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Abstract

The present thesis deals with different aspects of population pharmacokinetic /
pharmacodynamic (PK/PD) modelling of the glucose homeostatic system. The
thesis consist of a summary report and four scientific research papers.

A description of the main topics covered in the thesis is given in the sum-
mary report. This includes a short introduction to the mathematical methods
applied in the thesis, followed by an outline of the physiological and pathological
aspects of the glucose homeostatic system and how to obtain diagnostic indices
for characterising the condition of the system. Finally an overview of ethnic
differences in type 2 diabetes (T2D) is given, which relates to the subject of the
last 2 papers included in the thesis.

One of the main objectives of the thesis was to investigate possible ethnic differ-
ences between development of T2D in Caucasian and Japanese and investigate
the applicability of stochastic differential equations (SDEs) and non-linear mixed
effects (NLME) models for such an assessment. One way to perform such an
investigation is to characterise the pathophysiology of the two groups at dif-
ferent stages of disease progression. For T2D this involves a characterisation
of the glucose homeostatic system, which is a complex feedback system mainly
involving mainly organs such as the liver and the pancreas, the hormones insulin
and glucagon, and the carbohydrate glucose.

As for any other dynamical system, a proper characterisation at non-steady
state, requires a proper input to the system. This input must reflect the cir-
cumstances in which one wants to draw conclusions. In this thesis the intake of
oral glucose, which closely resembles the intake of food under daily living has
been applied.
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Mathematical modelling of such complex physiologal phenomenas as the glu-
cose homeostatic system will usually be based on both insight into the system
and experimental data. Through estimation techniques, free parameters in the
models are estimated and can be related directly to behaviour of the system.
These semi-physical (grey box) models are well suited for understanding the
system, although in many cases they are not able to fully describe the system-
atic behaviour observed in the applied data sets. This issue can be adressed
through an inspection of the autocorrelation function (ACF) of residuals and
the description can be improved by switching to the use of stochastic differential
equations (SDEs) or another improved description of residuals.

For characterising disease progression in Caucasian and Japanese, established
models that include parameters for insulin sensitivity and beta-cell function
were implemented in a non-linear mixed-effects setting with ODEs. Based on
the ACF of residuals it was clear that the two models provide a good, although
not perfect, description of the systematic variation in the analysed data sets.
Based on this the models were extended to SDE models for improved description
of residuals. Using the SDE models it was not possible to obtain convergence
with the full covariate models so the results presented in the thesis mainly orig-
inate from the ODE models. This also caused a more fair comparison with the
well-established single-subject models implemented using ODEs.

Previous research have stated the importance of the gut hormone glucagon-
like peptide-1 (GLP-1) as determinant for normal beta-cell function. Based on
this a population PK/PD model for secretion of (GLP-1) following an oral glu-
cose tolerance test (OGTT) was developed. This model can be used as a tool
to analyse potential differences in the secretion capabilities of GLP-1 between
subjects. ACF of residuals did not show any signs of strong serial correlation,
and the model was thus not implemented using SDEs.

Assessment of simple and model-based measures for insulin sensitivity and beta-
cell function in Japanese and Caucasian subjects stratified according to normal
glucose tolerance (NGT), impaired glucose tolerance (IGT), and T2D showed
that Japanese in general have higher insulin sensitivity and lower beta-cell func-
tion compared to Caucasians. In spite of this, the pattern going from NGT to
T2D appeared similar in the two cohorts and the majority of the difference in
insulin sensitivity and beta-cell function, measured by simple insulin based mea-
sures, could be explained by difference in body size (BMI). This was supported
by Forest plots of covariate effects obtained from population models, in general
indicating that race had no clinical relevant effect on either the insulin sensi-
tivity or the beta-cell function when measures for obesity (android fat mass or
BMI) was taken into account.
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Resumé

Denne afhandling omhandler forskellige aspekter af populations pharmakokinetik
/ pharmakodynamik (PK/PD) modellering af glukose homeostase systemet.
Afhandlingen indeholder en sammenfatning af projektet og fire videnskabelige
artikler.

I sammenfatningen gives en generel beskrivelse af hovedemnerne i afhandlin-
gen. Dette inkluderer en kort introduktion til de matematiske metoder der er
anvendt i forbindelse med projektet efterfulgt af en beskrivelse af de fysiolo-
giske og patologiske aspekter af glukose homeostase systemet, samt et kapitel
om hvorledes diagnostiske index der kan karakterisere systemet kan beregnes.
Til sidst gives en oversigt over etniske forskelle indenfor type 2 diabetes (T2D),
hvilket relaterer sig til de to sidste artikler i afhandlingen.

En af hovedemnerne i afhandlingen var at undersøge mulige etniske forskellige
mellem udvikling af T2D i kaukasere og japanere og undersøge anvendelsen af
stokastiske differentialligninger og ikke-lineær mixed-effects modeller i en s̊adan
undersøgelse. En m̊ade at undersøge forskellen p̊a, er at karakterisere patofys-
iologien i de to grupper ved forskellige stadier af sygdomsudvikling. For T2D
involverer dette en karakterisering af glukose homeostase systemet, der hoved-
sageligt involverer organer s̊asom lever og bugspytkirtel, hormonerne insulin og
glucagon, og sukkerstoffet glukose.

Ligesom for ethvert andet dynamisk system, kræver en korrekt karakterisering
af systemet udenfor ligevægt, et fornuftigt input til systemet. Dette input skal
reflektere de betingelser for hvilke der skal drages konklusioner om systemet. I
denne afhandling er der anvendt oral glukose indgift, hvilket minder om normalt
indtag af føde.
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Matematisk modelling af et komplekst fysiologisk fænomen som glukose home-
ostase systemet, vil, hvis ikke altid, i de fleste tilfælde blive baseret p̊a en
forh̊andsviden om systemet samt eksperimentielle data. Parametre i de matem-
atiske modeller, som fortæller noget om hvorledes systemet opfører sig, kan esti-
materes ved hjælp af statistiske estimeringsmetoder. S̊adanne semi-fysiologiske
(grey box) modeller kan hjælpe med at opn̊a en forst̊aelse for systemet, selvom
disse ofte ikke er i stand til at beskrive hele den systematiske variation i data.
Dette kan undersøges vha. autokorrelations funktionen (AKF) for prediktions
residualer og forklaringsgraden kan blive forbedret enten ved at udvide modellen
til en model med stokastiske differentialligninger (SDE) eller en anden forbedret
beskrivning af residualer.

For at karakterisere sygdomsudvikling i kaukasere og japanere, er der blevet
implementeret etablerede modeller som inkluderer parametre for insulin sensi-
tivitet og beta-celle funktion i et ikke-lineært mixed-effects setup med ordinære
differentialligninger (ODE). Udfra ACF af prediktionsresidualer var det klart
at de 2 modeller giver en god, men ikke perfekt beskrivelse af den systematiske
variation i det analyserede data set. Baseret p̊a dette, blev modellerne udvidet
til SDE modeller for forbedret beskrivelse af residualer. Anvendelsen af SDEer
gjorde at modellerne med fuld kovariat model ikke konvergerede, s̊a resultaterne
i denne afhandling afspejler hovedsageligt de resultater der er opn̊aet med ODE
modellerne. Dette gjorde ogs̊a at sammenligningen med vel etablerede single-
subject modeller som er implementeret med ODEer blev mere retfærdig.

Tidligere forskning har vist at tarmhormonet glukagon-lignende peptide-1 er
vigtig for normal beta-cell function. Baseret p̊a; dette blev der udviklet en pop-
ulations PK/PD model der beskriver sekretionen af glukagon-lignende-peptid 1
(GLP-1) under en oral glukose test (OGTT). Denne model kan anvendes som et
værktøj til at analysere potentielle forskelle i sekretionsevnen af GLP-1 mellem
individer. ACF af residualer viste ingen tegn p̊a seriel korrelation, og modellen
blev derfor ikke udvidet til at inkludere SDEer.

Baseret p̊a beregninger af simple og model-baserede m̊al for insulin sensitivitet
og beta-cell funktion i japanere og caucasere stratificeret mht. normal glukose
tolerance (NGT), nedsat glukose tolerance (IGT), og T2D konkluderes det at
japanere generelt har højere insulin sensitivitet og lavere beta-celle funktion i
forhold til kaukausere. P̊a trods af dette, var mønstret for at g̊a fra NGT til
T2D stort set ens i de to kohorter og størstedelen af forskelle i insulin sensi-
tivitet og beta-celle funktion, m̊alt ved simple index baseret p̊a; insulin, kunne
forklares ved forskelle i kropsstørrelse (BMI). Dette blev understøttet af Forest
plots af resultater fra populationsmodellen, hvor race ikke kom ud som en klinisk
relevant faktor for hverken insulin sensitivitet eller beta-celle funktion n̊ar der
var taget højde for graden af fedme utrykt hhv. android fedt masse eller BMI.
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by publication year. Bibliography is sorted according to last name. References
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Abbreviations

ACF Autocorrelation function
AIR Acute insulin response from IVGTT
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BMI Body mass index
BSA Body surface area
BW Body weight
FDA Food and drug administration
FOCE First-order conditional estimation
GLU Glucose concentration
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IIV Inter-individual variability
INS Insulin concentration
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ISR Insulin secretion rate
LR Likelihood ratio
LDF Lag dependent function
LRT Likelihood ratio test
ML Maximum likelihood
MTT Meal tolerance test
NGT Normal glucose tolerance test
NL Non-linear
NLME Non-linear mixed-effects
ODE Ordinary differential equation
OFV Objective function value
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PD Pharmacodynamic
PK Pharmacokinetic
SDE Stochastic differential equation
T2D Type 2 diabetes
WHO World Health Organization



xv
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ε Residual error
η Inter-individual random-effects
γ Parameter in OU-process
Λ Likelihood ratio
µ Parameter in OU-process
σ Standard deviation on measurement error
σw Diffusion term
τ Time delay between glucose and insulin

Ai Amount in compartment i
Cb C-peptide baseline
e Measurement error
Gb Baseline glucose parameter
Ib Insulin baseline
j Subject
ki Kinetic parameter
ke Elimination constant
φd Dynamic insulin secretion parameter
φs Static insulin secretion parameter
SI Minimal model based insulin sensitivity
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Part I

Summary report





Chapter 1

Introduction

1.1 Background

Type 2 diabetes (T2D) is a global health problem leading to illness and death
of millions of people each year. The total number of patients is expected to
rise to alarming 366 million in 2030 [Wild et al., 2004]. This rise is mainly
caused by increasing incidence in countries with large shifts in lifestyle due to
urbanisation, as is the case in many asian countries [Zimmet et al., 2001], [Yoon
et al., 2006], [Hayashino and Fukuhara, 2010].

Unfortunately, at present there is no direct cure for T2D, but in most cases
the disease can be managed. A healthy lifestyle and proper diet is first line
of treatment [Tuomilehto et al., 2001], although at more severe stages phar-
macological intervention is inevitable [Chiasson and Rabasa-Lhoret, 2004]. For
optimal development of such interventions, a deep insight into the underlying
pathophysiology of the disease is essential .

The two main components in the pathophysiology of T2D is insulin resistance
and beta-cell dysfunction, and the disease is believed to be triggered by insulin
resistance in liver and peripheral tissues, and at a later stage dysfunction of the
beta-cells in pancreas to effectively compensate by increasing insulin secretion
[Bergman, 2002], [DeFronzo, 2004], [Lyssenko et al., 2005]. Characterisation of
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T2D disease state thus typically involve an assessment of these two components.
This can be performed using so-called diagnostic tests, in which an input to the
glucose homeostatic system is given. Generally, the goal with these diagnostic
tests is to obtain an understanding of how the system performs under daily
living conditions such as intake of a meal. In epidemiological studies, especially
the oral glucose tolerance test (OGTT), where the subject receives an oral ad-
ministration of glucose, has been shown to have great value due to its simplicity
and close relation to daily living conditions [Cobelli et al., 2007]. Furthermore
mathematical models for assessment of insulin sensitivity and beta-cell function
using data from the OGTT has been developed and applied in many different
settings such as comparing pathogenesis to T2D in young vs. elderly [Basu
et al., 2006], and hispanic whites vs. african american [Cali et al., 2009]. In
line with this, the majority of the data analysed in this thesis originates from
OGTTs performed in subjects spanning the range from healthy volunteers to
patients with T2D.

T2D is known as a so-called multifactorial polygenetic disease for which eth-
nic differences have been reported [Takeuchi et al., 2008], [Torréns et al., 2004].
In line with this, the response to a given anti-diabetic treatment regimen has ap-
peared different between ethnicities [Herman et al., 2007], [Davidson et al., 2010].
It is thus clear that optimal treatment for one race, might not be the optimal
treatment in another race and understanding potential differences in patho-
genesis in different races is needed. For T2D, specifically the pathogenesis
in Japanese and Caucasian has been identified as being different [Fukushima
et al., 2004]. In spite of this few studies have compared the progression and
pathophysiology of the disease in these two ethnicities. One of the main aims
of the current project is to conduct such a comparison, which in the future can
provide a knowledge base for facilitating drug development in Japan, which at
present is the worlds second largest pharmaceutical drug market.

Pharmacokinetic/Pharmacodynamic (PK/PD) modelling is becoming an im-
portant decision support tool for faster and more efficient drug development
[Lalonde et al., 2007]. These types of models apply prior knowledge of phys-
iological systems, in combination with data obtained from input and output
of the systems. Compared to more black-box models such as the neural net-
works, it is of key importance that parameters obtained from the models can
be related to physiological concepts such as clearance, volume of distribution,
or even beta-cell function, and insulin sensitivity. In this thesis PK/PD models
will be applied to investigate the feedback mechanisms between glucose, insulin,
C-peptide, and GLP-1.

The PK/PD models applied in the pharmaceutical industry are generally for-
mulated using ordinary differential equations (ODEs). An unfortunate prop-
erty with modelling using ODEs is that all unmodelled dynamics is assigned
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to measurement noise. Contrary the application of stochastic differential equa-
tions (SDEs) allows for decomposition of the residual error into a system noise
term representing unknown or incorrectly specified dynamics and a measure-
ment noise term accounting for uncorrelated errors such as assay errors [Over-
gaard et al., 2005], [Kristensen et al., 2005]. Although the SDEs are thus pre-
ferred against ODEs from a theoretical point of view [Nielsen et al., 2000], only
few have shown benefit in PK/PD modelling [Tornøe et al., 2004], [Kristensen
et al., 2005], [Røge, 2011]. More practical examples identifying where PK/PD
modelling can benefit from SDEs are thus needed.

1.2 Goals and contributions of the thesis

The overall goal of the work presented in this thesis were to assess possible
ethnic difference between development of T2D in Caucasian and Japanese and
to investigate the applicability of different mathematical modelling methods for
this assessment. Related to the fulfillment of this goal, the contribution of the
thesis more specifically include:

• An assessment of beta-cell function and insulin sensitivity in a Caucasian
and Japanese cohort spanning the range from normal glucose tolerance
(NGT) to T2D

• A characterisation of differences in beta-cell function and insulin sensitiv-
ity between Caucasian and Japanese at glucose tolerance states (NGT,
IGT, and T2D) and an analysis on whether such differences can be ex-
plained by demographic/genetic factors

• A comparison between single-subject and population based approach for
such an analysis

• An investigation on the use of SDEs vs. ODEs for model based estimation
of beta-cell function

• Development of a mechanism-based population model that can describe
the dynamics of GLP-1 secretion following an OGTT
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1.3 Outline

The following chapters of this thesis will be structured as follows:

In Chapter 2 the methodological concepts behind the models applied in the
thesis will be introduced. This includes description of PK/PD models, single
subject vs. population modelling, and an introduction to modelling using SDEs.

Chapter 3 briefly describes the physiology behind glucose homeostasis and
some of the pathophysiological concepts related to disease development of T2D.

A presentation of indices for quantifying T2D development is presented in
Chapter 4. These indices are presented in parallel with the mathematical
models from which these indices are derived.

Chapter 5 consist of a brief review on the present knowledge about ethnic
differences in T2D followed by a section specifically focusing on the difference
in disease development between Caucasian and Japanese.

The main results and analysis of the study focusing on T2D disease development
in Caucasian and Japanese are presented in Chapter 6.

A general discussion and perspectives related to the results obtained through the
PhD is provided in Chapter 7, and finally in Chapter 8 the overall conclusions
according to the thesis objectives are presented.



Chapter 2

Modelling methodology

The following chapter will deal with different aspects of pharmacokinetic (PK)
and pharmacodynamic (PD) modelling. A brief introduction to the subject
will be given, followed by a section discussing the use of single-subject and
population approaches for estimation. The last section elaborate on the use of
SDE vs. ODEs in PK/PD modelling.

2.1 PK/PD modelling

PK defines the time course of the concentration of a given substance in the body,
normally in blood or plasma, whereas PD aims at describing the time course of
the drug effect. By linking PK and PD one can establish a dose-exposure-effect
relationship. The field of PK/PD modelling is widely applied in the pharmaceu-
tical industry, but the concept and procedures can also be applied in research
settings as the ones covered in this thesis. Here the PK part is defined by the
concentration of glucose or insulin and the PD part, the response to the glucose
intake. This response can eg. be concentration of insulin, C-peptide, or GLP-1,
which all are increased under administration of oral glucose. In general PK/PD
models can be classified according to what level they operate at:
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• Empirical - Mainly based on mathematical descriptions that can provide
a good fit of a given data set. These models can be useful for describing for
example a delay between concentration and drug effect [J.Gabrielsson and
D.Weiner, 1997], but in general have poor predictive performance outside
the scope of the data applied for estimation.

• Mechanistic - Aim to include known physiological mechanisms so that
the model provides a reliable description of the system. Thus, these mod-
els are usually build by combining different known mechanisms. Typically
they have better predictive performance outside the data used for estima-
tion, but can be difficult to estimate either due to lack of data to support
estimation of all parameters or simply lack of observability [Quaiser and
Monnigmann, 2009], [H.Madsen and J.Holst, 2007].

The goal with performing PK/PD modelling can be very different from one
analysis to another. Thus, a specific analysis must be aligned with the questions,
the analysis is sought to answer. Stated in another way it is highly dependent
on the goals and objectives. A typical PK/PD analysis is usually done in order
to fulfill at least one of the following objectives [Gieschke and Steimer, 2000]:

• Describe and summarize trial/study data and obtain an increased under-
standing of the system in place

• Obtain understanding for important factors influencing the PK or the PD
part

• Extrapolation to other conditions eg. different dosing regimens or different
species

Based on these statements it is clear that PK/PD modelling can have a positive
contribution to clinical drug development. In this thesis, the PK/PD modelling
techniques will be used to derive information on the glucose homeostatic sys-
tem, describe data originating from an oral glucose tolerance test (OGTT), and
study the importance of ethnicity on development of type 2 daibetes. Thus the
goals for the analyses performed in this thesis mainly relates to the first two
bullet points.

The frequency of blood sampling from a test such as the OGTT can vary signif-
icantly, although for research purposes where modelling of the data is applied,
usually > 10 samples are drawn in an interval of 300 min. Based on this, both
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SS and population methods can be applied when parameters from such data are
estimated. The theory behind these methods will be presented below and will
be related to the application on modelling of the glucose/insulin system.

2.2 Single-subject vs. population approach

Study of drug effects or physiological mechanisms are typically applied on more
than one subject/animal in order to assess uncertainty and sources of variability
in findings. In case a mathematical model is sought for description of data, this
can be done either by deriving parameters for one subject at a time (single-
subject analysis) or for all subjects simultaneously (population approach).

In a SS analysis, parameters for one subject are estimated using data obtained
only from that given subject. This is typically performed using a least-squares
technique for minimization of distance between model prediction and observa-
tions [Aldrich, 1998]. The SS estimation technique makes it easy to follow the
estimation procedure, and is well-suited for studies including frequent sampling.
In the case this method is used for studies with sparse sampling, it can be diffi-
cult to estimate parameters as the only data to support estimation is originating
from that given subject. Another unfortunate property is the overestimation of
variability between subjects (inter-individual variability (IIV)) [Sun et al., 1999],
[Denti et al., 2009]. In spite of this, the method is still applied for estimation of
metabolic indices from OGTTs due to its simplicity and interpretability [Basu
et al., 2009], [Chandler-Laney et al., 2010].

In contrast to the SS procedure, the application of a population model pro-
vides parameters for all subjects in the analysis simultaneously. The model
is described as a mixed-effects model referring to the fact that fixed effects
are mixed with random effects. In a mixed effects models, both intra-subject
variability and IIV (See Fig. 2.1) is assessed in one model estimation. Due
to inherent non-linearities in many physiological/pharmacological phenomena,
these models are often generalised to handle non-linearities leading to non-linear
mixed-effects (NLME) models.

