of measurements. Note that in the system equation f(·) ∈ Rn represents
the drift term and σ(·) ∈ Rn×n the diffusion term. Here ωt is a n-dimensional
standard Wiener process. In the system equation, Xt ∈ R

n represents the state
variables of the model, the input variables are ut ∈ Rm and the parameters are
θ ∈ Rp. As seen the diffusion term σ(·) can be a function of the states, the
inputs, the time or some parameter. In the observation equation the observa-
tion error term ek is assumed to be an l-dimensional white noise process with
ek ∈ N (0,S(uk, tk,θ)). It is seen that the observation noise can be a function of
the inputs, the time and parameters.

2.3 Parameter estimation

Given the model structure in Equation (6) and Equation (7), the unknown pa-
rameters can be determined by finding the parameters that maximise the like-
lihood function for a given sequence of measurements (Kristensen et al., 2004b).

For time series models, the likelihood function is based on the product of con-
ditional densities, (Madsen, 2008). To express the likelihood as product of con-
ditional densities, the rule P(A ∩ B) = P(A|B)P(B) is applied, and with a se-
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quence of measurements, denoted as YN = [YN , . . . ,Y0], the likelihood function
is the joint probability density:

L (θ;YN) = P (YN |θ) =
(

N

∏
k=1

P (Yk|Y k−1,θ)

)
P (Y0|θ) , (8)

which is seen by repeated use of P(A ∩ B) = P(A|B)P(B). From (8) it is recog-
nised that the likelihood function consists of a product of one-step ahead con-
ditional densities. The likelihood function can only be evaluated if the initial
probability density P(Y0|θ) is known, and all subsequent conditional prob-
ability densities can then be assessed by successively solving Kolmogorov’s
forward equation and applying Bayes’ rule, (Jazwinski, 2007). In practice, how-
ever, this approach is not computationally feasible and an alternative approach
is required. Since the system equations in Equation (6) are driven by a Wiener
process, which has Gaussian increments, it seems reasonable to assume that
the conditional densities can be approximated by Gaussian densities. For lin-
ear systems the conditional probabilities in the likelihood function in Equation
(8) are Gaussian, but for nonlinear systems this remains an approximation.

The Gaussian density is completely characterised by its mean and covariance
of the one step prediction, which are denoted by Ŷk|k−1 = E{Yk|Yk−1,θ} and
Rk|k−1 =V{Yk|Yk−1,θ}, respectively, and, by introducing an expression for the
innovation formula, ǫk = Yk − Ŷk|k−1 the likelihood function can be rewritten
as (Madsen, 2008)

L (θ;YN) =




N

∏
k=1

exp
(
− 1

2ǫ
⊤
k R−1

k|k−1ǫk

)

√
det(Rk|k−1)

(√
2π
)l


P(Y0|θ),

where the conditional mean and covariance are calculated using a Kalman Fil-
ter (KF) for linear models or an Extended Kalman Filter (EKF) for nonlinear
models. Finally, the parameter estimates can be obtained by conditioning on
the initial values and solving the optimisation problem

θ̂ = argmax
θ∈Θ

{log (L(θ;YN|Y0))}. (9)

In general, it is not possible to optimise the likelihood function analytically, and
numerical methods must be applied, (Kristensen and Madsen, 2003).

The maximum likelihood method also provides an assessment of the uncer-
tainty for the parameter estimates in Equation (9) since the maximum likeli-
hood estimation is asymptotically normal distributed with mean θ and covari-
ance matrix

Σ̂θ =H−1.
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The matrix H is the Fisher Information Matrix and is given by

hij = −E

{
∂2

∂θi∂θj
log(L(θ|Yk−1))

}
i, j = 1, . . . , p, (10)

where in practice an approximation for H is obtained by the observed Hessian
hij evaluated for θ = θ̂. Due to the asymptotic Gaussianity of the estimator in
Equation (9), a t-test can be performed to ascertain if the estimated parameters
are statistically significant.

When estimating the unknown parameters of the model from a set of data, the
continuous-discrete time formulation enables the model to function flexibly
with possibilities for varying sample times and missing observations in the
data series.

2.4 Transforming the state

To solve the estimation problem, the open source software CTSM4 (Kristensen
and Madsen, 2003) is used. Most physical systems have natural constraints in
the model structure, e.g. the mass balance in the system cannot be neglected
or states need to be positively defined. The restrictions related to positively
defined states can partly be dealt with by state dependent diffusion terms in
the SDEs. However, this requires a higher order KF which has not been im-
plemented in CTSM, because it was shown to become numerically unstable
(Vestergaard, 1998). Hence, it is not directly possible to estimate parameters
in models with state dependent diffusion terms. To obtain efficiency and nu-
merical stability in the estimation, a transformation of the SDEs is required to
generate a new set of equations, where the diffusion term can be independent
of the state variable, (Baadsgaard et al., 1997).

The procedure of transforming a general SDE into a form with state indepen-
dent diffusion term is frequently referred to as the Lamperti Transform, (Iacus,
2008). Existence is only guaranteed for one-dimensional diffusion processes,
whereas for multi-dimensional diffusion processes, existence depends on the
structure of the diffusion term, (Luschgy and Pagés, 2006). The one-dimensional
diffusion is the simplest case of a state dependent diffusion term in SDEs and
only the univariate transformation is considered here. For the multivariate
transform, we refer to Møller and Madsen (2010).

For any given t assume that the drift term fi(·) = fi(X ,u,θ), and the diffusion
term σii(·) = σii(Xi,u,θ), σij = 0 for i 6= j, then the SDE for the transformed state

4Continuous-Time Stochastic Modelling - www.imm.dtu.dk/ctsm
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Zi = φ(Xi) = φ is obtained by Itô’s formula (Øksendal, 2003):

dZi =
(∂φ

∂t
+ fi(·)

∂φ

∂Xi
+

σ2
ii(·)
2

∂2φ

∂X2
i

)
dt + σii(·)

∂φ

∂Xi
dωi, (11)

where φ is a twice continuously differentiable function for (t, Xi) ∈ (R+,R).
Focusing on the diffusion term in the transformed SDE in Equation (11) shows
that the state dependency can be removed from the equation by solving

1
σii(·)

=
∂φ

∂Xi
,

and the Lamperti transform for the ith state becomes

Zi =φ(t, Xi) =
∫

dφ(t,ξ)

∣∣∣∣∣
ξ=Xi

=
∫

∂φ

∂ξ
dξ

∣∣∣∣∣
ξ=Xi

=
∫

dξ

σii(ξ,ut, t,θ)

∣∣∣∣∣
ξ=Xi

. (12)

The Lamperti transform in Equation (12) provides a system equation with a
state independent diffusion term, but the parameters are the same as in the
original SDE and the model is still describing the same input-output relation-
ship. Thus, considering a transformation for all system equations in a model,
the transformed grey box model is written

dZt = f̃(Zt,ut, t,θ)dt + σ̃(ut, t,θ)dω (13)

Yk = h̃(Zk,uk, tk,θ) + ek, (14)

where Z is a vector including the transformed states and the function f̃ is a de-
scription for the drift terms of the transformed state space model. h̃ represents
the new observation equation, but now as a function of the transformed states,
and σ̃ is a state independent diffusion term.

2.5 Example of the Lamperti transform

In what follows the properties of the Lamperti transform will be exemplified
and later applied in a case study. The notation for the SDE is simplified by
omitting input dependencies for the diffusion, since focus is on state depen-
dency. Hence the ith SDE of the system equation in Equation (6) is written as

dXi = fi(X ,u,θ)dt+ σii(Xi,θ)dω. (15)
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The drift term is assumed to be linear. The function fi can then be separated
into two terms, one describing the linear relation to the state (ai) and a second
term (bi) counting for the relation to any other variable influencing the state
Xi, i.e. the input variables u and the remaining states X∗, where X∗ =X\Xi.
Using Equation (15), the ith SDE becomes

dXi =
(
bi(X

∗,u,θ) + ai(θ)Xi

)
dt + σii(Xi,θ)dω. (16)

The focus is now on the diffusion term σii while the drift term is considered
as displayed in Equation (16). Only the system equation is considered because
the observation equation remains unchanged.

Example: σii(·) = σiX
γi
i

One of the simplest diffusion formulations in SDEs is to assume linear depen-
dency between the state and corresponding noise, but linearity is not always a
satisfactory state dependency. Therefore, the diffusion is a function of the state
to the power of γi, where, for now, γi is arbitrary. The system equation then
becomes

dXi =
(
bi(X

∗,u,θ) + ai(θ)Xi

)
dt + σiX

γi
i dω, (17)

where σi is a constant term. According to the Lamperti transform in Equation
(12), the function σii(·) = σiX

γi
i should be considered to obtain the transformed

state Zi, but since σi is a constant and not influencing the result of the integra-
tion, it can be neglected in the transformation. Consequently, σi remains in the
system equation in Equation (17) and only the part of the diffusion term with
state Xi involved is reflected in the state transformation.