The NLME model is a setup for a model that developed from a recognition
that, if PK and PD were to be investigated in patients, pragmatic considera-
tions dictated that data may be collected under less stringent and restricted
design conditions. The approach considers the population study as a unit of
analysis for the estimation of the distribution of parameters and their relation-
ship with covariates within the population [He et al., 1999].
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Figure 2.1: Illustration of intra-individual variability and IIV. Left: Repre-
sentation of data for a single subject. Intra-individual variability stems from
measurement error. Right: Measurements from two subject and corresponding
model fits. IIV due to difference between response of different subjects. The
intra-individual variability is mixed with the IIV in an NLME.

Analysis according to an NLME model thus provides estimates of distribu-
tion of the PK and/or PD parameters in the population [Beal and L.B., 1982].
Clearly, a mixed-effects modelling approach to population analysis of PK/PD
data, therefore consist of estimating directly the parameters of the population
from the full set of individual concentration and effect values.

The NMLE models can be thought of as a hierachical model structure con-
sisting of two stages. At the first stage the data of a particular individual is
modelled whilst at the second stage relationships between individuals are mod-
elled. At this stage, covariates are handled through a regression model which
relates the parameter values to the covariates by means of a regression equation
as presented below:

θ = g(z, β) + η (2.1)

where θ is a vector of individual parameters, z a vector of covariates, g a para-
metric function expressing the second-stage model, β a vector of the parameters
in the regression model, and η the residual variability which is assumed to be
independt on z and has a zero mean. Thus, in a population approach both
the individual parameters and their relation to covariates can simultaneously
be estimated, in contrast to a SS analysis where estimation of covariate effects
is based on post-hoc estimates of individual parameters.



2.3 ODE vs. SDE modelling 11

2.2.1 Covariate effects in SS vs. population approach

The model-based analysis of ethnic differences in T2D has been carried out
both using a SS approach (paper D) and a population approach (Chapter 6).
From each approach individual estimates of early and - late phase beta-cell
function (Φd,Φs) and insulin sensitivity (SI) have been obtained (See Chap-
ter 4 for further description). Table 2.1 shows the correlation between these
estimates obtained either using the SS or the population approach, and covari-
ates such as BMI and age 1. Compared to the correlation obtained using the
SS approach, the correlation between indices (Φd,Φs, SI) and covariates (BMI,
age) is higher for the population approach. This indicates that the individual
estimates from the population approach are less noisy than the ones obtained
from SS approach2. The parameters in the population PK/PD models applied

Correlation log(Φd) log(Φs) log(SI)
Method SS Population SS Population SS Population

BMI 0.13 0.25 0.07 0.21 -0.24 -0.29
Age -0.19 -0.26 -0.21 -0.25 -0.14 -0.26

Table 2.1: Correlation coefficients between metabolic indices and covariates. SS
is individual estimation from single-subject approach.

in this thesis (See Chapter 4) have been estimated using the software pack-
age NONMEM VII. Estimation was performed according to a minimisation of
the objective function value (OFV). This minimisation corresponds to a max-
imisation of the likelihood function, which is approximated using a first-order
conditional estimation (FOCE) approximation [Beal and L.B.Sheiner, 1994].

2.3 ODE vs. SDE modelling

Besides comparing the SS and the population approach for estimating param-
eters for beta-cell function and insulin sensitivity, the effect of extending basic
ODE models to SDE models, have been investigated. Main driver for perform-
ing this analysis has been the inability of the model for beta-cell function to
fully descibe the systematic behaviour in data obtained from an OGTT (Paper
A). The structure of the minimal model for estimation of beta-cell function will
be descibed in Chapter 4.

1A similar trend was observed also for other covariates, but for simplicity only BMI and
age is presented

24 extremely low values of Φd were removed from single-subject analysis to make fair
comparison
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The application of stochastic differential equations (SDE) is found in a lot of dif-
ferent areas, and were introduced to PK/PD modelling in 2002 [Tornøe, 2002].
It has been shown that compared to ODEs, the introduction of SDEs can give
a more realistic description of the measured physiological data by allowing in-
formation about unmodelled dynamics of the system to be extracted from data.
This is another motivation to introduce SDEs in the PK/PD models applied in
this thesis. Below an ODE and the mathematical structure of a corresponding
SDE is presented. For a thorough description of SDEs the reader is referred to
[Øksendal, 2005].

dxt = g(xt)dt (ODE)

dxt = g(xt)dt+ σwdwt (SDE) (2.2)

The diffusion term (σwdwt) in (2.2) consists of a magnitude defined by σw and
wt which is a standard Wiener process also known as a random walk with in-
crements which are Gaussian distributed with mean zero and covariance defined
by difference in time (|t2 − t1|I). By adding this diffusion term it is possible to
describe phenomenas that follow dynamics which are combined by a determin-
istic and a stochastic behaviour such as stock prices or in the present case, a
physiological system.

In the following subsection the setup of a stochastic state space model (SSSM)
will be presented. In contrast to a basic state space model based on ODEs,
in a SSSM based on SDEs, the system noise (originated from wt) influences
the evolution of the states causing them to be stochastic processes instead of
deterministic processes (See Fig. 2.2 for graphical presentation of a solution to
an SDE)

2.3.1 Stochastic state space models

SDEs for modelling are best introduced as the system equation of a state space
model which represents a mathematical model of a physical (in this case physio-
logical) system consisting of input, output and state variables linked by differen-
tial and algebraic equations. Inputs, outputs, and states are normally expressed
as vectors whereas the whole state space can be written in matrix form. The
state space representation thus provides a compact way to model and analyse
systems with multiple inputs and outputs. A general way of representing a
SSSM is

dxit = g(xit,uit,φi)dt+ h(xit,uit,φi)dwit,

yij = f(xij ,uij ,φi) + eij , eij ∼ N(0,Σ) (2.3)
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Figure 2.2: Three simulations of a solution to an SDE (red) and the correspond-
ing mean of 1000 simulations (blue).

where xit is the state vector for the i’th subject at time t, and uit the input
to the system for that given subject at time t. The vector φi is the parame-
ter vector for subject i, and wit a standard Wiener process as defined above.
The lower equation in (2.3) defines the measurement equation, where yij is the
measurement vector for subject i at measurement j, and eij is the residual mea-
surement error for the subject at timepoint j with mean zero and covariance
Σ. The unknown parameter vector defined by φi can, provided identifiability,
be estimated using maximum likelihood techniques. The likelihood function is
evaluated using the extended Kalman filter [Kristensen et al., 2004], [Overgaard
et al., 2005], and the optimization of parameters are obtained using an itera-
tive FOCE method [Beal and L.B.Sheiner, 1994]. In the case that the diffusion
term (h) depends on the state, the extended Kalman filter, which is applied
for estimation in SSSM both in CTSM [Kristensen et al., 2003] and PSM [Klim
et al., 2009] has difficulties as it requires higher (than 1) order terms to make
filter approximations sufficiently accurate. One way to work around this issue
is to transform the state space such that the diffusion term is independent on
the state [Iacus, 2008], [Madsen and Møller, 2010]. Adding a restriction on h(·),
not to be dependent on the state, the SSSM can be written

dxit = g(xit,uit,φi)dt+ h(uit,φi)dwit

yij = f(xij ,uij ,φi) + eij (2.4)
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2.3.2 Ornstein-Uhlenbeck(Langevin equation)

A general property of SDEs compared to ODEs is the possibility of describing
residuals correlated in time. Inspired by [Karlsson et al., 1995], and [Over-
gaard, 2006] a reasonable way to account for time-correlated residuals in a
PK/PD model is to introduce a continuous time version of the so-called AR(1)
process presented in [Madsen, 2007]. The continuous version can be defined as a
process xt (one-dimensional) with a correlation decay rate γ, i.e. COV (xt1 , xt2)
= exp(−γ|t1− t2|). Such a process could also be formulated as the steady state
solution to an SDE written in the form (one-dimensional)

dxt = γxtdt+ σwdwt (2.5)

This process has the properties of being stationary, Gaussian, Markovian, and
continuous in both time and probability [Uhlenbeck and Ornstein, 1930],[Wang
and Uhlenbeck, 1945]. As stated above, the process will be used as a tool to
improve description of noise in implemented insulin and C-peptide models and
will be denoted the OU-process3. This is the main subject of Paper A.

2.3.3 SDEs in glucose/insulin modelling (Paper A)

Modelling the glucose/insulin system using SDEs have previously been per-
formed based on data from an euglycemic clamp or from an intravenous glucose
tolerance test (IVGTT) [Tornøe et al., 2004]. In paper A a study was conducted
in the use of SDEs for modelling the data from an OGTT. The classical oral
minimal model for estimation of beta-cell function index [Breda et al., 2001] and
a modified version to use insulin instead of C-peptide was extended to include
SDEs. As a first approach, the ODE models were extended to SDE models with
additive system noise [Overgaard et al., 2005]. Using this implementation it
was observed that the description of insulin concentrations at high levels was
still inadequate. It is speculated that this was caused by the use of non-state
dependent inclusion of the system noise. In order to overcome this problem, an
extra state was added to the measurement equation with dynamics as described
by the Ornstein-Uhlenbeck process above. With this approach, the correlation
between prediction errors from the original model was accounted for also at high
insulin concentrations (See Figure 2.3).

One drawback using this approach is that it can not be related to any phys-
iological concept. It is rather a mathematical technique to handle correlated
prediction residuals. A better solution would thus be to implement the model

3Due the fact that it is a special case of the general Ornstein-Uhlenbeck process with µ = 0
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Figure 2.3: Individual predictions for implemented OGTT models of C-peptide
and insulin using ODEs and SDEs. Dark band identifies measurement error
whereas light band identifies the state error obtained from the extended Kalman
filter.

using state-dependent noise as stated earlier. The problem using SDEs with
state-dependent noise is that an accurate solution can not be directly obtained
using the EKF. Thus it is needed to transform the SDE back to be indepen-
dent of the state, using the so-called Lamperti transformation [Iacus, 2008],
[Madsen and Møller, 2010]. From a simulation study using basic PK/PD mod-
els extended to SDEs, this approach seems to provide reliable estimates both
in population and in SS estimation, also in the cases where the true model
includes state-dependent system noise [Røge, 2011]. The reason for not imple-
menting the glucose/insulin models presented in this thesis using the approach
with state-dependent diffusion term is that no software can easily handle pa-
rameter estimation in such models , and the Lamperti transformation gets fairly
complicated when having more than one state.
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Chapter 3

The Glucose Homeostasis and
Pathophysiology of Type 2

diabetes

The mathematical models applied in this thesis all build on the principles of the
glucose homeostatic system and the pathophysiology related to development of
T2D. In order to obtain understanding of these models, a fundamental knowl-
edge in this area is thus essential and will be presented below, starting with a
short review on the basic glucose homeostasis.

3.1 Glucose Homeostasis

Glucose is used by many organisms as fuel, and it is vital that glucose levels are
tightly regulated. Too low glucose will lead to loss of consciousness, while too
much is toxic. Glucose homeostasis is accomplished through complex mecha-
nisms involving many different molecules, cell types, and organs but is generally
regulated by the hormones insulin and glucagon. Insulin downregulates the
blood glucose whereas glucagon upregulates. Both hormones are secreted from
the pancreas, which therefore is the central player in keeping the blood sugar
at the right level. The insulin and glucagon production can thus be used as
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a good estimator in detecting if a patient has diabetes, insulin resistance, or
hypoglycemia.

When glucose enters the blood stream (eg. after digestion of food), it is de-
tected by specialized cells in the pancreas, placed in the islets of Langerhans,
called beta-cells. These cells respond to the rising blood-glucose concentra-
tion by releasing the hormone, insulin. The release of insulin is highly depen-
dent on two other hormones identified as gastic inhibitory polypeptide (GIP)
and glucagon-like-peptide 1 (GLP-1) [Vilsboll et al., 2003], [Holst et al., 2009],
[Tolhurst et al., 2009], and GLP-1 has in itself proved to increase the glucose-
stimulated insulin secretory dose-response curve [Brandt et al., 2001]. In general
this means that in the presence of GLP-1, the beta-cells have a higher response
to increased glucose levels. In spite of this, it is still not clear how the release of
this hormone is changed during transition from normal glucose tolerance (NGT)
to T2D. The model developed in Paper B was made for future investigations
of the effect of demographic factors and diabetes duration on GLP-1 secretion
dynamics and the results from the model development will be summarised in
the following chapter.

Following secretion, approximately 50% of the newly secreted insulin is degraded
in the liver [Vølund et al., 1987], although this number can vary between in-
dividuals and whether measured in steady-state or under glucose provocation
[Campioni et al., 2009]. It is thus clear that not only the ability of insulin secre-
tion, but also the hepatic extraction determines how much insulin can reach the
tissues. When reaching the tissues (i.e. muscle cells and adipose tissue), insulin
signals to take up glucose to be used as energy (in muscle cells) or stored for
later use (in adipose tissue). The result is a lowering of blood sugar concentra-
tion to non-toxic levels.

In times of low glucose intake (between meals or in cases of starvation) the
alpha-cells of the pancreas can release glucagon. This hormone directs the
liver to break down stored glycogen into glucose and release this glucose into
the bloodstream, thereby raising blood glucose concentration to a desired level
[Matsuda and Defronzo, 1999]. The glucose transporters expressed in the beta-
and alpha cells that bind glucose are the receptors of this homeostatic system.
The beta- and alpha cells, themselves, are the control centers. They process
information from the receptors and respond to it in a way that will maintain a
constant internal environment in terms of blood sugar level.
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3.2 Pathophysiology of Type 2 diabetes

From the previous section, it should be clear that the whole-body glucose home-
ostasis is controlled primarily by three tightly coupled regulators: 1) Hepatic
glucose production, 2) insulin and glucagon secretion from pancreatic beta- and
alpha cells, and 3) glucose uptake by three main target tissues of insulin: liver,
muscle, and adipose tissue.

T2D is characterised by two major abnormalities defined by a relative dys-
fynction in insulin release from the beta-cells causing insufficient insulin lev-
els to maintain normoglycemia, and impaired whole-body sensitivity to insulin
[DeFronzo, 2004] (See also Fig. 3.1). The ability of the beta-cells to secrete

Figure 3.1: The role of beta-cell dysfunction and insulin resistance in the patho-
physiology of T2D [Stumvoll et al., 2005].

insulin relative to the level of glucose concentration sensed by the pancreas, is
characterised as the beta-cell function. Measuring the beta-cell function under
conditions where the glucose/insulin system is in steady-state gives an indica-
tion of how well the subject can control the basal insulin secretion to prevent
high fasting plasma glucose (FPG). Contrary, when one wants to capture the
subjects ability to secrete insulin under varying levels of glucose (eg. after a
meal) a glucose load is administered as input to the system.
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Both muscles, adipose tissue and liver can take up glucose. The insulin sen-
sitivity defines to what degree a certain amount of insulin causes glucose to be
taken up by these tissues. In the fasting state, the muscles account for less than
20% of the overall glucose disposal whereas the endogenous glucose production
is totally responsible for the glucose entering the plasma [Stumvoll et al., 2005].
Measures of insulin sensitivity in the fasting state, is thus suggested to mainly
reflect the hepatic insulin resistance [Abdul-Ghani et al., 2006]. In the fed state
or under exercise, the overall glucose uptake is dominated by uptake to muscles
and to a smaller extent adipose tissue. Estimating separately the insulin sensi-
tivity in liver and in peripheral tissues (muscle and adipose) is not trivial since
glucose concentration is affected by both of these factors. One solution is to add
a tracer to the ingested glucose and from that determine what part of glucose
is produced in liver (endogenous) and what stems from ingestion (exogeneous).
These concentrations can then be applied to assess the hepatic and peripheral
insulin sensitivity [Man et al., 2008]. Another way is to determine what part of
the glucose curve following an OGTT, that mostly reflects the hepatic and the
peripheral sensitivities and from this derive approximate estimates for the two
[Abdul-Ghani et al., 2007].

The typical characteristic of T2D is an increase in FPG and/or a higher glucose
profile following a standard oral glucose tolerance test (OGTT). From the glu-
cose profile, the glucose measurement at 2 hours (G2H) is selected as indicator
for glucose control following a meal1. The FPG indicates how well the body
handles glucose in the fasting state, whereas the G2H describes the ability of
the body to remove glucose from blood following a meal. These two measures
are thus used to classify the development of T2D, which is usually separated in
various pathophysiological stages. The classification is based on criterias from
the World Health Organization (WHO) as presented below, assuming glucose
concentration is measured in mmol/L2.

• NGT(normal glucose tolerance), FPG<7.0 and G2H<7.8

• IFG (impaired fasting glucose), 6.1≥FPG<7.0 and G2H<7.8

• IGT(impaired glucose tolerance), FPG<7.0 and 7.8≥G2H≥11.0

• T2D(screen detected diabetics), FPG≥7.0 or G2H>11.0

The pathogenesis from NGT to T2D is generally understood to involve increased
insulin resistance [LeRoith, 2002]. Insulin resistance signifies that the effects of

1At around 2 hours post oral glucose administration, the glucose is returned to baseline in
normal individuals

2In the study comparing Japanese and Caucasian, the classification of IFG have not been
applied in order to have more subjects at each disease state
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Figure 3.2: Compensation with increased insulin secretion when insulin sensitiv-
ity is decreasing. In cases of no compensation a transition from NGT to IGT is
apparent. (NGT=Normal glucose tolerance, IGT=Impaired glucose tolerance,
T2=Type 2 diabetes mellitus). [Stumvoll et al., 2005]

insulin are less than expected for removal of glucose and suppression of the en-
dogenous hepatic glucose production [Dinneen et al., 1992]. As stated above,
at fasting state, the glucose level is mainly governed by the liver and early
signs of diabetes is thus expected to involve hepatic insulin resistance [Stumvoll
et al., 2005]. Many factors are known to cause insulin resistance and one of the
most important factors is obesity, for which the mechanisms are reasonably well
described [Kahn et al., 2006].

In case of decreasing insulin sensitivity, the normal beta-cells can compensate
by producing more insulin, thus maintaining normoglycemia (Fig. 3.2). This
leads to hyperinsulinemia in prediabetic subjects (See Fig. 3.3), but as long as
the beta-cells can provide sufficient insulin, decreased insulin sensitivity can last
for decades without leading to the diagnosis of T2D (See insulin resistance with
beta-cell compensation in Fig. 3.2). However, when beta-cells do not function
adequately to provide enough insulin, perhaps due to genetic factors, uncon-
trolled hyperglycemia occurs. The key element in the development of T2D is
thus the product of insulin sensitivity and beta-cell function, also known as the
disposition index [Bergman et al., 2002]. An overall picture of the pathogenesis
is presented in Fig. 3.33. In the case, where subjects can not compensate in-
creasing insulin resistance with increasing insulin secretion, the glucose is slowly

3The exact relationship between the beta-cell function and insulin sensitivity can vary
among individuals and ethnicity, so Figure 3.3 is drawn for illustrative purpose but is highly
simplified compared to reality and shows one way to progress to T2D
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Figure 3.3: Involvement of insulin sensitivity and beta-cell function in develop-
ment of T2D. (NGT=Normal glucose tolerance, IGT=Impaired glucose toler-
ance, T2D=Type 2 diabetes). The beta-cells can compensate decreased insulin
sensitivity with increased insulin production causing the subject to be hyper-
insulinaemic, although still in NGT state. The product of beta-cell function
and insulin sensitivity (disposition index) is a good predictor of diabetes state.
Inspired by [DeFronzo, 2004]
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cleared from the blood and diagnosis of T2D is inevitable either based on high
FPG or on high G2H (See criterias above). In case the disease is not treated
properly, long-term complications develop. Typical long-term complications in-
volve nerve damages (neuropathies) and vascular damages (microvascular and
macrovascular diseases) causing the patient to develop reduced vision, numbness
and severe kidney problems. Both the micro - and the macrovascular diseases
are known to be caused by a thickening of the basal membrane in the capil-
laries/arteries and changed permeability properties, although other factors are
also expected to play an important role [Hansen et al., 2004].
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Chapter 4

Indices for characterising
pathophysiology of Type 2

diabetes

This chapter deals with the application of indices providing information on the
pathophysiology and disease state of T2D. Such indices are typically derived
directly from measurements obtained from a glucose tolerance test or repre-
sented as parameters in mathematical models applied on the measurements.
The chapter is introduced with a discussion of the underlying requirements for
a diagnostic index to be applicable dependent on the purpose of the study.

4.1 What characterises a good index ?

The use of indices for describing disease state and disease progression is mo-
tivated by the fact that many diseases are characterised by different disease
processes in different organs which are difficult to measure in vivo. Typically
these indices can provide information relating to the functional state of a spe-
cific/several organ(s), while in the same time avoiding the need of invasive pro-
cedures such as surgical intervention. In most cases these indices are calculated
based on concentrations of specific chemical substances as is the case with creati-
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nine for calculation of renal clearance rate, or glucose and insulin for calculation
of pancreatic beta-cell function.

In general, indices for description of disease physiology are both applied for di-
agnostic and research purposes. The indices used for diagnostic purposes must
be easy obtainable, and must provide necessary information for the physician
to provide correct medication for the patient. Contrary in a research setting,
usually involving much less patients, the requirements for simplicity are not as
restrictive. In such settings it is of higher importance, that the indices can pro-
vide information relating to the pathophysiology behind the disease state. In
spite of these differences, it is evident that indices in general must be robust
and precise, reflected in a low coefficient of variation combined with a high dis-
crimination ratio [Katz et al., 2000]. In the following sections we will discuss
the application of indices related to characterization of disease state of T2D in
a research setting as the one applied in this project.

4.2 Indices for beta-cell function

Abnormalities in insulin secretion are important determinants of T2D. However,
due to the complex feedback between glucose and insulin, assessment of the abil-
ity of the pancreas to secrete insulin in response to glucose (beta-cell function)
under physiological conditions, has always been a challenge. Especially because
the use of insulin measurements can be misleading due to the confounding effect
of hepatic extraction.

One of the most applied indices for beta-cell function is the HOMA-B [Matthews
et al., 1985] index, which is based on basal concentrations of insulin and glucose
as described in the formula below.

20 · FPI
FPG− 3.5

(4.1)

where FPI is the fasting insulin level measured in mU/L, and FPG the fast-
ing glucose level measured in mmol/L. The index is thus based only on a single
point of the dose-response curve between glucose and insulin and cannot provide
insight regarding the ability of the beta-cells to respond to varying levels of glu-
cose. In order to get further insight into characterisation of beta-cell function,
alternative approaches have been introduced, where a glucose load is adminis-
tered intravenously, such as the clamp technique [Defronzo et al., 1979] or the
intravenous glucose tolerance test (IVGTT). From the IVGTT insulin response,
one can calculate indices for first-phase secretion (up to ≈ 8 min, dependent
on the individual profiles) and second-phase (simply following first-phase). The
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first-phase insulin secretion is generally accepted as a good predictor of diabetes
and a reduced first-phase secretion is one of the earliest signs of a progression
towards disease [Prato et al., 2002] [Prato et al., 2005], although some contro-
versy exists regarding a similar importance of the second-phase [Gerich, 2002].
An index for first-phase secretion can be obtained from the IVGTT either by
calculating the incremental area under the insulin curve from 0-8 min, classified
as acute insulin response (AIR0−8), or using a mathematical model on glucose
and insulin data [Bergman et al., 1981]. One drawback with the use of glucose
and insulin data for estimation of insulin secretion ability is that a major part
of the insulin secreted from the pancreas is degraded in liver before reaching
the systemic circulation. Thus, other methods have been proposed based on
C-peptide, which is not degraded in liver to the same extent as insulin and thus
has a much longer half-life [Toffolo et al., 1995].

Although the intravenous glucose tests can provide information on the glu-
cose/insulin system in non-steady state, it does not reflect what happens in
real life. During an intake of a meal, glucose is absorbed through the gastro-
intestinal (GI) tract which causes the plasma concentration to increase much
slower than is the case for an intravenous administration. Also, when glucose
passes the GI, various incretin hormones such as GLP-1 cause the insulin re-
sponse to be significantly higher than the corresponding intravenous response
[Holst et al., 2009] [Holst and Gromada, 2004]. Another problem with the intra-
venous methods is that they are fairly laborious and are difficult to perform in
large clinical studies. This has lead to the use of oral methods such as the oral
glucose tolerance test (OGTT), where the subject is given a standard dose of 75g
glucose orally. One of the mostly applied beta-cell indices from this test is the
Insulinogenic index which applies glucose and insulin samples at baseline and
30 min. after administration of glucose [Phillips et al., 1994] and is calculated
using the formula below

I30 − FPI
G30 − FPG

(4.2)

where I30andG30 are the insulin and glucose level 30 min. after administration
of oral glucose. This index has shown to have a strong correlation with AIR
both in subjects with NGT, IGT, and T2D [Hanson et al., 2000] and is well
accepted to be a good marker of first-phase insulin secretion. In paper C the
Insulinogenic and the HOMA-B indices have been used to analyse the transition
from NGT to T2D in Japanese and Caucasians. Both indices are well estab-
lished in litterature and are easy to calculate.

Besides being based on insulin, another unfortunate property with indices such
as the HOMA-B and Insulinogenic index is that they are both based on few
samples from the OGTT. In general that causes them to be highly dependent
on the accuracy of those samples. In contrast, using a mathematical model to
describe the concentration curves, all samples can be taken into account and
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Figure 4.1: 2-Compartment model.

the estimates for indices (parameters in the mathematical models) are less de-
pendent on the accuracy of each of the measurements compared to the simples
indices presented above.

One of the most applied models, for analysing data from an OGTT is the oral
beta-cell minimal model [Breda et al., 2001], which has been used in a single-
subject analysis in paper C and in a population analysis in Chapter 6 to assess
beta-cell function in the studied subjects. The theory behind the model will be
outlined below.

4.2.1 Model for estimation of beta-cell function

The oral minimal model is based on C-peptide instead of insulin in order to
take into account the hepatic extraction. The relation between insulin secretion
and C-peptide kinetics is established through the use of a compartment model
[Eaton et al., 1980] [Van et al., 1992]. The model includes two compartments,
a central compartment representing plasma and tissues in rapid equilibration
with plasma, and a peripheral compartment representing extravascular space.
By inspecting Figure 4.1 it is clear that the 2-compartment model describes the
distribution of a drug into tissue and back into plasma. The following equations
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model the amount of C-peptide in each compartment

dA1

dt
= SR− k1 ·A1 + k2 ·A2 − k3 ·A1 (4.3)

dA2

dt
= k1 ·A1 − k2 ·A2 (4.4)

(4.5)

where A1 represents amount of drug in central compartment (plasma) and A2

the amount of drug in tissue (muscles, adipose tissue etc.) The insulin secretion
estimates based on kinetic analysis of C-peptide concentration alone, involve
multiple experimental protocols or a priori assumption of C-peptide kinetic
parameters [Vølund et al., 1987]. The values of these kinetic rate constants
(k1, k2, k3) are obtained using standard kinetic parameters calculated using the
age and body surface area (BSA), k1, k2, k3 [Van et al., 1992]. BSA is estimated
according to the Mosteller formula, which is the standard in clinical research
[Verbraecken et al., 2006] [Mosteller, 1987].

The OMM relates C-peptide kinetics to insulin secretion rate above basal (SR)
from the OGTT. The secretion of insulin is stimulated through a static compo-
nent proportional to the glucose level above baseline, and a dynamic component
presented by the derivative of glucose when glucose concentration is rising. This
approach is presented in [Breda et al., 2001], and [Lim et al., 2009] and a refor-
mulated version is

SR = [A3 + SRd]
+ (4.6)

where
dA3

dt
= −τ−1(A3 − φs[GLU −Gb]+) (4.7)

and

SRd =

 φd
dGLU
dt if dGLU

dt > 0

0 if dGLU
dt ≤ 0

where SR is the insulin secretion rate above basal caused by the glucose uptake
and A3 the secretion based on stimulation signal from glucose level above base-
line. GLU is the interpolated version of the glucose curve and Gb the baseline
glucose concentration. SRd is the secretion rate originating from the dynamic
part, and the parameter φd is the secretory response to the rate of change of glu-
cose. The derivative of glucose dGLU

dt is obtained from the interpolated glucose
curve. The parameter τ is the time delay between glucose sensing and insulin
production, and φs determines the magnitude of the static response. In sum-
mary, the parameters φs and φd provide static and dynamic indices for beta-cell
function, relating to first - and second phase secretion. The observation equation
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relating observation, error model, and prediction is defined by

Y = (
A1

V
+ Cb)(1 + ε2) + ε1

1 (4.8)

where V is the volume of distribution of C-peptide, Cb the basal C-peptide con-
centration and ε1, ε2 additive and proportional error term, respectively.

In Paper A it was shown that φd has a significant correlation with AIR0−8,
which to a certain extent partly evaluates the index as a marker of first-phase
secretion. In spite of this, based on the data obtained in Japanese and Caucasian
subjects, it was found that the index has fairly poor correlation with covariates
such as age and BMI compared to the simple indices for first-phase secretion
such as the Insulinogenic index. Furthermore as will be shown in Chapter 6, it
was found that the dynamic part only constitutes a minor part of the secretion
contribution to the C-peptide curve, which causes the estimation of φd to be
less accurate than φs.

In summary, although φd is mathematically sound as a marker for first-phase
secretion, a complete evaluation of predictive performance relating to disease
state of the pancreas is still subject for future research.

4.2.2 SDEs in estimation of dynamic index (Paper A)

In paper A, the minimal model for estimation of beta-cell function was extended
to include an SDE for description of correlated prediction residuals. Besides in-
vestigating the effect on description of data, also the relation between φd and
the gold standard measure for first-phase secretion (AIR from IVGTT) was in-
vestigated. As stated above, the parameter φd is intended to be a marker of
first-phase secretion and thus a significant correlation between φd and AIR is
expected. Both the correlation to AIR (not shown) and the similarity in covari-
ate relations were improved using the SDE approach for estimation of individual
φd values.

The relation between φd and AIR and covariates is presented in Table 4.1.
Values in the second column were calculated as the slope between log(AIR0−8)
and the corresponding covariate indicated in the first column. Last four columns
present parameter values obtained for relation between the given covariate and
φd estimated by the ODE or SDE approach using either the C-peptide version
or an insulin version of the OMM (See Paper A). The value 0.273 in first row

1This is the observation equation used in the population approach and is slightly different
from the one used in single-subject estimation which is formulated based on prior estimations
results
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thus indicates that the slope between BMI (normalized by subtracting mean and
dividing by SD) and log(φd) in the basic C-peptide model equals 0.273. Similar-
ity between slopes obtained for the log(AIR0−8) and log(φd) indicates that the
index obtained using the OGTT model has similar relation as log(AIR0−8) to
the given covariate. In all cases the extended error structure based on the OU
stochastic process caused the slopes for the covariates to better reflect the ones
observed for the log(AIR0−8). This supports the fact, that covariate relations
can be inaccurate when the correlation between residuals is not fully described
[Silber et al., 2009].

Covariate relation log(AIR0−8) log(Φd)
Data C-peptide Insulin
Model ODE SDE ODE SDE
BMI 0.176(0.052) 0.273 0.106 0.490 0.196
AGE -0.017(0.053) 0.030 -0.017 0.207 0.033
FPG -0.199(0.052) 0.030 -0.105 0.177 -0.050
I0′ 0.159(0.052) 0.287 0.147 0.543 0.271

Table 4.1: Relationship between beta-cell indices and selected covariates for
C-peptide and insulin models built using ODEs and SDEs in NONMEM. (.)
Indicate standard error of estimate (SEE).

4.3 Indices for insulin sensitivity

As stated in Chapter 3, the development of T2D involves a complex interplay be-
tween beta-cell function and insulin sensitivity. Estimates for beta-cell function
is thus usually followed by further assessment of insulin sensitivity. Especially in
epidemiological studies, the HOMA-IR [Matthews et al., 1985] has been widely
applied for such purpose. It reflects the inverse of the insulin sensitivity, char-
acterised as insulin resistance, based on basal levels of glucose and insulin and
is given by

22.5 · FPG
FPI

(4.9)

where FPG and FPI is the fasting plasma concentrations of glucose and insulin
as above. This index has been suggested mainly to reflect hepatic insulin sen-
sitivity due to the use of only basal values [O’Rahilly et al., 1994]. Contrary,
for assessment of whole-body insulin sensitivity it is suggested to use glucose
provocation tests as also described above for beta-cell function. One widely
applied index is the Matsuda Composite Index that applies insulin and glucose
samples up to 120 min. It has shown to correlate well with insulin sensitiv-
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ity derived from the euglycemic clamp [Matsuda and Defronzo, 1999] and is
calculated according to

10000√
FPG · FPI · Ḡ0−120 · Ī0−120

(4.10)

where Ḡ0−120, and Ī0−120 are the mean level of glucose and insulin calculated
as the AUC0−120 divided by the time period.

In spite of the fact that the Matsuda index is widely applied, it does not use all
samples from the OGTT to gather information for estimation of insulin sensitiv-
ity and it is also sensitive to extreme values. Thus, besides using the Matsuda
Composite Index together with HOMA-IR (Paper C) to derive insulin sensitiv-
ity in the Japanese and Caucasian cohort, also the OMM for glucose was applied
(See Paper D) which uses all samples from the glucose and insulin profiles. The
equations for the oral glucose minimal model for estimation of insulin sensitivity
is presented below:

dG

dt
= −(Sg +X)G+ SgGbV +RA, G0 = GbV

dX

dt
= −p2X + p2SI(INS − Ib), X0 = 0

here G presents the amount of glucose present in the central compartment
(blood), and X the composite insulin action on muscle, adipose tissue, and
liver. The parameters SI , and Sg present the insulin dependent, and the non-
insulin dependent clearance of glucose, respectively. Gb is the basal glucose
concentration measured in mg/dL. The distribution volume is expressed by V.
The parameter p2 expresses the decay rate for the insulin effect on glucose. INS
is a linear interpolation of the insulin curve, and RA the rate of glucose absorp-
tion presented by a simplification of the equation presented in [Hansen, 2004]2

RA = MS1 exp(−αt)(1− exp(−αt)) (4.11)

This way of presenting the glucose absorption profile is chosen based on the few
number of parameters and a prior analysis showing no significant improvements
with more complex profiles [Klim, 2009]. Prediction of glucose concentrations
following the OGTT can be described by 3

Y = (
G

V
)(1 + ε2) + ε1 (4.12)

2In paper D, the piecewise absorption profile has been applied instead [Man et al., 2004].
Based on studies not presented here it was observed that in a population setting the presented
formula had the best performance for estimation of insulin sensitivity

3This is the observation equation used in the population approach and is slightly different
from the one based on single-subject estimation
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Due to the fact that the insulin sensitivity index (SI) applies full glucose and
insulin profiles it can be understood as a composite index in the sense that the
both the sensitivity in liver and peripheral tissue contributes to the value. In
case one wants separate estimates of the insulin sensitivity originating from liver
and peripheral tissues, generally it is needed to add a tracer to the glucose/meal
as proposed by Dalla Man et. al [Man et al., 2008].

4.4 Indices for GLP-1 secretion (Paper B)

As stated in the previous chapter, the presence of GLP-1 in combination of glu-
cose is of main importance in the process of insulin secretion. A subject with
severely low secretion of GLP-1 following an OGTT will thus typically have a
low beta-cell function. In paper B, a model for secretion of GLP-1 providing
indices for secretion ability was developed. The model is built using glucose,
insulin, and GLP-1 data from an OGTT [Hansen et al., 2007]. First approach
was to let the production of GLP-1 be driven solely by the glucose absorption
rate, but this was not sufficient to describe the pattern of the data. Instead in
the final model GLP-1 secretion is stimulated both by a fast component peak-
ing around 25 min. and a slower component peaking at around 100 min. The
fast component is suggested to be caused by a neuro-endocrine loop, whereas
the slower phase, by a direct interaction between ingested nutrients and the L-
cells placed in the distal gut [Lim and Brubaker, 2006], [Lim et al., 2009]. The
model for GLP-1 was developed in close collaboration with professor Bill Jusko,
University at Buffalo, NY and the structural setup is presented in Figure 4.2
whereas the parameter values are presented in Figure 4.3.
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Figure 4.2: A: Diagram of glucose/insulin model for estimation of the glucose
absorption rate, B: GLP-1 secretion model. Absorption rate for glucose is iden-
tical to that estimated in the glucose/insulin model. The model is an indirect-
response (IDR) model with two components stimulating the synthesis of GLP-1.
The two components originate from ingestion of glucose with a magnitude pre-
sented by st3, and absorption of glucose with a magnitude equal to st4. Symbols
are as defined in Figure 4.3. See also Paper B
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Figure 4.3: The f is obtained from Ref. [Silber et al., 2009] and ka is estimated
from glucose/insulin data
. No IIV on parameters are indicated by: 0 FIXED. See Paper B for further

description.
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Chapter 5

Ethnic differences in
progression of Type 2 diabetes

This chapter deals with ethnic differences related to the development of T2D.
First section will have a focus on ethnic differences in general, and the following
section on the specific differences between Caucasians and Japanese.

5.1 General ethnic differences

Figure 5.1 shows the prevalence of T2D among different ethnicities in the US,
from a survey performed in adults between 2007 and 2009 [Lutsey et al., 2010].
From the figure it can be seen that the prevalence is almost the double in
Non-hispanic blacks compared to Non-hispanic whites (Caucasians). Large dif-
ferences can also be found within ethnicities [Chiang et al., 2011]. Figure 5.2
presents data obtained in Singapore from Chinese, Malay, and Indian subjects
indicating that the prevalence in Indian is almost the double as in Chinese
placed in Singapore. It is thus clear that T2D is an example of a disease in
which differences between ethnic groups exists.

Besides various articles discussing ethnic difference in prevalence among spe-
cific races, some reveiws deals also with the area from a more broad perspective.
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Figure 5.1: Prevalence of diabetes in US in population 20 years or older, adjusted
for population age differences. Data obtained from [Lutsey et al., 2010]
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Figure 5.2: Prevalence of diabetes in Asian ethnicities aged 40-95, adjusted for
population age differences. Data obtained from [Chiang et al., 2011]

Abate et al. focuses both on epidemiological and pathophysiological aspects
[Abate and Chandalia, 2001] and mentions the adoption of the western lifestyle
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to have a huge impact on the prevalence of diabetes in ethnicities different
from Caucasian. In support of this, the Native African-americans (non-Hispanic
blacks) have a prevalence of 1% (not shown), whereas African americans have a
prevalence of 12.6% (See Figure 5.1). Another example is intake of fat, which in
mean is 32.4g in Japanese-American versus 16.7g of fat in Japanese men living
in Japan. The traditional diet of the Japanese was fish and vegetables until the
end of the nineteenth century, and in general dietary differences among ethnic
groups and level of physical activitity may contribute to the interethnic differ-
ences in prevalence of T2D.

So the question is how does lifestyle factors and obesity mechanistically af-
fect the pathogenesis of diabetes in various ethnic groups ? When subjects
approach IGT status, they can either be dominated by decreased insulin sen-
sitivity or decreased beta-cell function or a similar contribution of both. One
example is the disease development of Pima Indians from NGT to IGT which
are characterised both by severe insulin resistance and beta-cell dysfunction
[Weyer et al., 1999]. In contrast, African-americans approaching diabetic state
have been reported to frequently have relatively low rate of insulin resistance,
whereas in European-Americans with mild diabetes, severe insulin resistance is
reported. Conclusively the predominant mechanism leading to T2D seems to
be different in various ethnic groups.

Abate et al. 1995 shows relation between increasing body fat and insulin resis-
tance, and further states that insulin resistance is mainly dominant in people
with BMI above 30 kg/m2. Obese human subjects have lower tyrosine kinase
activity and that activitity is restored post weight loss. Thus, in general it
can be concluded that development of obesity has a significant impact on the
development of both insulin resistance and beta-cell dysfunction and has been
shown to explain about 30% of the variability in insulin sensitivity in a Cau-
casian cohort [Clausen et al., 1996] although numbers closer to 50% have also
been reported [F.Fletcher et al., 1999]1.