Using Equation (12), the Lamperti transform for the SDE in Equation (17) is
then

Zi = φ(t, xi) =
∫

dξ

ξ
γi
i

∣∣∣∣∣
ξ=Xi

=
X

1−γi
i

1 − γi
⇔ Xi =

(
(1 − γi)Zi

) 1
1−γi . (18)

To obtain the SDE of the transformed state Itô’s formula is applied, as described
in Equation (11), but here it utilises both the first and second derivatives of the
transformed state Zi with respect to the original state Xi, as well as the first
time derivative of the transformed state. For the transformation in Equation
(18), the derivatives in Equation (11) become

∂φ

∂Xi
= φx =

1
X

γi
i

∂2φ

∂X2
i

= φxx =− γi

X
γi−1
i

∂φ

∂t
= φt = 0,
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and Itô’s formula then gives the transformed state:

dZi =

(
φt + φx fi +

1
2

φxxσ2
i

)
dt + φxσidω

=

(
0 +

bi(·) + ai(·)Xi

X
γi
i

+
1
2

(
− γi

X
γi+1
i

)
σ2

i X
2γi
i

)
dt +

σiX
γi
i

X
γi
i

dω

=

(
bi(·)
X

γi
i

+ ai(·)X
1−γi
i )− 1

2
γiσ

2
i X

γi−1
i

)
dt + σidω. (19)

Substitute the state transformation in Equation (18) into the transformed SDE
in Equation (19) and obtain,

dZi =

(
bi(·)

(
(1 − γi)Zi

) γi
1−γi

+ ai(·)
(
(1 − γi)Zi

) 1−γi
1−γi

− 1
2

γiσ
2
i

(
(1 − γi)Zi

) γi−1
1−γi

)
dt + σidω

=

(
bi(·)

(
(1 − γi)Zi

)− γi
1−γi + ai(·)(1− γi)Zi

− 1
2

γi

1 − γi
σ2

i z−1
)

dt + σidω (20)

= f̃i(Z,u,θ)dt + σidω,

corresponding to the ith state in the transformed system equation in Equation
(13).

By setting γi equal to one, a linear state dependency in Xi can be obtained by
applying Equation (12),

Zi = log(Xi)⇔ Xi = eZi . (21)

The Lamperti transform for a SDE with a diffusion term that is linearly de-
pendent on the state is the logarithmic transform, (or log-transform), since the
integral in the Lamperti transform results in a logarithmic relation between the
original state and the transformed one. To find the SDE of the transformed
state, Equation (11) is again applied to obtain

dZi =
(

bi(·)e−Zi + ai(·)−
1
2

σ2
i

)
dt + σidω (22)

= f̃i(Z,u,θ)dt+ σidω.

Notice that the diffusion parameters σi and γi in Equation (20) and Equation
(22), as well as the model parameters in bi(·) and ai(·) are unaffected by the
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transformation. Hence, the estimated parameters in the transformed model
can be directly implemented into the original model.

To estimate the γi parameters, a restriction is required to obtain proper predic-
tion intervals for coverage of the variation in the observations. With γi = 0.5
the state has a positive probability of reaching zero if the input parameters are
small compared to the diffusion parameters, (Iacus, 2008, Møller and Madsen,
2010) and the EKF is not suited for such distributions, whilst for γi > 1 exis-
tence and uniqueness of the system are not guaranteed, (Øksendal, 2003). Thus,
the γi parameters need to take values between 0.5 and 1 during estimation.

2.6 Transforming the observations

The implicit assumption of using a constant observation noise term is that the
observation noise is independent of states. However, for many physical sys-
tems, this is unrealistic and a noise term that increases proportionally with the
output is more appropriate, i.e.

Yk = h(Xk,uk, tk,θ)ǫk,

where ǫ is log-normally distributed and the observation functions h are the
same as shown in Equation (7). Consequently, the observation noise is scaled
with the size of the measured model output. This is beneficial because studies
of flow meter uncertainty have shown that measurement uncertainty increases
proportional with the flow magnitude, (Bertrand-Krajewski et al., 2003).

One of the benefits of expressing the observation equation with an additive
Gaussian noise, as in Equation (7), is that the assumption of Gaussianity for the
residuals enables the use of the EKF and statistical tests to verify the proposed
model, (more regarding model validation in the following section). CTSM
utilises these tests and in the implementation only additive noise terms in the
observation equations are allowed. Thus, to separate the noise term from the
model, where the noise is multiplicative and log-normal distributed, a loga-
rithmic transform of the measurements is required:

log(Yk) = log
(
h(Xk,uk, tk,θ)ǫk

)

= log
(
h(Xk,uk, tk,θ)

)
+ log

(
ǫk

)

= log
(
h(Xk,uk, tk,θ)

)
+ ek. (23)

The log-transformed observations can then be applied in CTSM.
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2.7 Model validation

One of the main aspects of the grey box modelling framework is its predictive
ability, which implies that the output errors are examined for any systematic
pattern for further extension of the model. Several statistical tools are utilised
for the validation procedure, which all have their own properties for identify-
ing the lack of fit in the model. The statistical tools used in the paper are all
well described in Madsen (2008).

The model residuals are useful for the validation. The general assumption for
the residuals for an adequate model is that they are white noise. Plotting the
sample autocorrelation function (ACF), and the sample partial autocorrelation
function (PACF) for the residuals will show if the residuals eventually are au-
tocorrelated. In the frequency domain, the cumulative periodogram is useful
for detecting the deviation from the white noise assumption for the residuals.
With the cumulative periodogram, any hidden periodicities, including season-
ality, in the residuals can be detected. For more details on the cumulative peri-
odogram, see Madsen (2008) and Priestley (1981).

3 Case study and model proposals

The grey box methodology is applied to find a satisfactory flow model for a
sewer system. As already seen in Section 2.2 the proposed model has a rather
limited physical structure, and therefore the advantages of adequately formu-
lating the diffusion term of the SDEs to cope with model deficiencies and input
uncertainties will be emphasised.

3.1 Catchment, drainage system and data

Figure 2 gives an overview of the study catchment, which is situated in the
north-western part of greater Copenhagen in Ballerup Municipality. The to-
tal area is 1,320 ha. Most of the catchment area (93%) utilises a separate sys-
tem with two parallel pipes for wastewater and stormwater, while the remain-
ing 7% is served by a combined sewer system in which both wastewater and
stormwater flow through the same pipe. A significant amount of infiltration
inflow into the sewer network is taking place, probably due to worn-out pipes
and faulty connections. A flow meter has been installed downstream of the
catchment area to attempt to ascertain the extent of this leakage. The flow me-
ter is a semi-mobile ultrasonic Doppler type. It is placed in an interception pipe
with a diameter of 1.4 m. The flow meter logs every 5 minutes.
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Figure 2: The Ballerup catchment area.

There are around 50,000 inhabitants living inside the catchment area, which
is one of several sub-catchment areas that diverts water to the second largest
Wastewater Treatment Plant (WWTP) in Denmark, called Avedøre WWTP. There
are a couple of small pumping stations and one storage basin inside the catch-
ment area, with an approximate capacity of 4000 m3. The two closest rain
gauges from the national Danish tipping bucket network, (Jørgensen et al., 1998),
indicated P316 and P321 in Figure 2, have a 0.2 mm resolution and are located
outside the studied catchment area, approximately 12 km apart.

A nearly three month period, (April 1st - June 21st, 2007) is used for estima-
tion. The measured precipitation varies considerably from one rain gauge to
the other and spatio-temporal rainfall variation is clearly identified. This is
illustrated in Figure 3 that shows the accumulated precipitation measured at
each rain gauge, (P316) and (P321) plotted on a log scale. If a given rainfall
registration at the two gauges is separated by more than one hour, they are
considered to be separated events. Note how this distinction results in some
rainfall events being registered at only one of the rain gauges.
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Figure 3: Correlation between the two rain gauges. The measured precipita-
tion varies considerably from one rain gauge to the other.

3.2 Diffusion term proposals

Comparing the drift term of the SDE in Equation (16) with the drift term of the
system equation in Equation (4), it is seen that the flow model can be rewritten

d

[
S1,t
S2,t

]
=

[
b1(ut,θ) + a1(θ)S1,t
b2(S1,t,θ) + a2(θ)S2,t

]
dt +σ(St,ut, t,θ)dωt , (24)

where

ai(θ) = ai(K) = − 2
K

for i = 1,2

b1(ut,θ) = b1(P316,t, P321,t, A,α, a0) = αAP316,t + (1 − α)AP321,t + a0

b2(S1,t,θ) = b2(S1,t,K) =
2
K

S1,t.