One special case is the Asian Indians which are of particular interest as they
have significantly more insulin resistance than Europeans despite the low oc-
currence of obesity. In order to specifically define the role of adiposity and
fat distribution on the larger occurence of insulin resistance observed in Asian
Indians, Chandalia et al., 2007, performed euglycemic-hyperinsulinemic clamp
for calculation of insulin sensitivity in European-Americans and Asian-Indians
matched for BMI [Chandalia et al., 2007]. They showed that the percentage
of total body fat and adipocyte size was significantly higher and that the in-
sulin sensitivity was significantly lower in the Asian cohort, compared to the

1This number is strongly dependent on the methods use to assess obesity and insulin
sensitivity
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Caucasian. After adjustment for percentage of body fat, Asian Indians still had
higher insulin resistance and larger adipocyte size, suggesting the size of the fat
cells to explain the lower insulin sensitivity. One could also speculate whether
this could be due to lower level of physical activity (PA), but Liew et. al., 2003
found that differences between Caucasians and Asian Indians in insulin sensi-
tivity obtained from clamp, could not be explained by differences in PA [Liew
et al., 2003]. In general these arguments suggests that a primary metabolic
defect related to genetics could be present in this group, however more studies
are needed to draw such conclusions.

The presence of some ethnic groups being predisposed to insulin resistance may
have developed as a genetic advantage in populations such as the Hispanics
and Asians. The so-called thrifty genotype hypothesis proposed by Neel et al.
[Neel, 1962] suggests that predisposition to insulin resistance may have protected
individuals during periods of food deprivation by reducing muscle utilization of
glucose. The fast change to excessive food availability and less PA has caused a
pathological condition characterised by a too low glucose utilization. What was
a genetic advantage in the past is now a disadvantage. In spite of the fact that
the hypothesis seems reasonable, it is important to note that present analysis
did not find any evidence for the thrifty hypothesis [Southam et al., 2009].

It has also been found that the relation between body fat and BMI is ethnic
specific. As stated above people refer to the fact that Asians have higher body
fat percentage compared to Caucasians with same BMI [Chandalia et al., 2007],
[Nair et al., 2008], [Gallagher et al., 2000] although some have reported the oppo-
site [Cruz et al., 2001]. In the following chapter it will be adressed whether such
differences can explain differences between Caucasians and Japanese. Based on
the understanding of different body fat percentages, the BMI cut-off for obe-
sity is 25 kg/m2 in Japanese, 26 kg/m2 in Indians, 27.5 kg/m2 in Chinese, as
compared to 30 kg/m2 in Caucasians [Kanazawa et al., 2002], [Deurenberg-Yap
et al., 2001]. In spite of these differences there seems to be a clear relation
between BMI and the prevalence of T2D across different ethnicities (See Figure
5.32).

2This source is the most updated data source, but shows statistics for diabetes in general,
which is a good indication for T2D as approximately 90% of diabetics has T2D [WHO, 1999]
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Figure 5.3: Prevalence of diabetes vs BMI. The prevalences are adjusted for
population age differences.. Data obtained from [diabetes foundation, 2011]
and [of Metabolic Risk Factors of Chronic Diseases Collaborating Group, 2011]

5.2 Differences between Japanese and Caucasian

The present increase in T2D prevalence is different in Asia than it is in other
parts of the world. It has developed much faster, in a younger age group, and in
people with lower BMI [He et al., 1994]. Compared to people of European ori-
gin, some studies indicate a larger proportion of body fat and abdominal obesity
as one of the arguments for this difference [Park et al., 2001], [He et al., 2002].
Another suggestion is the presence of dysfunction in early (first-phase) insulin
secretion, which have been proposed in a variety of papers, mainly based on
findings in Japanese subjects [Chen et al., 1995], [Matsumoto et al., 1997], and
[Fukushima et al., 2004]. All these studies calculated the first-phase beta-cell
function based on the Insulinogenic index as presented in Chapter 4.

From Figure 5.3 it can be seen that the age-adjusted prevalence of diabetes
in Japan is 5.0%, whereas it is 5.6% in Denmark in spite of the fact that the
average BMI in Denmark is much higher than in Japanese. Based on the cur-
rent literature it is generally agreed that the pathogenesis of T2D in Japanese
individuals differs from that in Caucasian. More specifically, it is suggested that
Japanese can not compensate insulin resistance with increased insulin secretion
to the same extent as Caucasians [Fukushima et al., 2004]. This understanding
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will be challenged below by a review of disease progression in the two ethnicities.
A short review is further presented in the introduction of paper C.

Kuroe et al. studied 453 healthy Japanese NGT spanning a wide range of
BMI values. Insulin resistance was calculated using HOMA-IR and Matsuda
Composite Index, and beta-cell function using the Insulinogenic Index. They
found that HOMA-IR generally increased with BMI whereas a decrease in Mat-
suda Composite was only observed at larger BMI values (>25). Furthermore
they found a decrease in Insulinogenic index towards a larger BMI (up to 27.5
kg/m2). As all subjects in the study were NGT, they suggest that this finding
supports the presence of impaired early phase insulin secretion in Japanese, de-
spite NGT [Kuroe et al., 2003].

In another study including 379 Japanese men, an increase in HOMA-IR and
a decrease in Insulinogenic from NGT to IGT and also from IGT to isolated
post-challenge hyperglycemia (IPH) was reported [Suzuki et al., 2003]. Another
large study with 684 Japanese males/females stratified in NGT, IGT, and T2D
groups with mean BMI about 24 kg/m2, reported a small increase in HOMA-IR
from NGT to IGT and again a small decrease from IGT to T2D [Fukushima
et al., 2004]. Also HOMA-B and Insulinogenic Index were reported to be signif-
icantly decreased from NGT to T2D. These findings were supported by another
study, also performed in NGT, IGTs, and T2Ds with OGTT profiles showing a
decreased early insulin response (up to 60 min.) in IGTs compared to NGTs.
In these subjects, also the insulin sensitivity was decreased from NGT to IGT
and from IGT to T2D [Nishi et al., 2005].

Abdul-Ghani et al. also studied Japanese subjects and this paper is one of
the few papers that report the calculation of the disposition index, using the
product of Matsuda Composite Index and Insulinogenic. The Japanese subjects
in both the NGT and the IGT group had BMI≈24 and was shown to have a
significant decrease in disposition index from NGT to IGT. This decrease was
reported to be caused both by a significant decrease in insulin sensitivity and
in insulin secretion [Abdul-Ghani et al., 2007].

The Botnia study is one of the large studies investigating T2D disease pro-
gression in Caucasians. The study involved 5396 subjects of mainly finnish
inheritance and reports increased OGTT insulin response from NGT to IGT,
but a decrease from IGT to T2D. HOMA-IR was further found to have a sig-
nificant decrease from IGT to T2D [Tripathy et al., 2000]. In 2003 Hanefeld et
al. performed another study in 307 Caucasian subjects with a mean BMI about
27 kg/m2, showing decreased early (Insulinogenic) and late-phase (ratio of full
insulin AUC to glucose AUC) beta-cell function, despite increased insulin AUC
from NGT to IGT.
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Torrens et al., 2004 performed a study in premenopausal women including
subjects both from non-hispanic (Caucasian) and Japanese inheritance. Us-
ing stepwise multivariable regression analysis of covariance models (ANCOVA),
the impact of ethnicity was found to be significant on HOMA-B after correcting
for confounders. This suggests the presence of difference also in beta-cell func-
tion at fasting state between Caucasian and Japanese.

Fukushima et al., 2004 also compared Caucasian and Japanese, by combining
the Botnia study with own findings. Japanese subjects had a less pronounced
increase in HOMA-IR from NGT to T2D, but in general had lower early in-
sulin secretion at all stages of glucose tolerance. Based on this it was suggested,
that main determinant for decreased glucose tolerance from NGT to IGT in
Japanese, is a decreased early-phased insulin response [Fukushima et al., 2004].

In summary, the literature seem to agree upon the fact, that Caucasian and
Japanese decline in both beta-cell function (either measured by HOMA-B or
Insulinogenic index) and insulin sensitivity (either measured by HOMA-IR or
Matsuda index) when progressing from NGT to T2D. Contrary some contro-
versy exist whether the early - and late phase insulin response is increased from
NGT to IGT in both ethnicities. Furthermore it is not clear whether Japanese
can compensate increasing insulin resistance with increasing insulin secretion to
the same extent as Caucasians.

Despite the fact, that the above review has outlined a variety of papers, stating
possible differences in T2D disease progression in Caucasian and Japanese, no
parallel matched studies performed in each region has been conducted. This
makes it difficult to compare the two ethnicities. A parallel study performed in
Japan in collaboration with a site in a country with mainly Caucasians can help
eliminate the effect of environment and inclusion bias in general. The analysis
and modelling of data from such a study was completed throughout the PhD
period and will be presented in the following chapter.
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Chapter 6

Study of the ethnic difference
between Caucasian and

Japanese subjects

6.1 Introduction

As described in the last chapter, T2D is an example of a disease in which dif-
ferences between ethnic groups have been reported. As was further stated, a
major part of scientific litterature, reporting ethnic differences is built on the
hypothesis that Japanese and Caucasians differ with respect to development of
T2D. In spite of this no extensive comparison has been performed using both
simple measures and modeling techniques for identifying underlying pathophys-
iology combined with a thorough assessment of both demographic, biochemical,
and genetic information. Information obtained from such a study can poten-
tially support future decisions regarding whether or not to use bridging studies
when developing anti-diabetic medicines for the two regions in place. The main
objectives of the study investigating ethnic differences between Japanese and
Caucasians performed in this thesis were

1. Quantify differences in beta-cell function and insulin sensitivity in Cau-
casian and Japanese in subjects with:
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• Normal glucose tolerance (NGT)1

• Impaired glucose tolerance (IGT)

• Type 2 diabetes (T2D)

2. Estimate fraction of differences between Caucasian and Japanese that can
be explained by covariates for measures of:

• Beta-cell function

• Insulin sensitivity

6.2 Materials and methods

6.2.1 Study design and participants

The study investigated 150 Caucasian subjects (Northern European background
for at least three generations) enrolled at Copenhagen University Hospital, Den-
mark, and 120 Japanese (Japanese background for at least three generations)
enrolled at Tokyo University Hospital, Japan. Potential participants (males
and females aged 40 to 65 years) were carefully screened to exclude individuals
with metabolic conditions other than T2D known to influence body composi-
tion. Other key exclusion criteria were: treatment with insulin, recent or ongo-
ing infection, history of malignant disease, and use of thiazolidinedione (TZD)
based medications within last three months. Participation also required normal
results from the physical examination, blood screening, electrocardiogram, uri-
nalysis, and a stable bodyweight (±10%) for the past year. Participants were
stratified into two groups of low and high BMI, respectively. A high BMI was
defined for Japanese as >25 kg/m2 and for Caucasians as BMI>30 kg/m2 in
accordance with regional obesity definitions [Kanazawa et al., 2002], [Organi-
zation., 2000]. The participants were classified as having either NGT, IGT or
T2D [WHO, 1999], on the basis of blood glucose levels while fasting and at 2
hours during the OGTT (See Chapter 3 for classification). The study protocol
was approved by The Regional Committee on Biomedical Research Ethics in
Denmark (Journal no H-C-2008-101) and by the Research Ethics Committee of
Graduate School of Medicine, University of Tokyo, Japan. Informed consent
was obtained from all participants. Each subject was characterised according
to the following measurements:

• Lifestyle factors

1See classification criteria in section 3
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Dual-emission X-ray absorptiometry (DXA) scan for body fat

VO2max for physical activity

International Physical Activity Questionnaire (IPAQ)

• Biochemical assessments

Cytokines and hormones (IL-6, TNF-α, leptin, and adiponectin)

Lipids (HDL, LDL, triglycerides, cholesterol, and FFA)

• Genetics

Single-nucleotide-polymorphisms (SNPs) validated for T2D

For assessment of beta-cell function and insulin sensitivity, each subject under-
went an extended 75g frequently sampled oral glucose tolerance test (OGTT).
After an approximately 12-h overnight fast, venous blood samples were drawn
at -30, and 0 minutes before the glucose intake and at 10, 20, 30, 60, 90, 120,
150, 180, 240, 300 minutes after. Serum insulin, plasma glucose, and C-peptide
were measured at all timepoints. At timepoints 0, 20, 30, 60, 120, and 240
samples were measured for GLP-1 whereas at 0, 20, 60, 120, 180, and 300 min
samples were measured for free-fatty-acids (FFA). Data analysis of GLP-1 and
FFA data will not be considered in this thesis.

6.2.2 Hardware and software

All data, including OGTT measurements, were delivered by the two sites in
Excel files. For handling and analysis of data the commercial software S-plus
was applied. The statistical analysis of the data was carried out by developing
specific S-plus scripts. Data files for the model-based approach was also prepared
using S-plus scripts. Single-subject estimation was carried out using Matlab
v.12 and population estimation using NONMEM VII, both installed on a linux
cluster at DTU and NN, respectively.

6.2.3 Covariate selection

Strategies for selection of covariates in regression models has been studied in
various publications in both the classical statistics area [Hooking, 1976], [Gupta
and Huang, 1988], [Cheng et al., 2009] and the population PK/PD area [Kowal-
ski and Hutmacher, 2001], [Denti et al., 2010], [Ribbing and Jonsson, 2004]. In
summary, the proposed methods are all based on some or one of the following
procedures outlined below [Madsen and Thyregod, 2011]:
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• Forward selection: Inclusion of one variable at a time in order of increasing
p-value

• Backward elimination: Starting with a full model and reduction of model,
one variable at a time

• Stepwise regression: A modified version of the forward selection where
variables are added step-by-step and other variables are tested for signifi-
cance at each step

• For a number k = 1, 2, 3, ... an algorithm identifies a given number of best
regression models using k variables

In the present study a large pool of covariates (>30) were included in the anal-
ysis and many of these coviariates were highly correlated (BMI, height, waist,
fat-mass etc.). Furthermore, as mentioned above, the study was designed with
stratification into different groups based on both BMI, race and glucose toler-
ance. Based on this, a classical covariate procedure was not found appropriate
for selection. Instead the following procedure was used:

1. Define full covariate model with pre-specified covariates and possible ad-
ditional covariates

• Type[NGT,IGT,T2D], race[Caucasian,Japanese], age[40;65], sex[male,female],
BMI[≥18], and additional covariates

2. Inclusion of additional covariates in case they are significant and explain
a large fraction of the variability remaining after inclusion of pre-specified
covariates

• Significant (p<0.01)

• Explained variability > 10%2

• Not highly correlated with other covariates (r<0.5)

3. Backwards elimination3

• Significance (p>0.001) or explained variability < 10 %4

4. Testing order of elimination

2Explained variability is calculated using the variance of residuals from model with and
without the additional covariate

3The full model without the use of backward elimination is used to generate Forest plot as
will be shown below

4In the NONMEM analysis presented in this chapter the p-value is used and corresponds
to a change in OFV of 10.84
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• First: Covariates explaining least variability

• Last: Predefined covariates such age, sex, and BMI

By applying this procedure a limited amount of covariates was included, and
those covariates that were kept in the final model are not only significant, but
also have a high probability of being clinically relevant as descibed by Tunblad
et al. [Tunblad et al., 2008].

In order to estimate fraction of differences in beta-cell function and insulin sen-
sitivity that could be explained by each covariate in final model, a measure for
how much each covariate explains of the difference was further derived according
to the following formula:∑

i=NGT,IGT,T2D

|ĒC,i − ĒJPN,i| −
∑

i=NGT,IGT,T2D

|ĒC.Adj,i − ĒJPN.Adj,i|∑
i=NGT,IGT,T2D

|ĒC,i − ĒJPN,i|
· 100%

where ĒC,i represents mean of endpoint for Caucasians calculated for the disease
group i which is either NGT, IGT or T2D. ĒC.Adj,i represents mean of endpoint
adjusted for covariates. Assuming a linear relationship between the covariates
and the logarithm of the endpoint, the calculation of the adjusted endpoint
would be

EAdj = exp(log(E)− β1 · x1 − β2 · x2 − ...) (6.1)

where βi is the slope obtained from a linear model having the given endpoint
(E) as the dependent variable and the covariate subtracted for median (xi) as
independent variable together with race and disease type such that the intercept
can be different in each group. The median is subtracted from the covariate such
that the intercept is calculated at that point.

6.3 Results

In this section, the results from the analysis of the development of T2D in Cau-
casians and Japanese will be presented. The main analysis has been performed
by calculating different measures for beta-cell function and insulin sensitivity
using data from the OGTT, for subjects in each disease group (NGT, IGT,
or T2D). Measures for insulin sensitivity and beta-cell function have been cal-
culated based on 1) simple measures derived from glucose and insulin profiles
such as the HOMA-IR [Matthews et al., 1985] and Insulinogenic index [Phillips
et al., 1994], and 2) using a model-based approach that builds on knowledge
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about the PK/PD relations between glucose, insulin, and C-peptide following
an OGTT [Breda et al., 2001], [Man et al., 2002]. These models have been
implemented in a) single-subject approach where parameters for each subject is
estimated using the profile of the given subject as originally proposed by Breda
et al., 2001, and Dalla Man et al., 2002, and b) a population-approach where all
data are used simultaneously to estimate population parameters and individual
parameters as done for the C-peptide model for estimation of beta-cell function
in [Møller et al., 2010].

Paper C included in this thesis describes in detail the part of the analysis per-
formed using simple measures, whereas paper D deals with the single-subject
analysis of the model-based approach. The results presented in this chapter will
thus mainly be based on the population analysis.

6.3.1 Beta-cell function and insulin sensitivity

In this subsection, the estimates for insulin sensitivity and beta-cell function
will be presented. The results originate from population implementations of
the minimal models for glucose and C-peptide as presented in Chapter 4. Each
barplot (Figure 6.1 - Figure 6.3) represent mean values and standard error of
the mean (SEM) in each disease group (NGT, IGT, or T2D) for Caucasians
and Japanese. These values are calculated based on the individual estimates of
insulin sensitivity (SI) and beta-cell function (φd,φs) obtained from the popula-
tion analysis. Test for significant differences between Japanese and Caucasian is
performed for each disease group on an α=0.05 level (one star) and on α=0.01
level (two stars)5. Significance was obtained from ANOVA model. The results
of the analysis is shown later in this subsection.

The dynamic secretion index (Figure 6.1) influence model predictions of
C-peptide until the point were the slope of the glucose curve becomes less than
or equal to 0. It can thus be understood as a first-phase index and has a signif-
icant relation to the first-phase index derived from an IVGTT (See paper A).
The results regarding differences in model-based beta-cell function and insulin
sensitivity obtained from the population estimation is generally in line with the
results obtained using the single-subject approach presented in paper D. One
difference is for the dynamic index (Φd) in IGTs, which is not significant based
on the population analysis. The fact, that the Caucasian NGTs seem to have
numerically lower values than Japanese NGTs is in contrast to what is observed
for the non-model based estimates of first-phase (Insulinogenic) presented in

5Multiple statistical tests was performed without Bonferroni correction indicating that sig-
nificance for some tests will occur from time to time. Bonferroni correction was not performed
due to insufficient number of subjects in this trial
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Figure 6.1: Dynamic secretion index (Φd) for NGT, IGT, and T2D in Caucasian
and Japanese

Paper C. To investigate this further, Figure 6.4 presents impact from the dy-
namic (SRd) and the static (SRs) part of secretion. Based on calculation of
AUC from 0-30 min from these curves (Figure 6.4), the dynamic part represents
23%, and 33% of the full effect in Caucasian and Japanese, respectively. Thus,
only a fraction of the response (which is reflected in the total C-peptide/insulin
profile) originates from the dynamic part, whereas Insulinogenic uses the raw
samples (100% of the insulin response). This could partly explain the reason
for the difference observed for Insulinogenic and dynamic index. In fact, it is
rather expected to see the same trend for the static index, which plays a bigger
role for the shape of the C-peptide and thus also the insulin curve.

The estimates for the static secretion index estimated by the NLME approach
is presented in Figure 6.2. As for the single-subject results presented in paper D,
it indicates a similar trend in the transition from NGT to T2D between Japanese
and Caucasians with decreasing static secretion index. It is also observed that
the static secretion index is numerically lower in the Japanese compared to the
corresponding Caucasians in all disease groups which was also seen for the In-
sulinogenic index and the insulin secretion ratio (See paper C).
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Figure 6.2: Static secretion index (Φs) for NGT, IGT, and T2D in Caucasian
and Japanese

In Figure 6.3, the estimates for population model based insulin sensitivity (SI)
are presented. Again the estimates seem to be in accordance with what is pre-
sented from the single subject analysis in Paper D, although there seems to be
a tendency towards a higher sensitivity in Caucasian NGTs estimated using the
single-subject model. The population estimates thus agree better with the Mat-
suda Composite Index which is presented in paper C. By inspecting the values
obtained from the single-subject analysis, some more extreme values were found,
although the correlation between population and single-subject estimates were
r≈ 0.90 both for log-transformed and non-transformed variables.