The observation equation remains the same for all model proposals and we
refer to the grey box model represented by Equation (4) and Equation (5) where
in the following only the diffusion matrix σ(St,ut, t,θ) is modified in order
to obtain an improved description of the flow uncertainty. The models are
estimated on a 15 minutes time resolution.



170 P a p e r E
Model 1 The first model proposal is a model where the diffusion term is con-
sidered constant, corresponding to the model presented in Section 2.2. Model
1 is then represented with the diffusion matrix

σ(St,ut, t,θ) =
[

σ1 0
0 σ2

]
,

and the diffusion parameters (σ1,σ2) are estimated as described in Section 2.3.
Since the diffusion in the model is state independent, no transformation of the
states is required to estimate the model parameters.

Model 2 The drift term of the model is driven by transient rain events, imply-
ing that most of the time the flow in the sewer system consists of wastewater
flow only. In that case, the variance of the diffusion term is expected to be
rather small, but when a rain event occurs the variance is expected to increase
significantly, due to the uncertainty in the actual rain input to the system. It is
furthermore anticipated that the uncertainty increases with the magnitude of
the rainfall, (both duration and magnitude), which is captured by state depen-
dent diffusion.

Introducing a state dependent diffusion term has the desired implication that
the diffusion is scaled with the state magnitude. This makes physical sense
since the diffusion terms, (especially the first one), primarily represent the un-
certainty in the rain input, and therefore should not contribute any uncertainty
to the output, (the flow), in dry weather periods. Another implication is that
the risk of receiving negative state values is avoided as discussed in Section 2.5.
Model 2 is represented with the state proportional diffusion matrix

σ(St,ut, t,θ) =
[

σ1S1,t 0
0 σ2S2,t

]
.

With the addition of state dependency, it is expected that the diffusion param-
eters will be reduced, since the state variation is adjusted with the state magni-
tude. The states in Model 2 need to be transformed to avoid numerical insta-
bility and to be able to implement the model in CSTM. The transformed states
in Model 2 are identical to Equation (22) with a1, a2, b1 and b2 as defined in
Equation (24).

Model 3 Because of the risk that the uncertainty intervals might become too
large, it was decided to investigate a reduced state dependency and introduce a
γi parameter. More specifically, Model 3 is expressed with the diffusion matrix

σ(St,ut, t,θ) =

[
σ1S

γ1
1,t 0

0 σ2S
γ2
2,t

]
.
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Here, the ith diffusion term is assumed to be dependent on the ith state to the
power of γi. The Lamperti transform is also required for Model 3 since the
diffusion is state dependent. The transformation is identical to Equation (20)
with a1, a2, b1 and b2 as defined in Equation (24).

4 Results

4.1 Searching for optimal γi parameters in Model 3

Because of instability related problems with estimating the γi parameters in
Model 3, an iterative approach had to be adopted to pinpoint the optimal γi pa-
rameters. Repeatedly the γi parameters were adjusted and the corresponding
log-likelihood value calculated in search of the maximum log-likelihood area.
Figure 4 displays the resulting surface for the profile log-likelihood, varying
with the two diffusion parameters γ1 and γ2.

Figure 4 shows that an increase for γ2 causes a linear increase in the log-likelihood,
implying that optimal diffusion parameter γ2 is one. A similar linear corre-
spondence appears between the values of γ1 and the log-likelihood, but for
higher values of the parameter the contour lines even out, meaning that a
rather minor increase in the log-likelihood is obtained for further increases in
γ1. It should be recalled that γ1 is important for controlling the variance of
the modelled flow during rain because most of the uncertainty is expected to
origin from an insufficient rain input. However, the argument for introducing
the γi parameters in the first place was to downsize the uncertainty bound-
aries which might be important when a prediction horizon of more than one
step is needed. Therefore, to test the influence on the uncertainty bounds (in
this paper only on the one step prediction) (γ1,γ2) = (0.6,0.95) was selected
for further analysis with Model 3.

4.2 Estimation results

Table 2 displays the mean and standard deviation of the estimated parameters.
Considering the runoff parameters of the drift term, (A, K and α), it is noticed
that the model parameters differ considerably, particularly between Model 1
and Models 2-3, even though the models differ solely with respect to the diffu-
sion term. The drift term of the model remains the same in all three models but
the estimated drift term parameters still differ. This shows the importance of
selecting a proper description of the diffusion term. The size of the contribut-
ing catchment area A is estimated in the range of 35-51 ha, the retention time
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Figure 4: Contour plot of the Log-likelihood as a function of the two diffusion
parameters γ1 and γ2.

K in the range of 3-5.3 hours and the rain gauge weighting parameter α range

Table 2: Estimation Results

Parameter Model 1 Model 2 Model 3

θ̂M1 sd(θ̂M1) θ̂M2 sd(θ̂M2) θ̂M3 sd(θ̂M3)

s1 -46.641 5.288 -65.645 2.876 -63.580 2.824
c1 -96.282 5.089 -51.814 3.564 -56.725 2.386
s2 -48.185 3.528 -35.459 1.882 -39.047 1.544
c2 17.934 3.726 17.576 1.926 18.039 1.829
log(A) 3.567 0.035 3.934 0.060 3.856 0.064
α 0.398 0.056 0.305 0.081 0.269 0.034
a0 314.290 4.172 317.330 5.002 308.890 4.154
K 2.999 0.068 5.286 0.220 5.261 0.202
log(σ1) 5.240 0.031 -1.414 0.052 1.107 0.050
log(σ2) 3.053 0.072 -2.444 0.011 -2.082 0.010
log(S) -7.519 0.047 -19.020 11.559 -19.070 8.845
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between 0.3-0.4, that is to say rain gauge P321 represents most of the runoff.
This is a little surprising since P316 is located much closer to the largest paved
area of the catchment (cf. Figure 2). Considering the estimated wastewater pa-
rameters, (a0,s1,s2,c1,c2), it is noticeable that all models returned similar values
for a0 and c2, whereas the rest of the parameters differ.

Turning to the diffusion parameters, it is seen that for all three models σ1 are
larger than σ2, which is reasonable since the input uncertainty primarily can
be assigned to σ1. However, the model structure limitations can probably be
equally attributed to both states and, thus, a significant σ2 is found in all three
models. The estimated diffusion parameters of the three models cannot be
directly compared because in Model 1 the diffusion parameters are constants,
whereas for Model 2 the diffusion parameters are scaled with the states and,
for Model 3, the state to the power of γi. This explains why a decrease of
their values are realised with increasing state dependency. The variance of the
observation noise S is significant for Model 1 and insignificant for Models 2 and
3. This indicates that the state dependent models cannot separate uncertainty
that originate from input and model structural errors from uncertainty that
origins from flow measurement errors.

4.3 Model comparison and validation

Table 3 shows that for the one step ahead prediction, Model 2 gives the best
fit and uncertainty description according to the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC). This means that the state
proportional scaling of the diffusion parameters is the preferred diffusion term,
although the scaling of the prediction bounds might become a problem if sev-
eral prediction steps are needed. This is however not investigated in this paper
but will be examined in a future study.

Model validation is only considered for the best model (Model 2). A struc-
tural behaviour in the residuals would suggest that more physics is needed
in the drift term. Figure 5 displays the results of the residual analysis. From
the standardised residual plot of Model 2 shown in Figure 5a it seems that the

Table 3: Model Comparison

log(L) DF AIC BIC

Model 1 11379.81 13 -22733.62 -22643.12
Model 2 12555.67 13 -25085.34 -24994.84
Model 3 12461.81 15 -24893.62 -24789.19
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Figure 5: Model validation. (a): Standardised residual plot; (b): Autocorrela-
tion function (ACF) (c): Cumulative periodogram; (d): Partial auto-
correlation function (PACF).

Gaussian assumption is satisfied, since the residuals are randomly distributed
around zero. Even though few data points appear to depart from the assump-
tion they are not considered to violate the Gaussianity.

Inspecting the autocorrelation functions in Figure 5b and Figure 5d, a minor
significance for lags 2 and 3 is visible, but considered small enough to be ne-
glected. However, it is also noticed from the ACF and PACF plots that there is
a periodicity in the residual series, note the peaks around lag 96 and 672 cor-
responding to one day and one week, respectively. These values are also very
small and thus ignored here, though it points to a need for further model devel-
opment of the dry weather flow parameterisation. In the adopted modelling
approach, no distinction between weekends (holidays) and working days or
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between consecutive working days was tested, although the wastewater diur-
nal pattern changes accordingly. Thus, the periodicity would be a good start-
ing point to improve the dry weather part of the model, but this is beyond the
scope of this paper.

The cumulative periodogram for the residuals is shown in Figure 5c. For the
residuals to be considered white, the black solid line should be close to the
dashed diagonal line and within the two off-diagonal dashed lines, which cor-
respond to 95% confidence limits for the assumed Gaussianity. In the plot a
minor periodicity is detected on each side of the straight line, but these effects
are rather limited and can be ignored.

To sum up; the minor deviation for the residuals from the Gaussian assumption
for the residuals does not give solid basis for model rejection and Model 2
can be considered sufficiently accurate for assessing the one step prediction
uncertainties.

4.4 State and flow uncertainty in dry and wet weather periods

In Figure 6 a comparison of the 95% one step ahead prediction interval of the
states is shown for a large rain event, (left column), and a dry weather period,
(right column). Notice the scale difference of the vertical axis. For Model 1 the
prediction interval of the states remains constant in dry and wet weather and
at one point encloses negative state volumes in dry weather. This shows why
a state dependent diffusion term is needed. Furthermore, it is clearly seen that
the prediction interval is wider for S1 than S2 which is related to the uncertain
rain input that primarily influences S1. The prediction interval of Models 2 and
3 reveals that the lower boundary stays positive in dry weather and that the
uncertainty increases considerably with the state magnitude, but as expected
less in Model 3 than Model 2. Generally, much more water is stored in the
states of Model 2 and 3 than was the case with Model 1. This is reasonable
since the estimated catchment area is larger for Models 2 and 3 than for Model
1. Moreover, the estimated retention time in Models 2 and 3 is also larger, i.e.
in order to obtain the same average dry weather flow, a larger amount of water
is stored in both states.

In the left column of Figure 7 the observed flow rate and the corresponding one
step ahead 95% prediction interval are displayed for all three models during a
rain event and in the right column during a dry weather period. The prediction
interval for Model 1 is seen to increase with flow magnitude, which is a conse-
quence of scaling the variance of the observation noise S with the observation
function h. The prediction interval of Model 1 is the most narrow for large
flows, while the opposite holds in dry weather periods. Comparing Model 2
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Figure 6: 95% state prediction intervals for all three considered models. State
predictions during a rain event is displayed in the left column and
in dry-weather in the right column.

with Model 3, the downsizing of the prediction interval is only recognised at
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Figure 7: 95% flow prediction intervals (grey area) during wet-weather (left
column) and dry-weather (right column) conditions for all three
considered models. Measured values are displayed as stars.

the flow peak during rain. However, a longer prediction horizon would prob-
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ably lead to a more substantial difference.

Considering how the model assimilates the observations, it can be shown that
the observation noise plays an important role. In Model 1 the belief in the drift
term of the model is quite good as the updating of the states in the model is
not overly aggressive. The predictions are clearly not tracking the latest ob-
servation whereas, in the case of Model 2 and Model 3 the states are updated
in accordance with the latest observation because observations are taken to be
almost 100% accurate. The problem with identifying the observation noise is
probably related to both inadequate rain inputs, as well as periods with poor
or erroneous flow meter observations.

5 Conclusions

This study has shown that a simple grey box model consisting of two linear
reservoirs for rainfall-runoff flow and a harmonic function for wastewater flow
can be successfully applied to model the one step prediction uncertainty when
an appropriate diffusion term is identified. Such a simple model is attractive
for forecasting and control. Three different models were compared that dif-
fered with respect to the diffusion term formulation only: one with additive
diffusion, one with state proportional diffusion and one with state exponenti-
ated diffusion. To implement the state dependent transformations, it was nec-
essary to apply Itô’s formula and the Lamperti transformation. The state pro-
portional diffusion was found to best and adequately describe the one step flow
prediction uncertainty while the additive diffusion term resulted in a violation
of the physical constraints of the model states that are positively restricted. In a
similar manner the risk of obtaining negative flows from an additive observa-
tion noise description was avoided by a logarithmic transformation of the ob-
servations. This ensured that the observation noise was scaled with the model
output. Finally it was found that a proper description of the diffusion term is
important for estimation of the physical parameters.
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Abstract

In this paper we show how the grey box methodology can be
applied to find models that can describe the flow prediction un-
certainty in a sewer system where rain data are used as input,
and flow measurements are used for calibration and updating
model states. Grey box models are composed of a drift term and a
diffusion term, respectively accounting for the deterministic and
stochastic part of the models. Furthermore, a distinction is made
between the process noise and the observation noise. We com-
pare five different model candidates’ predictive performances
that solely differ with respect to the diffusion term description up
to a 4 hour prediction horizon by adopting the prediction perfor-
mance measures; reliability, sharpness and skill score to pinpoint
the preferred model. The prediction performance of a model is
reliable if the observed coverage of the prediction intervals cor-
responds to the nominal coverage of the prediction intervals, i.e.
the bias between these coverages should ideally be zero. The
sharpness is a measure of the distance between the lower and
upper prediction limits, and skill score criterion makes it possi-
ble to pinpoint the preferred model by taking into account both
reliability and sharpness. In this paper, we illustrate the power of
the introduced grey box methodology and the probabilistic per-
formance measures in an urban drainage context.
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Grey box modelling, Interval prediction, Reliability, Sharpness, Skill score, Urban
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1 Introduction

Sewer flow predictions can, in combination with Model Predictive Control
(MPC), be used to minimise damages in a broad sense, e.g. to reduce com-
bined sewer overflows to prevent sludge escaping from wastewater treatment
plants and to avoid flooding of vulnerable urban areas. To the authors knowl-
edge, most, if not all, the suggested MPC solutions that have been proposed
in the literature to date are based on deterministic models, (see e.g. Ocampo-
Martinez and Puig, 2010, Puig et al., 2009, Giraldo et al., 2010), even though it
is commonly accepted that large uncertainties are present in simulation and
prediction with urban drainage models due to unreliable level or flow me-
ters (Bertrand-Krajewski et al., 2003), non-representative rainfall inputs (Pedersen
et al., 2010, Vaes et al., 2005, Willems, 2001) and/or unreliable rain gauge mea-
surements (Barbera et al., 2002, Molini et al., 2005, Shedekar et al., 2009).

For urban drainage systems, we are still awaiting this shift of paradigm from
deterministic to stochastic models in predictive control. This can most likely be
attributed to inadequate measurement collection, both with respect to rainfall
monitoring/forecasting and in-sewer flow or level metering. However, as the
number of measurement devices increase and these devices become more accu-
rate, the potential for building suitable stochastic models also improves. A nec-
essary first step is to derive stochastic models that can describe the predictive
uncertainty sufficiently well for a certain prediction horizon of interest. An-
other important step is to set up a prediction performance evaluation method
to be able to compare the predictive performance of different model candi-
dates. In this paper we intend to take these necessary first steps by considering
a case catchment area from where both rainfall and flow meter measurements
are available for stochastic model building and prediction evaluation of sewer
flows.

We apply the grey box methodology as introduced by Kristensen et al. (2004a).
The grey box approach is based on a state space model where the dynamics are
described using Stochastic Differential Equations (SDEs), which contain a drift
term and a diffusion term. The grey box methodology has been successfully
applied in numerous fields for stochastic model building, including e.g. phar-
macology (Tornøe, 2004), chemical engineering (Kristensen et al., 2004a,b), dis-
trict heating (Nielsen and Madsen, 2006), hydrology (Jonsdottir et al., 2001, 2006)
and ecology (Møller et al., 2011). We give particular attention to the diffusion
term by considering various diffusion term descriptions. Several tools have
been developed to validate and compare models, especially for point forecasts
that exclusively rely on the single value prediction. In contrast, little attention
has been given to interval predictions, which play a crucial role in stochastic
control design. We propose here to use a skill scoring criterion for interval
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prediction evaluation, and show how this can be applied to find the preferred
model among the candidate models for a specific prediction horizon. The skill
scoring criterion has previously been applied for prediction evaluation pur-
poses in wind power generation (see Pinson et al., 2007, Møller et al., 2008).

In Section 2, we outline the stochastic grey box methodology. Section 3 includes
a description of the interval prediction generation and how the prediction per-
formance can be evaluated on the basis of the reliability, the sharpness and
the skill score criterion. Section 4 illustrates the applicability of the grey box
methodology and the use of the prediction performance criteria as important
tools for model selection. Finally, in section 5 we conclude on our findings.