In order to better analyse possible differences in beta-cell function as a function
of continuous disease state, the dynamic and static indices are plotted against
glucose at 2 hours (G2H) (Figure 6.5). In order to analyse the difference in
slopes and intercepts, the following statistical model was applied (here shown
for Φd)

log(Φd) ∼ Race+ log(G2Hadj) +Race : log(G2Hadj) (6.2)
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Figure 6.3: Insulin sensitivity (SI) for NGT, IGT, and T2D in Caucasian and
Japanese

where log(G2Hadj) is equal to log(G2H) - median(log(G2H)). The median in
log-domain has been subtracted from G2H as it does not give sense to investi-
gate difference in intercept at a glucose level equal to 0.

For the dynamic index, it seems that there might be a difference in the slopes,
although the impact of ethnicity on slope was borderline significant (p≈0.06).
For the static secretion index the slopes are nearly identical, which is also re-
ported from the statistical model, indicating a p-value on the effect of ethnicity
on the slope to be p≈0.8.

In summary, the estimates of beta-cell function in general were higher in the
Caucasian cohort than in the Japanese, and a trend towards lower insulin sensi-
tivity in Caucasians were found. Furthermore, for the dynamic secretion index,
it seems the Caucasians do not decrease from NGT to IGT, which is the case
for Japanese. This seems mainly to be driven by the high values of φd in the
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Figure 6.4: Contribution of dynamic and static part on secretion. Left: Cau-
casians, Right: Japanese.

Japanese NGTs6, although neither in the NGT or in the IGT group there is a
significant difference between the two cohorts. The borderline significant differ-
ent slopes obtained from the continous analysis, having G2H at the abscissa also
seem to be driven by these differences. Based on the analysis of φs (Fig.6.5,right)
with G2H on the abscissa, it seems that Caucasians and Japanese have similar
decline in static secretion index for worsening disease state (G2H).

In the following section, covariate analysis on the insulin sensitivity (SI) and
beta-cell function (Φd, Φs) indices will be performed. From this analysis it will
be clear whether the difference observed between Japanese and Caucasian seem
to inherit from unknown ethnic factors or can be attributed to difference in
lifestyle/demographic factors.

6A further investigation showed that the high mean value in the Japanese NGT group was
driven by 4 values that were around 3 fold higher than the rest of the values
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Figure 6.5: Left: Dynamic secretion index (Φd) vs. G2H. Right: Static secretion
index (ΦS). Large dots represent median in quartiles and lines are obtained from
linear regression on log-transformed data.

6.3.2 Covariate analysis on model based insulin sensitivity

The results from covariate analysis on SI obtained from the NLME version of
the oral minimal glucose model will be presented first. In order to present an
exploratory analysis of the predictability of each covariate relating to insulin
sensitivity, Table 6.1 shows how much of the variability in SI each covariate ex-
plains. The values in the table have been obtained by using a regression model
with post-hoc estimates of SI as dependent variable, and type, race, and the
additional covariate as independent variable. Explained variability have been
calculated using the variance of residuals of the model with and without the
additional covariate, and the difference explained according to the procedure
outlined above. From the table it is clear that android fat is a good predictor
for insulin sensitivity.

For covariate selection, the procedure outlined above was followed. First the
explained variability was calculated for each covariate, having the pre-specified
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covariates already in model. The covariates that explained more than 10 %
of the remaining variability is presented in Table 6.27. Thus, as a preliminary

Covariate Exp.var.(%) Diff.exp.(%)
Android fat [%] 27 11.4
Trunk fat [%] 23.3 55.7
Waist [cm] 17.5 -17.2
VO2Max per kg [mL/min/kg] 16.2 30.4
Leptin [pg/ml] 14.1 31.2
Whole body fat [%] 13.0 56.7
Hip [%] 12.6 -80.6
Triglycerides [mmol/L] 12.3 20.8
Whole body fat free [%] 12.3 57.8
IL6 [pg/ml] 10 25.4
BMI [kg/m2] 10 20.4

Table 6.1: Results from adding each covariate one at a time having type, race,
and interaction between the two already in model. Exp.var(%) is calculated
based on variance of residuals in regression model with and without the given co-
variate and Diff.exp(%) is calculated according to the formula presented above.

analysis, each covariate was added to a linear model having having type, race,
age, sex, BMI, and the interaction between type and race already in model.
Based on the variance of residuals from the linear model with - and without
the additional covariate, a measure was obtained for each covariate indicating
how many percent the given covariate could explain of the remaining variability
(after inclusion of type, race, age, sex, and BMI). Output from this analysis is
shown in Table 6.2 below (diff. exp. not shown as the table is solely used for
selection of additional covariates).

In order to check for correlated covariates, the correlation between the variables
already in the model (Age, BMI etc.) and the ones presented in Table 6.2 was
calculated. All covariates in Table 6.2 was found to be highly correlated with
BMI (r > 0.5). Based on the fact, that the percentage of android fat clearly
explained much more of the variability in SI than BMI (27 % vs. 10 %), it
was chosen to add android fat to the model and remove BMI. The full model
thus consisted of the following covariates: Type, race, age, sex, and android fat.
The correlation coefficient between age and android fat was r < 0.1 and the
implementation of SI was performed in the following way:

SI ≈ θ1,iθRace2 θGender3

(
Age

mAge

)θ4 (Android fat
mAndroid

)θ5
exp(η1) (6.3)

7For all presented covariates, p < 0.001, and thus the p-value is not presented
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Covariate Exp.var.(%)
Android fat [%] 20.5
Trunk fat [%] 19.8
Whole body fat [%] 14.5
Leptin [pg/ml] 14.1
Upper limb fat [%] 10.5

Table 6.2: Results from one-on analysis having type, race, age, BMI and sex
in model. Only covariates explaining more than 10% residual variability is
presented. Exp.var(%) is calculated based on variance of residuals in regression
model with and without the given covariate

where i is either NGT, IGT, or T2D assuming different mean values of SI in
each group. The medians of Age and Android fat is identified as mAge and
mAndroid, and θ1−θ5 present covariate relations between the individual values
of insulin sensitivity and the given covariate. NONMEM VII provides estimates
and uncertainty (standard error) for each covariate parameter. The implemen-
tation above thus enables graphical representation of covariate effects for clar-
ification of the effect on the dependent variable. For discrete variables such as
race, the parameter θ2 will be around 1 if race does not have a significant im-
pact. For continuous variables, the visualisation of effect is obtained using the
rounded values of the highest and lowest observations for the given covariate
and the corresponding value of the estimates of the dependent variable with a
90% confidence interval. By applying this method, the covariate effects can be
visualised in a so-called Forest plot (or blobbogram) [Lalkhen, 2009]. This way
of visualizing covariate effects was recently proposed by FDA as an easy way to
present the effect of covariates on PK responses [Menon-Andersen et al., 2011].

Figure 6.6 shows the effect of covariates on SI . The plot is interpreted in the
way, that if the lines intersect the value of 1, the effect is not statistically signif-
icant. The interval 0.8-1.25 reflects the bioequivalence for when the differences
are considered relevant.

From the Forest plot of SI and corresponding covariates it is observed that
a person with an age around 40 has a significantly higher expected insulin sen-
sitivity than a corresponding person with an age around 65. Similarly a person
with an android fat mass around 1 % is predicted to have a 3 times higher sen-
sitivity than a person with an android fat mass around 3.25 %. As the interval
on the effect of race in all three groups (NGT, IGT, and T2D) include 1, race
does not seem to have en impact on the level of SI . This is also seen for gender.

For the dynamic and static indices of beta-cell function, no additional covari-
ates explained more than 10% of the residual variability having the pre-specified
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Figure 6.6: Impact of covariates on insulin sensitivity (SI)

covariates in regression model. The Forest plots presented in Figure 6.7, and
6.8 is thus visualised using the pre-specified covariates defined by disease type
(NGT, IGT, T2D), race, age, sex, and BMI. It is clear that BMI has a significant
impact on both beta-cell function indices. It is also observed that race does not
have a relevant impact on either of the two indices, except for φd in NGT8. In
order to obtain a reduced model, a backwards elimination procedure was also
performed for SI , φd, and φs using a LRT and a significance criteria of 0.001
corresponding to a change in OFV of 10.83 with a reduction in one degree of
freedom. The following reduced models were obtained

SI ∼ Type+Android fat mass (6.4)

φd ∼ Type+BMI (6.5)

φs ∼ Type+BMI (6.6)

(6.7)

8As stated earlier it was found that this difference was driven by 4 Japanese subject having
3 fold higher values than the rest of the group. The C-peptide fits of two of those subjects is
questionnable, but the values was not considered as outliers. In a following analysis where the
4 subjects were removed, the Forest plot did not indicate any significant differences between
the two races
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indicating that race did not have any significant impact. In contrast, the Forest
plot in Figure 6.7 indicate that race might have an impact on φd in the NGT
group. In order to check this, a statistical analysis of post-hoc estimates was
performed both on the ODE and SDE model without covariates. For both cases
race was significant for φd and it is thus concluded that race might have an
impact on the dynamic secretion index. In spite of this it is worth mentioning
that, 1) the difference seems mainly to be driven by a difference in the NGT
group, 2) Post-hoc values analysis in the classical statistics approach can suffer
from shrinkage [Savic and Karlsson, 2009], 3) the dynamic secretion index seems
to have limited impact on the C-peptide (and thus also insulin) curve, which is
the important factor for controlling a subjects glucose level.
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Figure 6.7: Impact of covariates on dynamic secretion index (φd)
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Figure 6.8: Impact of covariates on static secretion index (φs)



Chapter 7

Discussion and Perspectives

7.1 SDEs in PK/PD modelling

In general the use of SDEs have gained more and more attention in the PK/PD
community. In spite of this, it is very few companies that applies these tech-
niques and to my knowledge none of the regulatory authorities. One major issue
is the lack of validated software tools that can handle SDEs in a population set-
ting. At present only one software package exists, which constitutes an R library
[Klim et al., 2009] that requires in-depth understanding of the R language, al-
though specific subroutines have been implemented in more validated software
packages such as NONMEM 7 [Bauer, 2011]. One unfortunate property in both
these tools is the restriction, that the system noise is additive, and can not be
dependent on the state without transformations of the state space. Future stud-
ies are needed to investigate the errors introduced by assuming system noise as
being additive, in situations where this is not necessarily the case.

Another issue is the fairly few practical case studies which has proven SDEs to
be beneficial in PK/PD modelling [Kristensen et al., 2005], [Overgaard, 2006],
[Tornøe, 2005]. Paper A in this thesis adds to the pile by showing improved
prediction performance with SDEs in modelling of the glucose/insulin system.
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7.2 Modelling to improve understanding of T2D

In early phases of drug development, PK/PD models models can be applied to
understand disease progression and drug action, and in later phases to extrapo-
late treatment regimens to other populations, races etc. In Paper B, included in
this thesis, a model for GLP-1 secretion was developed. It suggests the presence
of a neuro-endocrine loop, that can cause a fast secretion of GLP-1. In this way
the model might help to improve the understanding of disease progression of
T2D. As it provides indices describing secretion on an individual level, it would
be of interest to study the impact of demographic factors such as age, ethnicity
etc. on these indices.

7.3 Study of ethnic differences in T2D

From the study performed on data from the Caucasian and Japanese cohorte,
it was found that the paradigm, that Japanese have a different pathogenesis of
T2D than Caucasians, seem to be mainly driven by the general difference in
BMI. As BMI has a strong relation to development of insulin resistance, the
studied Japanese cohort was found to develop a form of T2D less driven by
insulin resistance and more by low beta-cell function. Due to the fact, that
BMI seems to explain the majority of the difference, similar results would thus
be expected in Caucasians having low BMI as that observed for Japanese. In
spite of this, it seems that even when adjusted for lifestyle factors etc., it is
suggested that Asian Indians develop T2D much easier than eg. non-Hispanic
whites [Lee et al., 2011]. This suggests that a study as the one analysed in this
thesis including Asian Indians would be of value for further understanding of
T2D and for future anti-diabetic drug development.

In this thesis, the OGTT from the two cohorts was analysed with simple indices
(Paper C), and single-subject model-based indices (Paper D), and population
based modelling approaches (Chapter 6). As outlined, the different methods
have provided slightly different results. In spite of this, the application of these
different methods helped to improve the understanding of the data and results
from each method was used to challenge the results obtained using the other
methods.
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7.4 Application of study in drug development

The process of obtaining regulatory approval for pharmaceuticals in new geo-
graphic regions has usually required extensive clinical development programs in
the new regions despite the fact the pharmaceutical is already tested in another
region. However, with the implementation of the ICH Guideline ”Ethnic factors
in the Acceptability of Foreign Clinical Data” [184, 1998] it became possible
to obtain approval for a new drug based on efficacy data from a foreign region
under the assumption that the PK and PD properties could be bridged between
the two ethnic groups based on a limited clinical development program. Using a
bridging strategy can in many cases lead to shorter development time and inclu-
sion of fewer patients than is the case with a full clinical development program
[Uyama et al., 2005].

In case a bridging approach is considered, it is of main importance whether
a drug can be characterised as sensitive or insensitive to ethnic differences. In
the latter case, the probability of a successful bridging study is much higher. As
drugs generally interact with the physiology of the human body, also possible
ethnic differences in development of diseases is of main importance.

The results presented in this thesis outlines the ethnic differences in T2D disease
development between Japanese and Caucasians and shows that such differences
seem to mainly be explained by differences in phenotype characterised by factors
such as BMI or other measures describing the degree of obesity. These results
thus support the use of global clinical trials and bridging studies in future anti-
diabetic drug development between Japanese and Caucasians, although other
studies supporting the presented results will substantiate the conclusion.
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Chapter 8

Conclusion

Pharmacokinetic/Pharmacodynamic (PK/PD) modelling is gaining more and
more importance in the phases of clinical drug development. Especially in phase
3, where patients are recruited from different regions, population PK/PD mod-
elling has shown to be an invaluable tool in identifying covariate effects such as
race, age etc.

In application of PK/PD models it is of main importance that such models
are flexible so they can be used to predict dose-response relationships in differ-
ent treatment regimens etc. This points to the fact, that such models must be
based not only on clinical data, but on prior knowledge of underlying patho-
physiology. By using mechanism-based modelling, models build in early phases
for exploratory purposes can be used in confimatory settings at later phases.
This can help to decrease the probability of Type 1 and Type 2 errors in test
procedures.

In the present PhD thesis, various models dealing with the pathophysiology
of type 2 diabets have been studied, and more specifically models for estima-
tion of GLP-1 secretion, beta-cell function, and insulin sensitivity have been
implemented in a non-linear mixed effects population setting. The models for
beta-cell function and insulin sensitivity have been applied for characterising
type 2 diabetes disease progression in Japanese and Caucasians.
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The results from the analysis show that Japanese generally have lower beta-
cell function and higher insulin sensitivity compared to Caucasians and that
the major part of these differences can be explained by a difference in body-size
(BMI) in contrast to race in itself. Furthermore the results showed that the
disposition index is similar in the two cohorts at all levels of glucose tolerance
(NGT, IGT, and T2D).

More specifically, the achievements from this project have been summarized
in the present report and a major part of these are described in further details
in the papers attached in the appendix. Some of these achievements include:

1. Paper A: The application of SDEs for improving predictive performance
for glucose/insulin models implemented using a NLME population ap-
proach was investigated. It was observed that the SDE implementation
could account for correlated residuals and thus caused improved predic-
tive performance of the oral minimal C-peptide model for determination
of beta-cell function.

2. Paper B: A mechanism-based population model of the GLP-1 secretion
following an OGTT was developed, which succesfully could describe the
systematic behaviour of GLP-1 data. The model included an early - and
a late phase stimulation of GLP-1 production originating from ingestion
and absorption of glucose.

3. Paper C: A complete analysis of insulin sensitivity and beta-cell function
was performed on data from an OGTT obtained in Japanese and Cau-
casian subject. Paper C summarises the findings obtained from analysis
using simple indices, and showed that lower beta-cell function combined
with higher insulin sensitivity observed in Japanese compared to Cau-
casian mainly can be explained by differences in BMI.

4. Paper D: In this paper, results from a corresponding model-based single-
subject approach is presented. Based on these, it became clear that besides
having lower beta-cell function, the Japanese subjects furthermore had a
higher hepatic extraction ratio. Also, the net-effect of insulin sensitivity
and beta-cell function (disposition index) was assessed, and was found to
be similar across all disease states in the Japanese and Caucasian cohort.

5. Chapter 6: This section mainly involve results obtained from NLME popu-
lation models applied on the data in Japanese and Caucasians. The model
setup enabled simultaneous estimation of measures for beta-cell function
and insulin sensitivity and the effects of covariates on these parameters.
Based on obtained estimates and their corresponding confidence intervals,
a visual representation clarified that android fat seem to be an important
predictor for insulin sensitivity and BMI for beta-cell function.
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Abstract Several articles have investigated stochastic differential equations

(SDEs) in PK/PD models, but few have quantitatively investigated the benefits to

predictive performance of models based on real data. Estimation of first phase

insulin secretion which reflects beta-cell function using models of the OGTT is a

difficult problem in need of further investigation. The present work aimed at

investigating the power of SDEs to predict the first phase insulin secretion (AIR0–8)

in the IVGTT based on parameters obtained from the minimal model of the OGTT,

published by Breda et al. (Diabetes 50(1):150–158, 2001). In total 174 subjects

underwent both an OGTT and a tolbutamide modified IVGTT. Estimation of

parameters in the oral minimal model (OMM) was performed using the FOCE-

method in NONMEM VI on insulin and C-peptide measurements. The suggested

SDE models were based on a continuous AR(1) process, i.e. the Ornstein-Uhlen-

beck process, and the extended Kalman filter was implemented in order to estimate

the parameters of the models. Inclusion of the Ornstein-Uhlenbeck (OU) process

caused improved description of the variation in the data as measured by the auto-

correlation function (ACF) of one-step prediction errors. A main result was that

application of SDE models improved the correlation between the individual first

phase indexes obtained from OGTT and AIR0–8 (r = 0.36 to r = 0.49 and r = 0.32

to r = 0.47 with C-peptide and insulin measurements, respectively). In addition to

the increased correlation also the properties of the indexes obtained using the SDE
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models more correctly assessed the properties of the first phase indexes obtained

from the IVGTT. In general it is concluded that the presented SDE approach not

only caused autocorrelation of errors to decrease but also improved estimation of

clinical measures obtained from the glucose tolerance tests. Since, the estimation

time of extended models was not heavily increased compared to basic models, the

applied method is concluded to have high relevance not only in theory but also in

practice.

Keywords Pharmacokinetic (PK) � Oral glucose tolerance test (OGTT) �
Intravenous glucose tolerance test (IVGTT) � Acute insulin response (AIR) �
Oral minimal model (OMM) � Autocorrelation function (ACF) �
Stochastic differential equations (SDEs) � Ornstein-Uhlenbeck (OU) �
Extended Kalman filter (EKF)

Introduction

The present article deals with the application of mathematical models for the

description of the dynamics of insulin response following an oral glucose tolerance test

(OGTT) [1]. Traditionally the parameters in these models are estimated using single

subject estimation as performed in [2]. In this paper the data was instead modelled

using non-linear mixed-effects (NLME) population models. This approach handles

the data from various patients as a population which enables simultaneous estimation

of inter- and intra-subject variability, influence of measured concomitant effects, and

covariates on the fixed effects parameters. This way of estimating parameters is the

preferred method in population PK/PD modeling because it provides reliable

predictions of variability and is the only practical method for analyzing data from

multiple patients in a single data analysis. As a result of this, the models become

cornerstones in the simulation of future trials and thus have high value for the

pharmaceutical companies. Compared to a single-subject estimation, the population

method is also less time consuming and has been shown in [3–5] to provide more

correct and robust estimates of metabolic indices.

In the development of PK/PD models a correct determination of the magnitude of

unexplained variability is of great importance. Clearly the efficacy and safety of the

drug might decrease as unexplained variability increases [6]. Mathematical models

applied to time-dependent data are in general said to be falsified if the prediction

errors have a systematic trend across the time-scale [7]. In line with this it was found

in [8] that misspecification of the residual error impacts the type I error rate in

inclusion of covariates. In population analysis this is not an uncommon phenomenon

and various examples can be found in [9]. One way to account for time-correlated

prediction errors is to use a more complex error structure or introduce stochastic

differential equations in the model building as performed in [9, 10], respectively.