2 The stochastic grey box model

2.1 Model structure

The model used in this study is a grey box model, or a continuous-discrete time
stochastic state space model, represented by

dXt = f(Xt,ut, t,θ)dt +σ(Xt,ut, t,θ)dωt (1)

Yk = g(Xk,uk, tk,θ) + ek. (2)

where the first equation is called the system equation, composed of a set of
SDEs in continuous time. The states are partially observed in discrete time
through the observation equation (2). The time is t ∈ R0 and tk (for k = 1, . . . ,K)
are the discretely observed sampling instants for the K available measurements.
The states in the system equation Xt ∈ Rn describe the system dynamics in
continuous time, whereas Xk ∈ Rn in the observation equation is the observed
states in the discrete time as specified by the observations. The input variables
are represented by the vector ut ∈ R

m and the vector of the measured output
variables Yk ∈ Rl . The vector θ ∈ Rp includes the unknown parameters that
characterise the model, and the functions f(·) ∈ Rn, σ(·) ∈ Rn×n and g(·) ∈ Rl

form the structural behaviour of the model. The measurement error ek is as-
sumed to be a l-dimensional white noise process with ek ∼ N (0,V (uk, tk,θ)),
where V is the covariance of the measurement error, and ωt is a n-dimensional
standard Wiener process. The first term in the system equation is the drift
term, representing the dynamic structure of the system that is formulated by
ordinary differential equations. The second term is the diffusion term which
corresponds to the process noise related to the particular state variable in the
state-space formulation.
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Discrepancies between output from deterministic models and measurements
are often referred to as measurement errors, even though the consecutive resid-
uals are clearly auto-correlated. In reality, these auto-correlated discrepancies
can however be explained by both non-representative and/or faulty inputs
as well as model structural deficiencies. Consequently, a distinction between
measurement noise and noise related to inputs and model deficiencies is re-
quired. The stochastic grey box model provides such a distinction by separat-
ing the process noise from the output measurement noise, where the process
noise as described by the diffusion term is related to the state variables and
accounts for noise that is not related to the output measurements.

2.2 Parameter estimation and state transformation

For parameter estimation the Maximum Likelihood (ML) method is used, and
the Kalman Filter techniques are applied to evaluate the likelihood function
(Jazwinski, 2007). For the grey box model in equations (1) and (2), the unknown
model parameters are obtained by maximising a likelihood function that is a
product of the one-step conditional densities (Madsen, 2008). Hence, the esti-
mated parameters for an adequate model correspond to a fit where the distri-
bution for the residual series for the one-step ahead prediction error is assumed
to be serial independent and Gaussian. However, utilising such a model for
predictions covering more than one-step ahead usually results in a residual se-
ries that is correlated, and when dealing with increasing prediction horizon, the
predictive distribution for the output may divert from the assumed normality.

To estimate the unknown parameters of the model, the software CTSM1 (Kris-
tensen and Madsen, 2003) is used. The software is well suited for estimation
of linear and many nonlinear systems. In CTSM, the ordinary Kalman filter
gives the exact solution for the state estimation for linear systems, whereas the
extended Kalman filter provides an approximation for the states for nonlinear
systems.

Parameter and state estimation is not possible with CTSM if state dependency
is included in the diffusion term, as this requires higher order filtering tech-
niques to solve the estimation than are available in the extended Kalman filter
techniques implemented in the software (Vestergaard, 1998). However, efficient
and numerically stable estimates can be obtained by considering a transfor-
mation of the states. In particular, the transformation is well-suited for a SDE
when the diffusion term is only dependent on the corresponding state vari-
able. With such a univariate diffusion, it is always possible to transform the

1Continuous-Time Stochastic Modelling - www.imm.dtu.dk/ctsm
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state description to obtain a state independent diffusion term (Baadsgaard et al.,
1997).

The transformation of the ith state variable Xi,t to Zi,t, for i = 1, . . . ,n, is referred
to as the Lamperti transform (Iacus, 2008) and, subsequently, a corresponding
SDE for the transformed variable Zi,t, is obtained by Itô’s formula (Øksendal,
2003). The diffusion in the transformed SDE is state independent and the trans-
formed grey box model is rewritten

dZt = f̃(Zt,ut, t,θ)dt + σ̃(ut, t,θ)dωt (3)

Yk = g̃(Zk,uk, tk,θ) + ek, (4)

where the functions f(·), σ(·) and g(·) in Eq’s. (1) and (2) have been reformu-
lated, respectively to f̃(·), σ̃(·) and g̃(·) in relation to the transformation of the
state space. The parameters θ and the input-output relations are, however, not
affected by the transformation.

In this study, it is furthermore anticipated that flow measurement errors in-
crease proportionally with flow magnitude and thus a log-transformation of
the observations are needed to secure a Gaussian measurement noise term.
This observation transformation results in an observation equation that has an
additive noise term (Limpert et al., 2001).

3 Prediction, uncertainty and evaluation

3.1 Uncertainty of h-step ahead prediction

The objective with the proposed grey box model is to predict the sewer flow
at time k + h, which is denoted as Yk+h. In parallel, we have Ŷk+h|k as the
prediction of the flow at time k + h, given the available information at time k
where h indicates the number of time steps for the prediction. By using the ML
method, we find that the optimal prediction is equal to the conditional mean
for the model structure (see Madsen, 2008). Hence, the prediction is obtained
by

Ŷk+h|k = E
[
Yk+h|Υk,uk+h

]
(5)

= g̃(Ẑk+h|k,uk+h, tk+h,θ), (6)

meaning that for a given sequence of precipitation input up to time k + h and
observed flow up to time k, Υk = [Yk, . . . ,Y0]

⊤, the state prediction at time k + h
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can be estimated and consequently supply the observation equation with a
suitable description for the prediction. The challenge in predicting the future
flow in the system is then not directly related to predictions based on the ob-
servation equation, but rather on predicting the state variables in the system
equation. The state prediction can be accomplished by considering the condi-
tional expectation of the future state:

Ẑk+h|k = E
[
Zk+h|Υ̂k,uk+h

]
, (7)

i.e. the conditional mean of Zk+h given all measurements up to time k (Madsen,
2008).

In the following study, the grey box model in equations (1) and (2) is used
to describe the model structure, whereas the transformed model is used for
parameter estimation and model prediction in equations (3) and (4). As men-
tioned in section 2.2, the Gaussian assumption for the model output is only
valid for one-step ahead predictions. Thus for h ≥ 1, a numerical approach is
considered, i.e. an Euler scheme for the SDEs in the system equation (3) is ap-
plied to predict the sewer runoff (Kloeden and Platen, 1999). Thus, a sufficient
probability distribution for the h-step ahead prediction is obtained by gener-
ating a number of simulations from each time step, and from this empirical
distributions can be derived for the prediction intervals.

3.2 Prediction intervals

The ideal coverage of the prediction interval is defined as the nominal coverage
1 − β, β ∈ [0,1]. The upper and lower limits of the interval prediction are ob-
tained from quantile forecasts, which are easy to obtain with a large number of
simulations provided for the same prediction horizon, resulting in a reasonable
empirical probability distribution for the sewer flow. If Fk+h|k is the cumulative
distribution function of the random variable Ŷk+h|k and τ ∈ [0,1] is the propor-
tion of the relative quantile, the τ-quantile forecast for the k + h prediction is
obtained by

q
(τ)
k+h|k = F−1

k+h|k(τ). (8)

If l = β/2 and u = 1− β/2 are defined as the lower and upper quantiles for the
prediction interval at level 1 − β, respectively, the prediction interval for the
lead time k + h, issued at time k, can be described as

Î
(β)
k+h|k =

[
q̂
(l)
k+h|k, q̂(u)

k+h|k
]

(9)

where q̂
(l)
k+h|k and q̂

(u)
k+h|k are, respectively, the lower and upper prediction limits

at levels β/2 and 1 − β/2 (Pinson et al., 2007, Møller et al., 2008).
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3.3 Reliability

For the prediction interval to be of practical usage for decision makers it is a
primary requirement for the interval to be reliable, indicating that the upper
and lower limits have to correspond to the nominal coverage rate of 1 − β.

To obtain an evaluation of the reliability of the interval we define a counter
that rewards prediction intervals that are able to capture the observations. For
a given prediction interval, as represented in Eq. (9), and corresponding mea-

sured flow in the system Yk+h, the binary indicator variable n
(β)
k,h is obtained by

n
(β)
k,h =

{
1, if Yk+h ∈ Î

(β)
k+h|k for k ≤ K − h

0, otherwise
, (10)

corresponding to hits and misses of the h-step prediction interval. The mean
of the binary series then corresponds to the actual proportion of hits in the
estimation period, i.e. for prediction horizon h the proportion of hits for a flow
series of length K, is given by

n̄
(β)
h = E

[
n
(β)
k,h

]
=

1
K − h

K−h

∑
k=1

n
(β)
k,h . (11)

The discrepancy between the nominal coverage and the observed proportion
of hits is measured by the bias

b
(β)
h = 1 − β − n̄

(β)
h , (12)

where a perfect fit is defined as b
(β)
h = 0, i.e. that the empirical coverage is

equal to the nominal coverage, n̄
(β)
h = 1 − β, and a perfect reliability is ob-

tained. However, when the empirical coverage is larger than the nominal, i.e.

n̄
(β)
h > 1 − β, we talk about an overestimation in the coverage. This means

that, since the empirical coverage is subtracted from the nominal coverage, we

obtain b
(β)
h < 0 when the predictions overestimate the coverage. When the op-

posite is the case, this is referred to as underestimation, i.e. b
(β)
h > 0.

3.4 Sharpness

Sharpness is an accuracy measure of the prediction interval where smaller val-
ues indicate that the model is better suited to generate predictions (Gneiting
et al., 2007). The size of the interval prediction, issued at time k for lead time
k+ h is measured as the difference between the corresponding upper and lower
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quantile forecast, and averaging over the whole time series, defines the average
sharpness. For the horizon h and coverage 1− β, the sharpness is calculated by

δ
(β)
h =

1
K

K

∑
k=1

(
q̂
(u)
k+h|k − q̂

(l)
k+h|k

)
(13)

and by calculating δ
(β)
h at relevant coverages, a δ-diagram can be viewed to

summarise the evaluation of the sharpness. When comparing interval pre-
dictions generated from different models, the one with the smallest distance
between upper and lower bound is the sharpest.

3.5 Interval score criterion and resolution

The skill score combines the performance measures discussed above in a single
numerical value, which enables us to compare the predictive performance of
different models directly. The skill score for interval predictions is outlined in
detail by Gneiting and Raftery (2007), where the score of the individual predic-
tion interval is also referred to as an interval score. The skill score Sc for the
interval prediction, at time instant k, is calculated as

Sc
(β)
I,k,h =(q̂

(u)
k+h|k − q̂

(l)
k+h|k)

+
2
β
(q̂

(l)
k+h|k − Yk+h)1{Yk+h < q̂

(l)
k+h|k}

+
2
β
(Yk+h − q̂

(u)
k+h|k)1{Yk+h > q̂

(u)
k+h|k},

(14)

where the indicator 1{·} is equal to one if the inequality within the brackets
is fulfilled, but zero otherwise. As the objective is to evaluate the predictive
performance of each model by a single number, an extension is required to ac-
count for the whole considered period. Hence, we average the scores for all
time instants where observations are available, and thus the score becomes in-
dependent of the length of the time series. The average interval score criterion
for h-step prediction is written

Sc
(β)
I,h =

1
K

K

∑
k=1

Sc
(β)
I,k,h = δ̄

(β)
h

+
2

β(K − h)

K−h

∑
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[
(q̂

(l)
k+h|k − Yk+h)1{Yk+h < q̂

(l)
k+h|k}

+ (Yk+h − q̂
(u)
k+h|k)1{Yk+h > q̂

(u)
k+h|k}

]
.

(15)
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It follows from Eq. (15) that for any observation that falls outside the prede-
fined prediction interval, the skill score is increased by the distance between
the interval and the observation at each considered quantile. Hence, the skill
score gives a positive penalisation, which indicates that an increase in the score
criterion will result in a reduced fit of the prediction interval. Therefore, we
select the prediction interval with the lowest skill score.

The indication of the individual observation in relation to the prediction inter-
val can be merged into an indicator, corresponding to the reliability indicator in
Eq. (10). Thus, the interval score in Eq. (15) can be written as an indirect func-
tion of the prediction interval in Eq. (9) by including the reliability indicator
from Eq. (10), i.e.

Sc
(β)
I,h =δ̄

(β)
h +

2
β(K − h)

K−h

∑
k=1

(
1 − n

(β)
k,h

)

× (min
∣∣Yk+h − [q̂

(l)
k+h|k, q̂(u)

k+h|k]
∣∣),

(16)

where the second term under the summation accounts for the minimum dis-
tance between the observed value and the prediction interval, which is always
either the lower or the upper limit of the interval.

The score is still a function of the prediction horizon h. This indicates that there

are just as many Sc
(β)
I,h as there are h’s. To evaluate the performance indepen-

dently of h, we simply average over all horizons, obtaining the interval score

criterion Sc
(β)

I .

We talk about resolution when conditioning the predictive distributions on
some particular property. For urban drainage systems, it is expected that the
skill score (or the sharpness and reliability) depends on the weather, i.e. the
predictive performance is assumed to be different in periods of dry weather
than in periods of wet weather.

4 Application results

In the previous sections, the model framework and tools for assessing the un-
certainty and the performance of the model have been described. In the fol-
lowing we introduce the catchment area and the data, the applied grey box
models, and finally present and discuss our results.
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4.1 Description of the case study

The considered catchment area, which receives both wastewater and rainfall-
runoff, is located in the Municipality of Ballerup west of Copenhagen in Den-
mark; see Figure 1. It is connected to the second largest wastewater treatment
plant in Denmark, located in Avedøre. Flow was measured downstream from
the catchment area with a semi-mobile ultrasonic Doppler type flow meter. The
flow meter was placed in an interceptor pipe with a dimension of 1.4 m. The
flow meter logs every 5 minutes, but in this study a temporal resolution of 15
minutes was considered and, thus, only every third available measurement is
used.

Precipitation was measured using two tipping bucket gauges with a volumetric
resolution of 0.2 mm. The rain gauges are located just outside the considered
catchment area, approximately 12 km apart from each other (Fig. 1). Data of
flows and rain for almost three month period were used in the case study, i.e.
from April 1 2007 to June 21 2007. The considered grey box models were es-
timated for all three months. However for prediction uncertainty assessment
only data from May and June were utilised as very few rain events were logged
by the rain gauges in April, and because the rain periods are the most impor-
tant, it was decided to leave out this month. When generating predictions with
the models we used the measured precipitation up to 4 hours ahead of current
time assuming a perfect rain forecast was available. This assumption is obvi-
ously unrealistic but serves an illustrative purpose here by showing how the
skill score terminology can be applied to select the preferred model.

4.2 The stochastic model

The model should be kept simple and identifiable from data to facilitate the
parameter estimation. In hydrology it is well known that the rainfall-runoff re-
lationship can often be modelled with a series of linear reservoirs (e.g. Jacobsen
et al., 1997, Mannina et al., 2006, Willems, 2010). A model with just two reser-
voirs is considered here, where the volume in each reservoir corresponds to a
state variable in the grey box model. There is also a contribution of wastewater
from the connected households to the sewer flow that needs to be accounted
for. The model is written as

d

[
S1,t
S2,t

]
=

[
αAP1,t + (1 − α)AP2,t + a0 − 2

K S1,t
2
K S1,t − 2

K S2,t

]
dt

+

[
σ1S

γ1
1,t 0

0 σ2S
γ2
2,t

]
dωt,

(17)
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Figure 1: The Ballerup catchment area.

log(Yk) = log
(

2
K

S2,k + Dk

)
+ ek, (18)

where Dk is the wastewater flow variation formulated as a periodic function
with diurnal cycles of length L, i.e.

Dk =
2

∑
i=1

(
si sin

i2πk

L
+ ci cos

i2πk

L

)
(19)

and s1, s2, c1 and c2 are parameters. The first reservoir S1,t receives runoff
from the contributing area A at time t, caused by the rainfall registered at the
two rain gauges P1,t and P2,t. A weighting parameter α is defined to account
for the fraction of the measured runoff that can be attributed to rain gauge
P1,t, whereas the remaining 1 − α is attributed to P2,t assuming that the rainfall
input area A is fully described by the two rain gauges. The second reservoir,
S2,t, receives outflow from the first reservoir and diverts it to the flow gauge
downstream from the catchment.

To fully account for the wastewater flow in the grey box model, a constant term
for the average dry-weather flow a0 is included. The constant enters the first
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state to secure the physical interpretation of the system, i.e. water is always
passing through the system, also in dry weather, which means that the reser-
voirs always contain water. From a modelling point of view this is important
because the state variance from the diffusion term in Eq. (17) - if large enough -
could lead to predicted states that are negative, which is physically impossible.
This risk of receiving negative states is especially high if an additive diffusion
term is used and therefore we focus on state dependent diffusion terms only;
see Breinholt et al. (2011) for more details. When rainwater enters the system,
the volume of water in the reservoir increases and the diffusion term is scaled
accordingly (see Eq. 17), which means that the state prediction uncertainty
rises.

The observation equation (18) depends on the second state variable only, since
the output from the second reservoir corresponds to the flow measured down-
stream from the catchment area. The observation equation is log-transformed
to account for proportional observation variance as mentioned in Section 2.2.
In the following we will investigate various state dependencies through the γ
parameter in each state dependent diffusion in the system equation (17). Differ-
ent γ parameters will produce different prediction intervals and, subsequently,
different skill scores. This is useful for model prediction comparison.