In the application of SDEs the differences between individual predictions and

observations are explained not by one, but by two fundamentally different types of

noise [11].
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• The measurement noise, which represents the serial uncorrelated part of the

residual variability that may be due to assay error or if the sample concentration

is not representative for the true concentration in plasma.

• The dynamic noise, which enters through the dynamics of the system and may

originate from model deficiencies, true random fluctuations within the system, or

simply unknown system inputs.

Quantification of the dynamic component is thus a unique tool to tell if the

proposed PK/PD model is precise enough to satisfactorily describe the underlying

system. An estimate of large dynamic noise could be an indication that a model is

too simple or simply describing the system badly.

In summary, the inclusion of a diffusion term, representing dynamic noise,

allows the SDE model to explain a larger portion of the variation in a given data set

compared to a basic ODE approach. Additionally, estimation of this component

provides information on model uncertainties and can be used in general model

building as performed in [10]. In agreement it was suggested in [12] that the

variability between occasions in PK/PD modelling may be more appropriately

modelled using SDEs rather than ODEs.

The application of SDEs in describing the glucose/insulin system has been

successfully performed in only few studies. These include modelling data from

an euglycaemic clamp study, first in [13] and later in [14], data from an IVGTT

[3], and finally also data from a 24-h profile in [15, 16]. In spite of the different

applications of SDEs in PK/PD model development it generally holds, that the

direct benefits seen on practical applications are scarce and evaluation of

these e.g. to predictive performance of parameters on real data has not been

performed.

In this paper we investigated the predictive performance of population PK/PD

models based on ODEs and SDEs built on data obtained from an OGTT. Various

models have been built with the purpose of describing the observed dynamics and a

major part of them is presented in [1, 2, 17–24]. The purpose of using these models

is to create a metabolic portrait of the subjects under investigation. A complete

assessment of all models is beyond the scope and here we used the oral minimal

model (OMM) described by Breda et al. [1] which is widely used.

We focused solely on the part of the metabolic portrait concerned as the beta-cell

function index. Estimation of this measure was used to evaluate the performance of

the studied models through a comparison with the standard beta-cell function index

obtained from an IVGTT (AIR0–8). Besides measuring the correlation between the

index obtained from the OGTT and AIR0–8, we also investigated their respective

relation to different covariates. It was thus not the goal to obtain maximal

correlation with AIR0–8 as in [24], but rather to investigate how well the beta-cell

function index obtained from the applied OGTT model relates to AIR0–8 and how

application of SDEs can effect these relations.

In the selection of a beta-cell function index from the OGTT models, as stated

above, a reasonable goal could be to obtain a measure that reflects the properties of

the widely used index obtained from the IVGTT, AIR0–8. This measure can be

interpreted as the response to an impulse of glucose. Strictly speaking it is a measure
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describing the magnitude of the direct insulin response to a rapid increase in

glucose. In [2] a correlation of 0.28 was obtained between a dynamic beta-cell

function index ðUdÞ and AIR0–10, using single-subject modelling applied to 17

nondiabetic subjects. An extended OGTT model was presented in [22] which also

takes incretin effects into account. The obtained correlation between the different

indices was 0.67 and estimation was performed using a population approach on 40

healthy subjects. In [24] a regression based approach using measurements from the

OGTT and subject specific covariates as independent variables and AIR0–8 as

dependent variable was used. A correlation equal to 0.74 from the estimation dataset

and a value of 0.67 on an internal validation set was obtained. Based on these results

it seems reasonable to assume that some information on the first phase index on

IVGTT can be derived from models of the OGTT.

Methods

Research design

In this study we applied the dataset originally described in [24] where each subject

underwent an oral glucose tolerance test (OGTT) (18 samples during 240 min) and

a tolbutamide-modified intravenous glucose tolerance test (IVGTT) (33 samples

during 180 min). The cleaned dataset applied here consisted of samples taken from

174 individuals. The condition of subjects was categorized according to the level of

fasting plasma glucose (FPG) and level 2 h after glucose ingestion (OGTT120)

measured in mmol/l. The classification criteria applied, agreed with the ones

described in [25] and resulted in a distribution of subjects as presented in Table 1.

The study was approved by Ethical Committee of Copenhagen and was in

accordance with the principles of the Declaration of Helsinki.

IVGTT

All subjects underwent a 33-point tolbutamide-modified, frequently sampled

IVGTT within 1 week after the OGTT examination except for a few individuals

who underwent an IVGTT within 4 weeks. The trials were carried out after 12 h of

Table 1 Study population

Mean and standard deviation

(SD) of demographic

characteristics of the studied

population

NGT IFG-IGT-T2D Total

Age (years) 42.19 (11.55) 44.45 (12.55) 42.45 (11.65)

BMI (kg -2) 25.70 (4.238) 30.77 (4.715) 26.28 (4.577)

FPG (mmol L-1) 5.084 (0.436) 6.025 (0.693) 5.192 (0.558)

Cb-Ins (pmol L-1) 37.76 (20.98) 78.86 (55.38) 42.48 (29.98)

Cb-Cpep (pmol L-1) 497.3 (169.4) 725.0 (250.2) 523.5 (193.8)

Number of subjects 154 20 174
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fasting and samples were drawn at -30, -5 and 0 min before the IVGTT, and at 2,

3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 19, 22, 23, 24, 25, 27, 30, 35, 40, 50, 60, 70, 80, 90,

100, 120, 140, 160, and 180 min after glucose ingestion. Measurements were taken

on serum insulin, plasma glucose and serum C-peptide. At t = 0, the glucose was

injected intravenously. At t = 20 min, a bolus of 3 mg tolbutamide/(kg body-

weight) was injected in 5 s.

OGTT

All subjects furthermore underwent a standardized and extended 75-g frequently

sampled OGTT. After a 12-h overnight fast, venous blood samples were drawn in

duplicate at -30, -10, 0 before the glucose intake and at 10, 20, 30, 40, 50, 60, 75,

90, 105, 120, 140, 160, 180, 210, 240 after. As for the IVGTT, serum insulin,

plasma glucose, and serum C-peptide were measured.

Generally the glucose tolerance study was modelled using the glucose measured

in mmol/l, the insulin in pmol/l, and the C-peptide in pmol/l.

Mathematical and statistical methods

Structural models

The structural oral glucose models applied in this study are closely related to the

oral minimal model (OMM) presented in [1]. The hypothesis is that the insulin

secretion is controlled by a static and a dynamic glucose component. The static

component consist of a delayed version of the glucose level above a given threshold

whereas the dynamic component consist of direct change in the glucose level. The

static and the dynamic components are presented in the model by srs and srd

respectively. Applying the model on C-peptide measurements thus leads to the

following equations

dC1

dt
¼ srs þ srd � k1C1 þ k2C2 � k3C1

dC2

dt
¼ k1C1 � k2C2

ð1Þ

in which k1, k2, and k3 are the standard C-peptide kinetic parameters as calculated by

Cauter et al. [26]. C1 and C2 are the C-peptide concentration above baseline in the

central and peripheral compartments. The dynamics of the static secretion com-

ponent srs are described by

dsrs

dt
¼ �s�1ðsrs � Us½G� G00 �þÞ ð2Þ

where [G - G0’]
? equals G - G0’ if G [ G0’ and 0 otherwise. After a stepwise

increase of glucose, srs approaches a steady-state value linearly related through the

parameter Us; with a rate constant equal to s-1 which corresponds to a delay equal
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to s (min). The dynamic secretion srd corresponds to the secretion of promptly

releasable insulin stored in the beta-cells, and is proportional to the rate of increase

of glucose through a parameter Ud

srd ¼ Ud
dG
dt if dG

dt [ 0

0 Otherwise

�
ð3Þ

For simplicity, parameters and units are summarised in Table 2.

Compared to the minimal model presented in [1] the presented model differs in

the following ways

1. The glucose threshold is not estimated but instead fixed to G0’

2. The glucose signal (G - G0’) is forced to be non-negative

3. The baseline secretion (srb) is not estimated as a parameter. Instead baseline

concentration is added in the measurement equation.

All these assumptions are applied in order to gain robust population estimation for

all parameters in the model.

The corresponding model applied to the insulin data is

dsrs

dt
¼ �s�1ðsrs � Us½G� G00 �þÞ ð4Þ

dC2

dt
¼ srs þ srd � keC2 ð5Þ

where ke = 0.161 [24] is the elimination constant of insulin and corresponds to

t1/2 & 4.3 (min). Insulin concentration above baseline is presented by the state of

the central compartment (C2). The other parameters are interpreted as in the model

for C-peptide as explained above. Compared to the C-peptide model which was

described using three differential equations (ODEs) the insulin model can be

described using only two differential equations.

SDE extension

One argument for using the SDEs compared to ODEs is that correlation between the

prediction errors at time s and t can be taken into account. In this paper we have

applied an Ornstein-Uhlenbeck (OU) process which can improve model perfor-

mance and to a certain extent remove the correlation and ‘‘push’’ the model in the

Table 2 Parameter units

Units of applied parameters and

variables

Symbols Unit

srs, srd, srb (pmol l-1 min-1)

Us (10-9 min-1)

Ud (10-9)

s (min)

C1, C2 (pmol l-1)

k1, k2, k3 (min-1)
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direction of less correlated prediction errors. This is obtained as the OU process

itself has correlation between points at time s and t and—by obtaining optimal

parameter estimates—the correlation in the process will counterbalance that of the

original errors thus cancelling some of the correlation already present.

The OU-process is a so-called continuous version of the AR(1)-process, as

previously introduced in PK/PD modelling by Karlsson et al. [9] (See [7] for

mathematical details) and is described by an SDE which evolves according to

dU ¼ �cUdt þ rw1
dw1 ð6Þ

where c is the drift coefficient, rw1 the diffusion coefficient, and w1 a standard

Wiener process. In general the process has the following covariance structure

Cov½Us;Ut� ¼ VarðUtÞexpð�cjs� tjÞ ð7Þ

which corresponds to an exponential decaying correlation with rate constant c,

decreasing with the distance between timepoint s and t. In general correlation

between prediction errors for models based on ODEs can be interpreted as either a

symptom of inadequate structural model or true fluctuations in parameters. This is

one of the reasons why we find it important to use SDEs in PKPD models.

Model implementation

All models were implemented as non-linear mixed-effects models in NONMEM VI

using FOCE with interaction. Fixed effects parameters s;Us;Ud; and estimates for

inter-subject variabilities gs; gUs
; gUd

were estimated according to the formula

hi = hexp(gi) where h represent the fixed effect parameter. In the SDE models

parameter values for correlation decay rate c and magnitude of Wiener process rw1

were estimated according to the method presented by Tornøe et al. [27], and were

assumed equal across subjects. A general interpretation of parameters is presented in

Table 3.

Data from the OGTT and the IVGTT was treated individually such that no false

correlation was introduced for the first-phase and the indices in the OGTT models.

Due to skewness, the dependent variables were log-transformed thus causing an

error model of the form

logðOBSÞ ¼ logðCpred þ CbÞ þ � ð8Þ

Table 3 Description of

parameters; interpretation of

parameters

Symbols Description

Us Static secretion index

Ud Dynamic secretion index

s Delay between glucose input and insulin/C-peptide

feedback

gUs
; gUd

; gs Inter-subject variability of Us;Ud and s

c Correlation decay rate

rw1
Magnitude of Wiener process
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where Cpred is the individual predicted concentration of either C-peptide or insulin

above baseline, Cb is the corresponding individual baseline level, and OBS, the

individual observation.

In the extended SDE models the OU-process is added, thus causing the prediction

logðOBSÞ ¼ logðCpred þ CbÞ þ U þ � ð9Þ

where U is the OU-process as presented in Eq. 6. Estimation in these extended

models was performed in NONMEM using the extended Kalman filter with

equations for mean and covariance as described in [27].

Autocorrelation function

Graphical presentations of prediction errors and their corresponding autocorrelation

function (ACF) are used in validation of model assumptions. In general the ACF

describes the serial correlation present in a time series calculated for different time

lags and is a useful tool to identify insufficient error structure of mathematical

models (See also [7]). In this paper the ACF was calculated from the vector of the

prediction errors obtained by appending the errors at different timepoints from each

individual thus causing a vector with 16 � 174 = 2,784 elements. Estimating the

ACF in this way can lead to slightly underestimated correlations as it does not take

into account the changes present in the transition from one subject to the other

where points from the different subjects usually not are correlated. In spite of this it

still provides valuable information about where the model is consistently over and

under estimating at the various time points.

Covariate effects for Ud

In order to estimate the effects of different covariates such as BMI, Age, FPG etc.

on the first-phase index, the parameter Ud is presented in NONMEM by the

equation

logðUdÞ ¼ logðh1Þ þ h2

X � lX

rX

� �
þ g ð10Þ

which means that h2 can be interpreted as the slope between a normalised covariate

X and logðUdÞ: In the results part, this correlation is compared to the correlation

between X and log(AIR0–8) which can be used to compare the two measures of the

beta-cell function.

For clarity, the implementation of different models can be read from Table 4

indicating that each model built on C-peptide and insulin measurements were

implemented in five different ways, including a basic model and the four different

covariate inclusions. All models were further implemented with a more complex

error structure by using the OU-process as described earlier in this section. In total

results were thus obtained from 20 different models.
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Results

Model diagnostics

Individual model fits from the C-peptide and the insulin model using ODEs and

SDEs are presented for a single subject in Fig. 1. Left plots present obtained

predictions from the models based on ODEs using C-peptide and insulin

respectively whereas plots to the right show fits obtained from the models including

the OU error term. As seen the predictions obtained using SDEs more correctly

reflect the dynamics of the system compared to those obtained using the ODEs.

Note that the presence of cracks in the ODE predictions is caused by the linear

interpolations of predictions.

In order to further diagnose the different models, evaluation has been based

also on the ACF of one step prediction errors (PE) which equals the observation

subtracted by the one step prediction obtained from the Kalman filter at the

given time-point. ACF values are presented in Fig. 2 for the different models not

including covariates. For models based on C-peptide and insulin, it is observed

that the autocorrelation between residuals is significantly smaller for SDEs than

for ODEs. Notice that for dynamic models small (or zero) values of the ACF

indicate that the model provides a sufficient description of the data.

Correlation between Ud and AIR0–8

This section evaluates the ability of the OGTT models to predict the first phase

response obtained from the IVGTT. The evaluation was performed through an

analysis of the correlation between logðUdÞ derived from the implemented OGTT

models and log(AIR0–8) obtained from the IVGTT. The correlations are presented in

Table 4. The value 0.36 in the first row thus indicates that the correlation between

the individual parameters for logðUdÞ obtained using the C-peptide model with no

covariates included, correlates with the individual estimates of log(AIR0–8) with a

coefficient of 0.36. In all cases the correlation is increased going from the ODE to

the SDE model. Furthermore the difference between correlations obtained from the

models using ODEs and SDEs ðDrÞ and corresponding SD obtained from 1,000

bootstraps were 0.130(0.059), and 0.166(0.056) for the C-peptide and insulin

Table 4 Correlation estimates

Correlation (r) between logðUdÞ
and log(AIR0–8). Last row

indicates mean for the given

model presented in column

header

Model C-peptide (ODE) (SDE) Insulin (ODE) (SDE)

No covariates 0.36 0.49 0.32 0.48

BMI 0.39 0.49 0.33 0.46

AGE 0.34 0.49 0.36 0.46

FPG 0.35 0.50 0.24 0.50

Cb 0.38 0.49 0.34 0.46

Mean (0.36) (0.49) (0.32) (0.47)
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models without covariates and was concluded to be significant as Dr [ 2SD: The

bootstrap was performed by picking 174 random parameter estimates 1,000 times

from each model. Afterwards the distributions of correlation coefficients obtained

from each model were compared.

Covariate relationships for Ud and AIR0–8

In addition to estimating the correlation between logðUdÞ and log(AIR0–8), the

predictive performance of the models was also analysed through the ability of Ud to

describe properties in the AIR0–8 as presented by relations to given covariates. This

was measured through covariate relationships as presented in Table 5. Values in the

second column were calculated as the slope between log(AIR0–8) and the

corresponding covariate indicated in the first column normalized according to

Eq. 10. Last four columns present parameter values obtained for h2 (See also

Eq. 10) indicating the relationship between logðUdÞ and the given covariate. The

value 0.273 in first row thus indicates that the slope between normalized BMI and

logðUdÞ in the basic C-peptide model equals 0.273. Equality between slopes

obtained for the AIR0–8 and Ud indicates that the index obtained using the OGTT

model has same relation as AIR0–8 to the given covariate. These slopes are thus

applied as a measure for the similarity between model derived index and AIR0–8. We

believe this gives a clearer picture of the similarities between the two beta-cell

function indexes compared to using only the correlation. In all cases the extended

error structure based on the OU process caused the slopes for the covariates to better

reflect the ones observed for the log(AIR0–8). It shall be noted that we did not expect

to get exactly equal values for logðUdÞ and log(AIR0–8) as the physiological

interpretations of these parameters are different. Note also that a full covariate

analysis on first phase indexes was determined to be out of the scope of this paper

but is subject for future research.

Table 5 Covariate estimates

Index log(AIR0–8) logðUdÞ

Data C-peptide Insulin

Model ODE SDE ODE SDE

BMI 0.176(0.052) 0.273 0.106 0.490 0.196

AGE -0.017(0.053) 0.030 -0.017 0.207 0.033

FPG -0.199(0.052) 0.030 -0.105 0.177 -0.050

I00 0.159(0.052) 0.287 0.147 0.543 0.271

Relationship between beta-cell indices and selected covariates for C-peptide and insulin models built

using ODEs and SDEs

(.) Indicate standard error (SE)
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Discussion

In this paper we applied population PK/PD modelling with an error description

which can take correlation of model errors between different time points into

account. During early model development our approach was to use SDEs with

additive system noise as done in [11]. We experienced that an inadequate

description of insulin concentrations at high levels was obtained which we speculate

was due to the non-state dependent inclusion of the system noise. As there is no

standard solution to the problem of implementing SDEs with state-dependent

system noise we instead chose to add an extra state with dynamics described by an

SDE of the Ornstein-Uhlenbeck type. By adding this state to the measurement

equation we obtained an error model following a continuous AR-process as

presented in Karlsson et al. [9]. As shown, the solution help describe the correlation

between prediction errors also at high insulin concentrations. The drawback using

this approach compared to a setup with state-dependent noise entering the original

system equations is that it can not be directly linked to a physiological description.

However, it is a mathematical technique to better explain the correlation in the

measurements compared to a standard ODE approach. The method was applied to a

real data set obtained from an OGTT which enabled a study of model performance

based on various measures other than those obtained from basic residual plots.

These measures all relate to the predictive performance of the first-phase index Ud

compared to AIR0–8.

Today various experimental methods and modelling approaches have been

developed to assess beta-cell function. Some of these include hyperglycaemic clamp

[28], minimal model of C-peptide secretion during the IVGTT test [29], and

homeostasis model assessment [30]. In this paper we have focused on Ud obtained

from the oral minimal model and AIR obtained from the IV test as these measures

are widely used in various applications both in research and in the pharmaceutical

industry. Correlation between beta-cell function indexes calculated from IVGTT

and OGTT have been performed recently in [22, 24]. In both articles a correlation

around 0.67 is obtained.

In this paper we applied a fairly simple OGTT model and correlation was

estimated to be around 0.4 using ODEs compared to 0.5 using SDEs. In general we

believe that models using the whole time scale (as the ones presented here) seem

most promising as they contain more information than the regression based models.

We further believe that the models concerned here serve as a good basis, but should

be extended also to include incretins as done in [24]. For a systematic improvement

of the models the SDEs provide an attractive tool as shown in [10].

In the study we analysed the oral minimal model applied to either C-peptide or

insulin measurements. The half-life of C-peptide is much larger than that of insulin

causing a less marked first pass effect through liver. In the application of the insulin

model the obtained secretion rates thus reflects post-hepatic secretion. In spite of

this we found it interesting to apply a model based on insulin measurements as the

higher elimination rate causes changes in secretion to produce more pronounced

changes in plasma concentration compared to C-peptide.
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Concerning the model development it was first attempted to implement the OMM

exactly as presented in [1]. From experimental research it was observed that

allowing the glucose signal to go below baseline in general caused unstable

population models which caused NONMEM errors in the integration routine.

Furthermore, setting the glucose threshold equal to the threshold minus the glucose

baseline caused extremely low estimated values and was thus substituted by the

glucose baseline. Finally, it was observed that adding the insulin baseline to the

prediction instead of having baseline secretion as a parameter caused more stable

models with approximately same prediction performance as for the basic OMM.