The diffusion parameters γ1 and γ2 are restricted to γi ∈]0.5,1], for i = 1,2
in the system equation. The reasons are that for γi ≤ 0.5 there is a positive
probability of reaching zero and the risk of obtaining a non-stationary diffusion
process is increased, whilst for γi > 1 the system existence and uniqueness is
not guaranteed because the behaviour of the solution might explode in finite
time (Iacus, 2008).

Five models are proposed with different combinations of the diffusion param-
eters γ1 and γ2. These are (0.5,0.5), (1,0.5), (0.5,1), (0.75,0.75) and (1,1). The
minimum γ parameter is actually slightly higher than 0.5 (i.e. 0.5001) in order
to fulfill the parameter restriction, but for practical reasons is rounded to 0.5 in
the text below. It is not possible to estimate the γ parameters with CTSM be-
cause each combination of γ parameters has its own restricted Zi,t domain. To
distinguish between the models, they have been designated "M1", "M2", etc., as
in the first line in Table 1; the corresponding sets of γ parameters are indicated
in the next two rows (highlighted in bold).

4.3 Estimation results

The parameter estimation is shown in Table 1. It is seen that the choice of dif-
fusion term description affects all the parameters to some extent. However, the
dry weather parameters s1,s2,c1, c2 and a0 are not noticeably influenced, even
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though a0 is slightly higher in M2 than it is in the other models. Considering
the wet weather parameters A, K and α, it is seen that A and K are positively
correlated with γ2 while α is estimated to have more or less the same value.
The largest area is estimated with M5. Regarding the estimates for the diffu-
sion parameters σ1 and σ2, a higher expected parameter value follows a lower
state dependency.

4.4 Overall reliability assessment

The average reliability bias is studied in Figure 2, both as a function of the
nominal coverage (Fig. 2a), and as a function of the prediction horizon of up to
4h ahead (Fig. 2b). In Figure 2a the reliability bias is calculated as the average
for all the considered prediction steps, whereas in Fig. 2b, the reliability bias

Table 1: The results from the parameter estimation, for various values of
(γ1,γ2), for all five models. Standard deviance is indicated in brack-
ets.

θ Unit M1 M2 M3 M4 M5

γ1 - 0.500 1.000 0.500 0.750 1.000
γ2 - 0.500 0.500 1.000 0.750 1.000
s1 - -59.355 -65.313 -63.303 -63.909 -65.545

(3.927) (3.861) (2.764) (3.310) (2.709)
s2 - -41.363 -34.090 -39.143 -37.341 -34.904

(2.537) (3.049) (1.989) (2.377) (2.133)
c1 - -61.618 -49.407 -56.898 -51.593 -50.884

(4.321) (8.038) (3.169) (4.062) (3.397)
c2 - 17.437 17.120 18.407 17.133 17.785

(2.537) (2.927) (1.913) (2.220) (1.889)
a0 m3/h 313.310 345.510 307.000 314.390 319.080

(4.321) (1.217) (4.524) (5.263) (5.686)
α - 0.359 0.374 0.288 0.334 0.335

(0.068) (0.080) (0.070) (0.059) (0.067)
A ha 42.406 39.694 49.591 46.479 51.413

(1.059) (1.221) (1.062) (1.080) (1.104)
K h 4.253 4.104 5.237 4.763 5.221

(0.148) (0.472) (0.200) (0.201) (0.274)
σ1 - 6.510 0.373 5.866 1.313 0.254

(1.042) (1.078) (1.051) (1.048) (1.050)
σ2 - 2.186 1.817 0.087 0.449 0.085

(1.027) (1.079) (1.010) (1.016) (1.011)



198 P a p e r F

20 40 60 80

−
0.

02
0.

00
0.

02
0.

04
b(β

)

Coverage [(1 − β)100%]

(a)

−
0.

10
−

0.
05

0.
00

0.
05

0.25 1 2 3 4

b h

h [hours]

(b)

M1 : (γ1=0.50 , γ2=0.50)
M2 : (γ1=1.00 , γ2=0.50)
M3 : (γ1=0.50 , γ2=1.00)
M4 : (γ1=0.75 , γ2=0.75)
M5 : (γ1=1.00 , γ2=1.00)

Figure 2: Reliability bias for all five models of interest: (a) averaged over the
entire prediction horizon, plotted as a function of the nominal cov-
erage rate, (b) averaged over the coverage rates for each prediction
step considered in the study. Coverage rates calculated for the nom-
inal coverage rates:{5%, 10%...95%}.

is calculated as an average of all the nominal coverages. No definite deviation
is observed between the models, neither at the chosen prediction steps, nor at
different nominal coverages. At coverage up to 80% - 90%, Figure 2a shows
that all five models slightly overestimate the nominal coverage, whereas for
higher nominal coverage the bias is underestimated. Furthermore, the models
approach the nominal coverage at around 85% - 90%.

Regarding the reliability bias for the individual models, Figure 2a reveals that
M1 deviates the most from the ideal as it exhibits the largest positive bias at
intermediate coverage rates, and the most negative bias at higher nominal cov-
erage rates. M2 is the most reliable model on average, the average bias from
ideal reliability is -0.01 for all coverage rates up to 95% coverage. This indi-
cates that (γ1=1, γ2=0.5) provides the best reliability across all the considered
horizons.

Turning to the average reliability bias as a function of the prediction horizon,
Figure 2b shows that all five models produce almost the same reliability struc-
ture; i.e. for shorter horizons the reliability bias of the model predictions is
overestimated, whereas for horizons longer than 1.5h reliability is increasingly



4 Appliation results 199
underestimated. Thus, the almost identical shift from overestimation to under-
estimation implies that all the models are reliable at 1.5h lead time, but it is
recalled that this is an average for all nominal coverages and, thus, it can vary
for each nominal coverage. In contrast to what was concluded from Figure 2a,
the most reliable model in Figure 2b is M1. However, differences in reliability
bias between the models are very small, suggesting that the minor discrepan-
cies for the longer horizons are unimportant.

Here, a single nominal coverage is chosen for further investigation. From the
reliability assessment above, it was detected that, on average, the 85% - 90%
coverages are reliable. Therefore, the 90% coverage is selected for further in-
vestigation, which is also a typical value for interval prediction within hydrol-
ogy.

4.5 Performance evaluation of the 90% prediction interval

In Figure 3, the reliability bias of the 90% prediction interval (β = 0.1) as a
function of the prediction horizon is seen. The same shift in reliability from
overestimation to underestimation is observed for all models as the prediction
horizon increases. The deviation from the nominal coverage is generally not
that big, although M3 deviates almost 10% at the 4h prediction step. On aver-
age, M1 is the most reliable model with mean distance from ideal reliability of
0.043. This can be hard to envisage from Figure 3, because at larger prediction
horizons, i.e. more than 1 hour, M1 is clearly less reliable than M2 and M5.

In Figure 4, the sharpness of the 90% prediction intervals is plotted for all the
models as a function of the prediction horizon. As expected, all models be-
come less sharp with increasing prediction horizon, i.e. the uncertainty of the
prediction rises, but only up to two hours. Hereafter the uncertainty levels out.
When considering all prediction horizons, M2 is the least sharp model (the one
with the largest uncertainty), and already at the 0.5h prediction step it deviates
considerably from the other models. Figure 4 also reveals that the models with
γ1 = 0.5 prove to be the sharpest for all prediction horizons, and M3 is visu-
ally slightly sharper than M1. Thus, M3 provides the sharpest average 90%
prediction interval (187.3 m3/h), whereas M2 provides the least sharp average
prediction interval (286.3 m3/h).

From studying the reliability and the sharpness it is not immediately clear
which model should be preferred. However, this can be unravelled by calcu-
lating the skill score for each model for every prediction step and as an average
for the entire prediction horizon. Table 2 shows the skill score for the generated
90% prediction intervals calculated for various prediction steps, and as an aver-
age for the maximum prediction horizon of 4 hours. Note that all 16 prediction
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Figure 3: Reliability bias of the 90% prediction interval, as a function of the
prediction horizon.

steps (every 15 minutes for 4 hours) are included in the average skill score but
only 6 prediction steps are presented in Table 2. M3 is seen to perform best at
prediction steps 0.25 and 0.5 hours (recalling that the smaller skill score is the
preferred score), while M5 (the model with state proportional dependency for
both states) performs best at larger prediction horizons up to 4 hours. Surpris-
ingly, the most reliable model M1 is seen to perform rather poorly compared
to the other models for the prediction horizons of 1h to 4h. Apparently, the
sharpness for M1 is too narrow because many observations fall too far away
from the lower and upper prediction bounds incurring a high penalty when
calculating the skill score. When considering the average skill score for the en-
tire prediction horizon of 4 hours, it is furthermore seen that M2 - M4 perform
rather similarly, whereas M1 has a significantly higher score value.
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Figure 4: Sharpness for the 90% prediction intervals, as a function of the pre-
diction horizon for all five models.