In conclusion, we showed that improved model performance can be obtained

using a more complex error structure where time-correlated prediction errors are

taken into account by the use of an SDE of the Ornstein-Uhlenbeck type as a part of

the total state space model. Furthermore we have shown that estimation of covariate

effects was highly dependent on how correlated the prediction errors are for the

given model. In practice we thus recommend to check the serial correlation e.g.

through an inspection of the ACF calculated for the prediction errors before

concluding on the estimated covariate effects. As the SDE extension presented here

not only provided less serially correlated errors, but also provided better estimation

of clinical measures, the method is concluded to have high relevance not only in

theory but also in practice.
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Abstract GLP-1 is an insulinotropic hormone that synergistically with glucose

gives rise to an increased insulin response. Its secretion is increased following a

meal and it is thus of interest to describe the secretion of this hormone following an

oral glucose tolerance test (OGTT). The aim of this study was to build a mecha-

nism-based population model that describes the time course of total GLP-1 and

provides indices for capability of secretion in each subject. The goal was thus to

model the secretion of GLP-1, and not its effect on insulin production. Single 75 g

doses of glucose were administered orally to a mixed group of subjects ranging from

healthy volunteers to patients with type 2 diabetes (T2D). Glucose, insulin, and total

GLP-1 concentrations were measured. Prior population data analysis on measure-

ments of glucose and insulin were performed in order to estimate the glucose

absorption rate. The individual estimates of absorption rate constants were used in

the model for GLP-1 secretion. Estimation of parameters was performed using the

FOCE method with interaction implemented in NONMEM VI. The final transit/

J. B. Møller (&) � R. V. Overgaard � S. H. Ingwersen

Quantitative Clinical Pharmacology, Novo Nordisk A/S, Søborg, Denmark

e-mail: jbem@novonordisk.com

W. J. Jusko � W. Gao

Department of Pharmaceutical Sciences, State University of New York at Buffalo,

Buffalo, NY, USA

T. Hansen � O. Pedersen

Hagedorn Research Institute, Gentofte, Denmark

J. J. Holst

Department of Medical Physiology, Panum Institute, University of Copenhagen,

Copenhagen, Denmark

H. Madsen

Department of Informatics and Mathematical Modelling, Technical University of Denmark,

Lyngby, Denmark

123

J Pharmacokinet Pharmacodyn

DOI 10.1007/s10928-011-9216-2



indirect-response model obtained for GLP-1 production following an OGTT

included two stimulation components (fast, slow) for the zero-order production rate.

The fast stimulation was estimated to be faster than the glucose absorption rate,

supporting the presence of a proximal–distal loop for fast secretion from L-cells. The

fast component (st3 = 8.64�10-5 [mg-1]) was estimated to peak around 25 min

after glucose ingestion, whereas the slower component (st4 = 26.2�10-5 [mg-1])

was estimated to peak around 100 min. Elimination of total GLP-1 was charac-

terised by a first-order loss. The individual values of the early phase GLP-1

secretion parameter (st3) were correlated (r = 0.52) with the AUC(0–60 min.) for

GLP-1. A mechanistic population model was successfully developed to describe

total GLP-1 concentrations over time observed after an OGTT. The model provides

indices related to different mechanisms of subject abilities to secrete GLP-1. The

model provides a good basis to study influence of different demographic factors on

these components, presented mainly by indices of the fast- and slow phases of GLP-

1 response.

Keywords GLP-1 � L-cells � Oral glucose tolerance test (OGTT) �
Indirect response model � NONMEM

Introduction

Type 2 diabetes (T2D) is a result of decreased insulin sensitivity combined with

decreased beta-cell function. The beta-cell function is described by the ability of the

beta-cells to provide an insulin response to a given glucose load.

One of the main determinants of beta-cell function is the presence of the

insulinotropic hormone glucagon-like-peptide 1 (GLP-1) [1, 2] in combination with

glucose. More specifically Brandt et al. [2] demonstrated in vivo glucose

dependency of the action of postprandial physiological concentrations of GLP-1

in healthy subjects over the plasma glucose range of 5–10 mM.

GLP-1 is a gut derived peptide secreted from intestinal L-cells [3] and circulating

levels increase after a meal or an oral glucose load [4, 5]. It is derived from a

transcription product of the proglucagon gene and the active molecule is identified

as GLP-1 (7–36). Once in the circulation it has a very short half-life estimated to be

around 2–3 min in healthy volunteers [4].

The GLP-1 response in terms of area under the curve from 0 to 240 min. after the

start of the meal is significantly decreased in most patients with type 2 diabetes [6].

Combined with the finding that the short half-life of GLP-1 does not seem to differ

in healthy volunteers and patients with T2D [1], this suggests that the decreased

GLP-1 response observed in patients with T2 diabetes is due to a lower post-

prandial secretion. This also seems to be the case comparing patients with impaired

glucose tolerance (IGT) and healthy volunteers [5]. In general we believe that

analysis of the GLP-1 response observed after an OGTT would be valuable in

understanding the mechanisms underlying the post-prandial secretion profile.

The overall aim of this study was to develop a mechanism-based population

model providing descriptive indices of the observed GLP-1 secretion following an
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OGTT. The goal was thus not to model the GLP-1 effect on insulin secretion, but

rather to build a model providing indices for capability of GLP-1 secretion. Based

on the mechanisms of action, we propose to model the stimulation of GLP-1, using

an indirect response model [7]. Compared to earlier non-compartmental analysis (as

in [8]) of the GLP-1 secretion profiles observed after an OGTT, a compartmental

population model approach takes into account variability in measurements and time

(compartmental) and variability between subjects (population). This kind of model

further provides a good basis for future inclusion of covariates (such as

demographic factors) on obtained model parameters.

Methods

Study participants

The data applied in this study is a subset of the dataset originally described in [9]. In

this study available plasma GLP-1 profiles obtained after an oral glucose load are

included. Only full profiles were included and seven profiles were removed because

of erratic behaviour inconsistent with basic physiology and the dynamics of the rest

of the population. The cleaned dataset applied here thus consisted of samples taken

from 135 individuals distributed as presented in Table 1. The classification of

individuals was categorized according to concentrations of plasma glucose (FPG)

fasting and 2 h after glucose ingestion (OGTT120) measured in mmol/L. The

classification criteria, agreed with the ones described in [10]. The study was

approved by the Ethical Committee of Copenhagen and was in accordance with the

principles of the Declaration of Helsinki.

Study conditions

All participants underwent a standardized and extended 75-g frequently sampled

OGTT. After a 12-h overnight fast, venous blood samples were drawn in duplicate

at -30, -10, 0 before the glucose intake and then at 10, 20, 30, 40, 50, 60, 75, 90,

105, 120, 140, 160, 180, 210, 240. Plasma glucose and serum insulin were

measured. The plasma glucose concentration was analyzed by a glucose oxidase

method (Granutest; Merck, Darmstadt, Germany). Serum insulin was determined by

Table 1 Mean and standard deviation (SD) of demographics of study subjects

Subjects Normal IFG-IGT-T2D Total

Number 117 18 135

Age [yr] 41.8 (11.4) 45.6 (12.7) 42.3 (11.6)

Fasting plasma glucose [mg dl-1] 93.0 (8.1) 109.8 (13) 95.3 (10.5)

Fasting plasma insulin [pmol l-1] 5.43 (3.1) 11.66 (8.4) 6.26 (4.6)

Fasting plasma GLP-1(total) [pmol l-1] 5.35 (3.3) 4.61 (2.6) 5.26 (3.2)

IFG Impaired fasting glucose, IGT Impaired glucose tolerance, T2D Type 2 diabetics
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enzyme-linked immunoadsorbent assay with a narrow specificity excluding des (31,

32)-proinsulin and intact proinsulin (DAKO Diagnostics, Ely, UK) [11].

Fasting plasma GLP-1 were analysed in duplicate and at single measurements

post glucose load at time points 10, 20, 30, 40, 60, 90, 120, 180, and 240 min. All

blood samples for GLP-1 analysis were kept on ice, and the protease inhibitor

aprotinin (Novo Nordisk, Denmark) was added in a concentration of 0.08 mg/ml

blood. The GLP-1 concentrations were measured after extraction of plasma with

70% ethanol (vol/vol). The plasma concentrations of GLP-1 were measured [12]

using standards of synthetic GLP-1 7–36 amide using antiserum code no. 89390,

which is specific for the amidated C-terminus of GLP-1 and therefore mainly reacts

with GLP-1 derived from the intestine. The results of the assay reflect the rate of

secretion of GLP-1 because the assay measures the sum of intact GLP-1 and the

primary metabolite, GLP-1 9–36 amide, into which GLP-1 is rapidly converted [13].

The assay sensitivity was below 1 pmol/l, intra-assay coefficient of variation below

0.06 at 20 pmol/l, and recovery of standard added to plasma before extraction was

100% when corrected for losses inherent in the plasma extraction procedure. Very

few samples were under the LLOQ, and these were not included in analysis.

Non-compartmental analysis

The individual incremental areas under the curve for GLP-1 were calculated using a

linear up/linear down trapezoidal method. Peak AUCs identified in the report as

AUCPGLP-1 were calculated as incremental AUCs up to 60 min. The software

S-plus was used for this part of the analysis.

Compartmental population modelling

For preliminary analysis, the absorption rate constant (ka) of glucose was obtained

from glucose and insulin data by applying the model presented by Lima et al. [14],

using two compartments for description of absorption rate according to Eq. (3) and

(4). This was done in order not to bias the estimation of this parameter towards the

fitting of GLP-1.

Baseline GLP-1 values were calculated as the average from pre-dose samples for

each individual. Considering the fact that the inclusion of these baseline values as

either fixed or estimated can influence the bias of other parameters [15], we

implemented these values as either fixed, fixed with a variance, or estimated. In

general the GLP-1 data was modelled using a population model build in NONMEM

VI using the FOCE Inter method. Model selection was based on individual/

population predicted profiles, variance and independence of residuals, and obtained

objective function value (OFV), and inspection of visual predictive check (VPC).

Structural model

The final structural models for glucose/insulin and secretion of GLP-1 are presented

in Fig. 1. The glucose/insulin model was applied in order to obtain estimates of

glucose absorption rate. The model for the GLP-1 secretion reflects an indirect
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response model with zero-order input and first-order loss. The zero-order input was

found to be stimulated by two mechanisms differentiated by time of onset. The first

part was estimated to be faster than the absorption of glucose and caused a peak in

the GLP-1 concentration around 40 min as also identified in [16]. The ingestion

signal was included as being proportional to the glucose dose size as:

dA1

dt
¼ �kc � A1; A1ð0Þ ¼ Dose ð1Þ

dS1

dt
¼ kc � A1 � kc � S1; S1ð0Þ ¼ 0 ð2Þ

where 1/kc [min] determines the length of the signal caused by the intake of the

amount of glucose, defined by Dose. The A1 and S1 define the first and second transit

compartments in the early response signal originating from ingestion of glucose.

The second part was related to a delayed version of the absorption of glucose in gut.

The delay was implemented with the use of transit compartments.

The optimal number of transit compartments for description of the delay was

determined based on an explicit solution [17] together with the obtained OF Vs.

 (A) 

 (B) 

Glucose 
above basal 

Insulin 
above basal kout Inskin_Ins

kout_Gluc

kin_Gluc

ka

st1 st2

A2 A3

ka

 Total GLP-1 

st3
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st4

kckc

. . . kb kb kb

Glucose 
Abs.rate

Glucose 
Abs.rate

Glucose 
dose 

Glucose 
Dose 

(Signal) 

A4 A5 A7 S2

A1 S1

Fig. 1 a Diagram of glucose/insulin model for estimation of glucose absorption rate constant, b GLP-1
secretion model. Absorption rate for glucose is identical to that estimated in the glucose/insulin model.
Symbols are defined in Table 2
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From the obtained number of compartments and rate constants, this signal was

identified to peak around 100 min. The equations below define the glucose

absorption rate (ka�A3) and the stimulus of GLP-1 production related to the

absorption rate (S2).

dA2

dt
¼ �ka � A2; A2ð0Þ ¼ Dose � f ð3Þ

dA3

dt
¼ ka � A2 � ka � A3; A3ð0Þ ¼ 0 ð4Þ

dA4

dt
¼ ka � A3 � kb � A4; A4ð0Þ ¼ 0 ð5Þ

dA5

dt
¼ kb � A4 � kb � A5; A5ð0Þ ¼ 0 ð6Þ

..

.

dS2

dt
¼ kb � A6 � kb � S2; S2ð0Þ ¼ 0 ð7Þ

The value of f was fixed to 0.722 based on the bioavailability of glucose observed

from an OGTT in healthy subjects [18].

Specifically A2 presents the glucose at absorption site, and ka�A3 the glucose

absorption rate as stated above. The absorption rate constant ka was estimated using

the compartment absorption structure of glucose (A2 and A3) connected to an

indirect response model for the interaction between glucose and insulin [14], see

Fig. 1. The rate constant kb defines the delay between glucose absorption rate and

stimulation of late-phase GLP-1 secretion. The S2 thus defines the signal related to

stimulation of GLP-1 production by glucose absorption.

The elimination of GLP-1 was implemented as a first-order process. In total, the

concentration of total GLP-1 following the OGTT is described by

dCGLP1

dt
¼ kin GLP1 � 1þ st3 � S1 þ st4 � S2½ � � kout GLP1 � CGLP1;

CGLP1ð0Þ ¼ BGLP1

ð8Þ

where kin_GLP1 (pmol l-1�min-1) is the endogenous production rate of GLP-1 and

kout_GLP1 (min-1) the first-order rate constant of GLP-1 elimination with the steady-

state condition defined by

kin GLP1 ¼ BGLP1 � kout GLP1 ð9Þ

where BGLP1 is the baseline level of GLP-1. The parameters st3 and st4 present first-

and second-phase stimulation factors related to the first- and second phase

stimulation signals (S1 and S2).

Individual model

Inclusion of Inter-individual variability (IIV) was done according to a log-normal

distribution of individual parameters. The IIV was included for all estimated
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parameters except kout_GLP1 which is experimentally found not to vary significantly

between subjects [1]. Due to a high correlation, the same random effect was used for

st3 and st4, and these were estimated according to

st3 ¼ h1 � expðg1Þ ð10Þ
st4 ¼ h2 � expðj � g1Þ ð11Þ

where h1 is the typical value of st3 and g1 the random effects parameter related to

the inter-subject variability of st3 and similar for st4. Note that the inter-variability

between the individual estimates of st4 is proportional to the inter-variability of the

st3 estimates using the constant j.

Residual error model

Additive, proportional, and combined error models were tested. The combined error

model appeared superior.

Results

Four individual GLP-1 concentration versus time profiles together with model

predictions are shown in Fig. 2. High variability in the profiles is present both for

the baseline and in the dynamics of the GLP-1 hormone.

Figure 3 presents population predictions together with individual observations

and their mean. Figure 4 presents the autocorrelation function (ACF) of residuals

[19]. A visual predictive check (VPC) of the model is presented in Fig. 5. These

figures indicate that the model seems to adequately capture the main GLP-1

dynamics measured in the studied population. There is no need to implement the

presented model using stochastic differential equations (SDEs). This is augmented

by the fact that for all lags[0 there is small correlation and only the correlation at

lag = 2 (corresponding to the correlation between residuals shifted two time-points)

is significant (See Fig. 4).

Interpretation, estimated values, and inter-individual variability (IIV) of each

parameter is presented in Table 2. For each parameter estimated with IIV we have

also reported the g-shrinkages (shr) as these measures are of importance e.g. for a

study incorporating covariate effects [20]. The shrinkage on the residual error was

found to be very small.

In order to check that our model was consistent with NCA-analysis, we plotted

the fast stimulation index st3 versus AUCPGLP-1 which has been used previously

[21] to measure the size of the fast response (see Fig. 6). A significant correlation

between the two measures (r = 0.52) was obtained.

Figure 7 presents the time course of mean signals related to the fast and the slow

GLP-1 responses (simulation of compartment S1 and S2 above using the estimated

typical values of ka, kb and kc) together with the mean of simulated A3, the

presenting compartment related to glucose absorption rate. For the fast response a

J Pharmacokinet Pharmacodyn

123



Fig. 2 Measurements and individual predictions of total GLP-1 versus time after the oral dose of
glucose. Left: Normal glucose tolerant subjects (NGT). Right: Impaired glucose tolerant subjects (IGT)

Fig. 3 Comparison between
mean DV and population
prediction. Black small dots:
plasma concentrations of GLP-1
versus time for all subjects.
Large dots: mean observed
GLP-1 concentrations. Gray
curve: population prediction
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peak around 25 min is observed, whereas the slow response peaked around

100 min.

Discussion

In this study we modelled the sum of intact GLP-1 and the primary metabolite,

GLP-1 (9–36), into which GLP-1 is rapidly converted. This sum therefore reflects the

rate of secretion of GLP-1. The obtained total GLP-1 concentrations following the

OGTT could be described by an indirect response model with zero-order production

rate and first-order loss. Stimulation of GLP-1 production by glucose was

characterized with a fast stimulation signal and a signal related to a delayed version

of the absorption rate of glucose. Elimination was characterized by a non-saturable

Fig. 4 Autocorrelation function
(ACF) calculated based on
appended residuals from each
subject

Fig. 5 Visual predictive check
(VPC) of GLP-1 measurements
versus time. Shaded area defines
the 5–95th percentiles of
predictions and dotted line, the
10–90th percentiles for
predictions. Full line presents
median of prediction, whereas
dots represent data points
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elimination pathway. The model for glucose/insulin was estimated separately from

the GLP-1 secretion model. This was done in order not to bias the estimation of

glucose absorption towards the prediction of GLP-1 concentrations. Besides, the

Table 2 Obtained parameter estimates for GLP-1 dynamics

Parameter Interpretation Value SEM

(%)

IIV

(CV%)

Shr

(%)

f (-) Absorption fraction 0.722 – – –

ka (min-1) Abs. rate constant 0.0359 2 0.0581(24) 5

kb (min-1) Transit rate constant 0.0962 8 0.0357(12) 20

kc (min-1) Neural signal rate constant 0.0566 11 0.270(52) 20

kout_GLP1 (min-1) First-order elimination rate constant of

GLP-1

0.0644 18 0 FIXED –

j [-] Proportionality between IIV on st3 and st4 0.775 10 0 FIXED –

st3 [mg-1] Stimulation factor of GLP-1 production

by early signal

8.64�10-5 10 0.939(97) 6

st4 [mg-1] Stimulation factor of GLP-1 production

by late signal

26.2�10-5 3 – –

SDglp [pmol l-1] Additive error 0.998 5 – –

CVglp (%)

[pmol l-1]

Proportional error 9 – – –

The f is obtained from Ref. [18] and ka is estimated from glucose/insulin data

Fig. 6 Individual predictions of parameter st3 versus AUCPGLP-1 calculated as AUC from 0–60 min.
above baseline values. Open circles: NGTs, Gray filled circles: IFG-IGT-T2Ds. Line presents relation:
st3 = 0.03 AUCPGLP-1, obtained using perpendicular least squares
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simultaneous estimation was very time-consuming causing separate estimation to be

preferred.

The GLP-1 secretion model was successfully applied to a mixed-effects model

setting using NONMEM VI, thus providing both information about intra-variability

and inter-variability in the studied population.

To our knowledge compartmental modelling of GLP-1 secretion following an

OGTT has not been performed previously. As observed from our individual profiles

there is very high variability between subjects and the response is considered

complex which relates to the fact that determinants of the secretion are not fully

understood. Based on this we initially started out using a simple indirect response

model using one stimulus related solely to the glucose absorption rate. This stimulus

was not adequate to describe the GLP-1 secretion and we observed that two phases

of secretion could be identified. Based on the estimation of the rate constants kb and

kc, the peaks of these stimuli were observed to be around 25 and 100 min. This

seems to be consistent with the GLP-1 profiles following a mixed meal [21]

indicating maximum GLP-1 concentrations shortly after the peak stimulation times.

The fast response (peak around 25 min.) is hypothesized to be caused mainly by

nutrients in the duodenum activating a proximal—distal neuroendocrine loop

stimulating GLP-1 secretion from L-cells and colon (3). In our study we estimated

the rate constant (kc) related to the first-phase to be significantly faster than the rate

constant (ka) related to glucose absorption. This provides evidence for the

possibility of the neuroendocrine regulation of L-cell secretion (3), although more

insights could be gained from further experiments.

In this study we chose not to perform covariate analysis on the individual

parameters for secretion, and did thus also not analyse the effect of disease state on

the obtained estimates. Such an analysis belongs to another study, and must be

performed with data that has more subjects identified with T2D.