Table 2: Skill score calculated from 90% prediction intervals at several predic-
tion steps and averaged for the entire prediction horizon of 4 h. The
preferred model candidate for each prediction horizon is highlighted
in bold.

Prediction Horizon

γ1 γ2 0.25h 0.5h 1h 2h 3h 4h Average

M1 0.50 0.50 166.0 292.7 491.2 680.8 724.7 732.7 514.7
M2 1.00 0.50 201.9 324.9 455.2 563.6 602.6 610.1 459.7
M3 0.50 1.00 137.2 228.3 391.2 603.8 675.8 691.7 454.7
M4 0.75 0.75 155.1 264.3 429.7 606.4 663.6 673.6 465.4
M5 1.00 1.00 150.4 247.1 383.8 535.2 593.8 608.2 419.7
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4.6 Resolution analysis: conditioning on dry and wet weather

periods

From a model predictive control point of view it is especially of interest to eval-
uate how well the models perform during wet weather periods. Separation of
wet weather flow measurements from dry weather flow measurements using
a rough flow threshold, i.e. wet weather interpreted as flows above 540 m3/h
and dry weather flows below, a conditional reliability is obtained as shown in
Figure 5. By introducing this threshold, 90% of the flow data is catagorised in
the dry weather period and the remaining 10% in the wet weather period. For
shorter prediction steps, the dry weather reliability (see Figure 5a) is overes-
timated, whereas it is underestimated for longer prediction steps. This shift
in reliability was also observed in the unconditional case seen in Figure 3, and
thus emanates from dry weather periods. In wet weather periods, the underes-
timated reliability increases with the length of the prediction horizon; see Fig-
ure 5b. The only exception appears at the one-step prediction (0.25h), where
M3 and M5 both are reliable. At the 4h prediction step the reliability bias is
around 50-75%, compared with just 10% in the unconditional case. The models
with γ1 = 1 (M2, M5) are significantly less biased than the remaining models,
but still underestimate the coverage by approximately 50% at the 4h prediction
step. This observed discrepancy in reliability bias between the unconditional
case and the wet weather periods reveals the importance of the resolution anal-
ysis, and show that the relatively low reliability bias at the 4h prediction hori-
zon for the unconditional case is a result of the dry weather period, constituting
90% of the whole data set.

The conditional sharpness is shown in Figure 6. In dry weather periods (Fig. 6a)
the sharpness is very close to the unconditional sharpness, albeit slightly more
sharp. In wet weather periods (Fig. 6b), the sharpness decreases considerably,
i.e. the prediction intervals are approximately twice the size in dry weather pe-
riods. It is seen that the prediction uncertainty grows rapidly during the first
prediction steps and then levels out at 2h. The effect of the diffusion term is
clearly identified. The models M2 and M5 are seen to be the least sharp, but
both models have state proportional diffusion in the first reservoir (γ1 = 1). In
contrast, the models M1 and M3, with γ1 = 0.5, generate the sharpest predic-
tion intervals.

The dry weather conditional skill score for the five model candidates is seen
in Table 3. It is readily seen that M3 is the preferred model candidate both at
each prediction step and as an average for the entire prediction horizon. As the
reliability bias was found to be close to zero at all considered prediction steps,
we conclude that M3 is very useful for making 90% prediction intervals in dry
weather periods.
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Figure 5: Reliability of the 90% prediction intervals, as a function of the pre-
diction horizon and conditioned on the weather: (a) for dry weather
periods; (b) for wet weather periods. A flow threshold of 540 m3/h
was applied for conditioning.

When conditioning on wet weather periods alone, Table 4 yields more ambigu-
ous results. M3 is the best model for prediction steps of less then 1h, which is
the same as obtained when conditioning on dry weather periods alone. However,
for 1h to 4h, models M2 and M5 provide better results (lower skill score). Note
the large difference in average skill score between dry and wet weather peri-
ods when comparing Table 3 and Table 4. The best model on average when

Table 3: Skill score calculated for the 90% prediction interval conditioned on
dry weather periods. The preferred model candidate for each pre-
diction horizon is highlighted in bold.

Prediction Horizon

γ1 γ2 0.25h 0.5h 1h 2h 3h 4h Average

M1 0.50 0.50 68.3 114.2 176.4 225.0 236.5 238.8 176.5
M2 1.00 0.50 74.6 128.5 198.9 253.3 266.8 269.2 198.6
M3 0.50 1.00 62.2 101.9 159.5 214.3 233.2 237.7 168.1
M4 0.75 0.75 65.7 109.6 170.8 224.4 240.9 244.4 176.0
M5 1.00 1.00 64.2 106.9 166.7 222.4 241.7 246.9 174.8
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Figure 6: Sharpness of the 90% coverage, as a function of the prediction hori-
zon and conditioned on the flow: (a) for dry weather periods ; (b)
for wet weather periods. A flow threshold of 540 m3/h was applied.

considering all prediction horizons of interest is M5, but it should be kept in
mind that the reliability bias showed that none of the models are able to gen-
erate satisfactory 90% prediction intervals, and thus cannot be fully trusted
when considering prediction horizons larger than one. If focusing on the one-
step ahead prediction only in wet weather periods, M3 must be the preferred
model; both because it was shown to be reliable and because it has the lowest
skill score.

Table 4: Skill score calculated for the 90% prediction interval conditioned on
wet weather periods. The preferred model candidate for each pre-
diction horizon is highlighted in bold.

Prediction Horizon

γ1 γ2 0.25h 0.5h 1h 2h 3h 4h Average

M1 0.50 0.50 397.3 709.9 1243.0 1859.4 1996.8 2015.7 1370.4
M2 1.00 0.50 572.9 820.9 1044.5 1328.0 1439.9 1456.1 1110.4
M3 0.50 1.00 289.1 489.3 913.1 1607.8 1825.9 1874.5 1166.6
M4 0.75 0.75 372.3 631.8 1051.3 1619.2 1785.3 1815.3 1212.5
M5 1.00 1.00 365.5 583.0 903.5 1374.9 1547.9 1583.5 1059.7
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The resolution study has clearly demonstrate the importance of conditioning
the drainage model performance on relative weather situations; in our case
rain. When considering the model performance on the whole data series, al-
together it appeared as though the best model is able to provide quite reliable
90% prediction limits. However, when conditioning separately on wet weather
periods it becomes clear that even the best model is unable to generate reliable
prediction limits beyond 0.25h. This can primarily be ascribed to a poor rain
input that does not represent the actual rainfall on the whole catchment area.
If the rain input used in the models is improved by, e.g., placing rain gauges
inside the catchment area or by using rain radars a different description for the
diffusion term in the model would be preferred and a larger prediction hori-
zon would probably be shown to be reliable. With more representative rain
input, it is possible to extend the diffusion term by considering both the states
and the rain input in its description, which would contribute to more reliable
probabilistic predictions.

5 Conclusions

This study has demonstrated how simple stochastic models suitable for mak-
ing interval flow predictions in urban drainage systems can be built using the
grey box methodology, and the models capabilities for providing interval pre-
dictions evaluated by the performance measures: reliability, sharpness and
skill score. Reliability concerns the coverage ratio of the prediction intervals
that must correspond to the nominal coverage, sharpness concerns the size of
the prediction interval, and finally the skill score utilises both reliability and
sharpness to evaluate the prediction performance in a single score value. This
is useful for model prediction comparison. Grey box models are tailored to de-
rive the one-step prediction interval, but can, presuming a representative rain
input is given and the model describes the processes well, be used to make
interval predictions several time steps into the future, given that the interval
predictions are reliable.

Five different grey box models, that only differed with respect to the diffu-
sion term description, were estimated and their probabilistic prediction per-
formance was evaluated using data from a case catchment area. A model was
found that was able to predict the 90% flow prediction interval up to 4 hours
ahead when all the observations were included in the study. The skill score
criterion was applied to compare the prediction performance of the models
and eventually to select the preferred model. However, when conditioning the
model performance on wet weather periods (accounting for 10% of the whole
data series), it was shown that solely the one-step prediction (15 minutes) was
reliable. This can most likely be attributed to a poor rain input that does not
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represent the actual rainfall on the catchment area very well. In a control con-
text, since wet weather periods are the most important periods, more repre-
sentative rain inputs and rain forecasts are needed to derive models that can
reliably describe the prediction uncertainty several time steps into the future.
Nevertheless, this particular case study should not detract from the power of
the proposed methodology.
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