The developed model should be seen as a tool that in future can be applied to

investigate factors such as disease state, drug effect, or ethnicity on the parameters

characterizing GLP-1 secretion.

Fig. 7 Normalized mean of
simulations of compartments S1,
A3 and S2 versus time
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Estimating the rate of absorption of glucose without the use of tracer has been a

subject in various publications [18, 22]. We applied a simple approach using only

one parameter without information from tracer kinetics.

In order to investigate the dependence of our approach on different glucose

absorption models, we implemented two alternative models [18, 22]. The objective

function values, population fittings and correlation obtained between st3 and

AUCPGLP-1 appeared similar to the present results. A clear drawback of our study is

that the absorption rate for glucose is not necessarily captured with high accuracy. It

will be of future interest to see how the model performs knowing the rate of

absorption obtained with a tracer [22, 23].

Another limitation of this study is that only one dose level of the OGTT was

administered. Possible non-linearities in the GLP-1 response are thus unidentifiable.

For further model development it would be informative to repeat the experiments

performed in this analysis with different glucose doses.

Regarding the number of transit compartments one could argue that the

possibility of having different individual numbers would be reasonable. This was

tested using an explicit solution [17], but was found to cause the model not to be

uniquely identifiable thus causing unstable estimation of parameters. Instead we

chose to have IIV on kb, thus enabling individual differences in time of onset of S2.
In spite of the fact that IIV was only 12% in kb values, we observed significantly

higher OFV and a worse model fit. That was the reason for having kb not fixed to 0.

The value of kout_GLP1 indicates a half-life of total GLP-1 of around 10 min. This

agrees with values in the range of 3–11 min obtained experimentally in vivo [13],

although it seems to be slightly higher than values obtained for active GLP-1

(7–36), specifically measured in humans [4, 24, 25]. As Holst et al. [16] describe,

there are different types of GLP-1 and in this study the measured concentration

reflects the sum of the active GLP-1 (7–36) and the inactive form, GLP-1 (9–37).

The inactive form has a much longer half-life [16] which will be the main

determinant for the half-life. In general it is important to note that the degradation of

GLP-1 (7–36) is known to be fairly complex and involves both an inactivation in the

gut and degradation in liver which is not taken into account here. It would thus be of

future interest to build a more complex model based on data obtained in different

tissues and from the different metabolites.
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BACKGROUND Lifestyle and ethnicity are known determinants for the occurrence of type 2 

diabetes (T2D). Previous studies have indicated differences in the pathogenesis between 

Japanese and Caucasian individuals.  

 

METHODS We conducted a cross-sectional, clinical study in Denmark and Japan. 150 

Caucasian and 120 Japanese males and females aged 40 to 65 years were enrolled to obtain a 

comparable distribution of high/low body mass index (BMI) values across glucose tolerance 
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states (normal [NGT], impaired [IGT], or T2D). Participants underwent oral glucose tolerance 

tests according to WHO guidelines, and were classified as having low/high BMI according to 

regional definitions of obesity.  

   

RESULTS Mean glucose profiles were similar in the two ethnic cohorts, whereas in Japanese 

the insulin response was smaller, with substantially lower insulin profiles in subjects with IGT 

and T2D compared to Caucasians. Insulin sensitivity was higher in Japanese as indicated by 

the HOMA-IR and Matsuda indices, whereas beta-cell function appeared lower in Japanese as 

measured by the HOMA-B and insulinogenic indices, as well as the insulin secretion ratio. 

The major part of these differences in insulin sensitivity and beta-cell function were explained 

by differences in BMI. The measure of beta-cell function relative to insulin resistance – the 

disposition index – was similar for the two ethnic cohorts at all glucose tolerance states.  

 

CONCLUSIONS We confirm the existence of differences between Japanese and Caucasians 

in beta-cell function and insulin sensitivity, and further demonstrate that the major part of 

these differences can be explained by differences in body size (BMI).  

 

(Funded by Japan Science and Technology Agency, the Danish Agency for Science 

Technology and Innovation, and by Novo Nordisk A/S; ClinicalTrials.gov number 

NCT00897169.) 
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INTRODUCTION 

Type 2 diabetes (T2D) poses a global health problem approaching epidemic proportions. The 

total number of diabetes patients, estimated at 366 million in 2011, is expected to rise to an 

alarming level of 552 million by 2030
1
; this is mainly caused by increasing incidence in 

countries with large shifts in lifestyle due to urbanization, as is currently the case in many 

Asian countries.
2, 3

 

Lifestyle factors as well as ethnicity are known determinants for the development of 

T2D.
4
 The importance of lifestyle factors has been shown by a higher incidence of T2D for 

Japanese-Americans compared to native Japanese, mainly caused by higher fat intake and less 

physical activity following adaptation to a Western lifestyle.
5
  

T2D is characterized by insulin resistance and beta-cell failure.
6
 It is thought to be 

triggered by insulin resistance, which is compensated initially by increased beta-cell function, 

leading eventually to T2D due to exhaustion of the pancreas.
6-8

 

 According to current understanding, the pathophysiology of T2D is different in 

Japanese compared to Caucasians, in the sense that Japanese are unable to compensate insulin 

resistance with increased insulin secretion to the same extent as Caucasians. Pre-diabetes and 

early-stage diabetes in Japanese are characterized by a reduced beta-cell function combined 

with a lower degree of insulin resistance compared to Caucasians.
9-12

 In a prospective, cross-

sectional study of individuals with normal and impaired glucose tolerance (NGT and IGT), it 

was demonstrated that Japanese people living in Japan were more insulin-sensitive than 

Mexican-Americans living in the United States and Arabs living in Israel.
13

 The three ethnic 

groups also differed with regard to beta-cell function, but the disposition index – a measure of 

insulin secretion relative to insulin resistance – was similar across ethnicities for NGT and 

IGT participants. In summary, these studies suggest that profound ethnic differences exist 
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with regard to the pathophysiology of T2D. However, few attempts have been made to 

establish to what extent these differences are caused by factors other than ethnicity.  

 These perceived ethnic differences in the pathophysiology of T2D may influence 

treatment in clinical practice. For instance, T2D patients in Japan have traditionally been 

considered more insulin-sensitive compared to their counterparts in Western countries, and 

sulphonylureas have been the most widely used antidiabetic drug in Japan.
14

 This is in 

contrast to general diabetes treatment practices in other countries, where primarily insulin 

sensitizers such as metformin are being used as first-line medication. 

 The present study represents the first prospective, cross-sectional study in well-

characterized Japanese and Caucasian individuals with the following aims: 1) to characterize 

insulin sensitivity and beta-cell function at various glucose tolerance states, and 2) to 

investigate the role of factors such as body size as underlying predictors for possible ethnic 

differences in insulin sensitivity and beta-cell function. Individuals with NGT, IGT and T2D 

were enrolled in the study and a comparable distribution of individuals with high and low 

BMI values was secured in each subgroup of glucose tolerance state. This allowed us to 

identify the relative influence of ethnicity and body size on insulin sensitivity and beta-cell 

function. Here we present the key results of the study, focusing on the role of BMI, a known 

risk factor for the occurrence of T2D.
15

 

 

METHODS 

Study Design  

The study investigated 150 Caucasian participants (Northern European background for at 

least three generations) enrolled at Copenhagen University Hospital, Denmark, and 

120 Japanese participants (Japanese background for at least three generations) enrolled at 

Tokyo University Hospital, Japan. Potential participants (males and females aged 40 to 65 
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years) were screened to exclude individuals with metabolic conditions other than T2D. Other 

key exclusion criteria were: treatment with insulin, recent or ongoing infection, history of 

malignant disease, or use of thiazolidinedione-based medications within three months. 

Participation also required normal results from the physical examination, blood screening, 

electrocardiogram, urinalysis, and a stable body weight (±10%) for the past year. Participants 

were assigned into groups of either low or high BMI, respectively. A low BMI was defined 

for Japanese as <25 kg/m
2
 and for Caucasians <30 kg/m

2
,
 
in accordance with regional obesity 

definitions.
16, 17

 The participants were classified as having either NGT, IGT, or T2D
18

 on the 

basis of blood glucose levels while fasting and at 2 hours during the oral glucose tolerance 

test (OGTT). The study was powered at 80% to detect a 50% difference between Japanese 

and Caucasians in insulin response 30 minutes after oral glucose intake.  

The study protocol was approved by the Regional Committee on Biomedical 

Research Ethics in Denmark (Journal no. H-C-2008-101) and by the Research Ethics 

Committee, Graduate School of Medicine, University of Tokyo, Japan. Informed consent was 

obtained from all participants, and the handling of data was approved by the Danish Data 

Protection Agency. 

 

Procedures 

At screening (Visit 1), participants reported to the clinic in the morning after an overnight 

fast. They were evaluated according to the exclusion and inclusion criteria, and demographic 

characteristics were assessed. Female participants were scheduled to visit within the 14th day 

±4 days of their menstruation cycle. Concomitant medication, physical conditions including 

body measurements, and vital signs were recorded, and blood samples were collected for 

hematological and biochemical assessment. For the Japanese cohort, an indicatory OGTT was 

conducted to assist with the recruitment of participants into glucose tolerance subgroups. 
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For all participants, an OGTT was performed at Visit 2 with an oral bolus corresponding to 

75 g dissolved glucose. Plasma samples for measurement of glucose and insulin 

concentrations were collected at times -30, 0, 10, 20, 30, 60, 90, 120, 150, 180, 240, and 

300 minutes relative to the time of glucose ingestion. All samples were stored frozen pending 

analysis at a central laboratory in Denmark. 

Assessment of Insulin Sensitivity and Beta-cell Function 

In order to assess insulin action both while fasting and following glucose challenge, we 

calculated the homeostatic model assessment insulin resistance (HOMA-IR) index
19

 and the 

Matsuda index.
20

 The HOMA-IR is based on fasting-state glucose and insulin concentrations, 

whereas the Matsuda index employs glucose and insulin concentrations up to 120 minutes 

during the OGTT. Beta-cell function was evaluated using three indices: HOMA-B,
19

 which is 

based on fasting-state glucose and insulin concentrations; the insulinogenic index,
21

 which is 

based on insulin and glucose concentrations at fasting and 30 minutes after glucose challenge; 

and the insulin secretion ratio, which is based on insulin and glucose concentrations between 

0 and 120 minutes following glucose intake.
22

 The disposition index was calculated as the 

product of the insulinogenic index and the Matsuda index,
23, 24

 as well as the product of the 

insulin secretion ratio and the Matsuda index.
22

 

 

Statistical Analysis 

For each measure of insulin sensitivity and beta-cell function, an ANOVA was conducted on 

log-transformed endpoints with glucose tolerance state, ethnicity, the interaction between the 

two, with and without BMI, all as fixed effects. No correction for multiple testing was made. 

Spearman’s rank correlation coefficients between BMI and metabolic measures were 

calculated using log-transformed values of insulin sensitivity and beta-cell function. For the 

plots, endpoints were adjusted to correspond to the median BMI value for the entire 
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population in order to illustrate the predictive value of BMI for ethnic differences in insulin 

resistance and beta-cell function. Adjustments of the endpoints were based on coefficients 

estimated under the ANOVA model with BMI included.  

RESULTS 

The baseline characteristics of the study participants (Table 1) showed a similar demographic 

distribution across the two ethnic cohorts, except for measures of body size (height, weight, 

and BMI), which, in accordance with the study design, showed lower values in Japanese 

compared to Caucasians. Consequently, mean BMI values for Caucasians were substantially 

higher than for Japanese participants. 

 Similar mean glucose profiles in NGTs, IGTs, and T2Ds were observed for the two 

ethnic cohorts, with regards to both magnitudes and profile shapes (Fig. 1). In contrast, the 

insulin responses appeared lower in Japanese compared to Caucasians at all glucose tolerance 

states.  

 We calculated measures of insulin resistance (HOMA-IR and Matsuda index) and 

beta-cell function (HOMA-B, insulinogenic index, and insulin secretion ratio) at each glucose 

tolerance state (Fig. 2A–2E). The pattern of change in insulin resistance (HOMA-IR) and 

Matsuda index from NGT to IGT and further to T2D was similar in the two ethnic cohorts 

(Fig. 2A–2B). A large increase in insulin resistance was apparent in Caucasians in the 

transition from IGT to T2D, whereas the corresponding increase in Japanese was less 

pronounced (Fig. 2A). Marked decreases in insulin sensitivity (Matsuda index) were observed 

from NGT to T2D for both ethnic cohorts. The mean insulin sensitivity was significantly 

higher in Japanese individuals at all glucose tolerance states (Fig. 2A–2B).     

     Measures of beta-cell function at fasting state (HOMA-B) also showed a similar 

pattern of change from NGT to T2D for Japanese and Caucasians, but with overall lower 

mean values in Japanese individuals. The HOMA-B appeared similar in NGT and IGT, and to 
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decrease from IGT to T2D in both Japanese and Caucasians. The insulinogenic index and the 

insulin secretion ratio appeared to decline progressively from NGT to T2D in both ethnicities. 

Although mean values of the insulinogenic index were numerically higher in Caucasians at all 

glucose tolerance states, statistical significance between the two ethnicities was present in the 

T2D group only (Fig. 2D). Likewise, the insulin secretion ratio appeared higher in Caucasians 

reaching statistical significance in the IGT and T2D groups (Fig. 2E).  

In order to establish the importance of BMI for ethnic differences, we further 

investigated the relationship between measures of BMI on one hand, and insulin sensitivity 

and beta-cell function on the other. Significant correlations were observed between BMI and 

insulin sensitivity as well as beta-cell function (Fig. 3). The inherent difference in BMI in the 

two cohorts (Table 1) related to the study design led us to calculate BMI-adjusted endpoints 

(Fig. 2F–2J). For all five indices, the differences between Caucasians and Japanese were no 

longer statistically significant after accounting for BMI in either the NGT or the IGT group. 

Caucasians with T2D were still found to have significantly higher beta-cell function (HOMA-

B, P<0.05, Fig 2H)) and insulin resistance in the fasting state (HOMA-IR, P<0.01, Fig 2F) 

compared to the Japanese with T2D. The Matsuda index remained lower in Caucasians 

compared to the Japanese counterparts after accounting for BMI (P<0.01). 

To obtain a measure of the beta-cell function relative to insulin resistance, the 

disposition index was calculated for the NGT, IGT, and T2D groups using the insulinogenic 

index as well as the insulin secretion ratio for beta-cell function and the Matsuda index for 

insulin sensitivity (Fig. 4A–4B). No statistically significant differences between Japanese and 

Caucasians were found for any of the glucose tolerance states.  
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DISCUSSION 

This study was conducted to investigate 1) whether Caucasians and Japanese have similar 

beta-cell function and insulin sensitivity across glucose tolerance states, and 2) whether 

differences found can be explained by lifestyle-related or demographic factors, with an 

emphasis on the role of BMI. Other risk factors were also evaluated in the study (please refer 

to the supplemental material), but the measures associated with the degree of obesity turned 

out to be the most important. Of these, we focused on the role of BMI, which was a design 

parameter in the study and correlated highly with other measures of body size such as body 

weight and waist circumference.  

In contrast to previous studies investigating pathophysiological differences in T2D 

between Caucasians and Japanese, this study assigned participants into two groups of low and 

high BMI, for each state of glucose tolerance (NGT, IGT, or T2D). This assignment enabled 

us to assess the importance of body size for beta-cell function and insulin sensitivity in each 

glucose tolerance subgroup.   

The results obtained from the OGTTs showed similar mean glucose profiles in 

Japanese and Caucasians, whereas insulin responses were substantially lower in Japanese 

participants compared to Caucasians. In line with these observations, measurements of beta-

cell function were generally lower in Japanese, who simultaneously had higher insulin 

sensitivity. The major part of differences in insulin sensitivity and beta-cell function between 

the two ethnic cohorts could be explained by the different BMI distributions, with higher 

mean BMI in Caucasians. After accounting for BMI, the differences were no longer 

statistically significant, with the exception of the T2D group for which values of HOMA-IR 

and HOMA-B remained significantly higher in Caucasians, whereas the Matsuda index 

remained higher in Japanese. This could be caused by a difference in disease state within the 

T2D group, being more advanced in the Caucasian participants as reflected by the higher 
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mean fasting plasma glucose, or by differences not explained by BMI, such as their genetic 

disposition. 

Assessments of insulin sensitivity and beta-cell function at various glucose tolerance 

states have previously been performed in both Caucasians and Japanese. One of the largest 

studies performed in Caucasians is the Botnia study published in 2000, which included 5,396 

Caucasians ranging from NGT to T2D.
11

 In that study, the mean insulin response following an 

OGTT was observed to increase from NGT to IGT and to decrease from IGT to T2D. 

However, when the insulin response was evaluated relative to the glucose concentration, there 

was a significant decline both from NGT to IGT and from IGT to T2D. In addition, the 

HOMA-IR increased from NGT to T2D, which is in agreement with the results in the present 

study. 

 The results from the Botnia study have been compared with a similar study 

performed in Japanese.
9
 This comparison indicated differential insulin profiles, with Japanese 

IGTs having a lower mean response compared to Japanese NGTs. This finding was not 

supported by Tanaka et al.
 
or Kanauchi, who reported an increased mean insulin response in 

Japanese in the transition from NGT to IGT.
25, 26

 The present study provides further support 

for an increase in insulin response in Caucasians as well as in Japanese, in the transition from 

NGT to IGT.  

With regard to the magnitude of insulin responses, our results support the presence of 

differences between Caucasians and Japanese, as the responses appeared lower in Japanese 

compared to Caucasians at all glucose tolerance states. Our study thus confirms the previous 

finding that Japanese are characterized by a lower degree of insulin resistance and a more 

pronounced beta-cell dysfunction compared to Caucasians, regardless of glucose tolerance 

state.
27
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Despite a lower insulin response in Japanese individuals, Japanese and Caucasians 

had similar disposition indices, i.e. lower insulin secretion for a given degree of insulin 

resistance, throughout the range of glucose tolerance. This finding indicates a similar capacity 

for beta-cell compensation, which is also reflected in the similar glucose profiles for NGT, 

IGT and T2D participants. 

The observed relationship between insulin sensitivity and BMI is well established in 

both Japanese and Caucasians,
28-30

 confirming that obesity is a risk factor of T2D.
31, 32

 The 

negative correlation between the Matsuda index and BMI in Caucasians reported by Clausen 

and collaborators
33

 is in line with this relationship. In a large Japanese cohort of NGT 

participants, the HOMA-IR increased with BMI, whereas the Matsuda index decreased with 

increasing BMI,
30

 which is in agreement with our results.  

The strong correlation between BMI and beta-cell function in the present study is 

most likely driven by decreasing insulin sensitivity with increasing BMI, and therefore a 

compensatory need for more insulin. The inverse relationship between insulin sensitivity and 

beta-cell function reflects the compensatory nature of the beta-cell function in response to 

insulin resistance.
34

 

In summary, our study confirms the existence of differences in insulin sensitivity and 

beta-cell function between Japanese and Caucasians, and shows for the first time that a major 

part of these differences can be explained by differences in BMI. Our results provide evidence 

for a common pathogenesis of T2D in Japanese and Caucasians and may potentially have an 

impact on future treatment recommendations for the two populations. 
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Table 1. Baseline Characteristics of the Participants. 

 Caucasians  Japanese 

 NGT IGT T2D  NGT IGT T2D 

Total 63 39 48  46 26 48 

Low BMI
a
 32 (51%) 14 (36%) 24 (50%)  25 (54%) 12 (46%) 27 (56%) 

Age — yr 53 (7) 54 (8) 57 (7)  49 (7) 54 (8) 57 (7) 

Sex — male 29 (46%) 15 (38%) 29 (60%)  21 (46%) 12 (46%) 33 (69%) 

Height — m 1.7 (0.1) 1.7 (0.1) 1.8 (0.1)  1.6 (0.1) 1.6 (0.1) 1.6 (0.1) 

BMI — kg/m
2
 29.8 (5.9) 33.0 (6.3) 30.4 (5.7)  24.0 (3.2) 26.3 (5.0) 25.3 (4.4) 

Waist-to-hip ratio 0.91 (0.09) 0.94 (0.08) 0.97 (0.08)  0.93 (0.05) 0.94 (0.05) 0.95 (0.05) 

FPG — mmol/liter 5.5 (0.5) 5.9 (0.4) 8.3 (2.0)  5.5 (0.5) 6.0 (0.6) 7.7 (1.3) 

FSI — pmol/liter 46 (36) 56 (34) 77 (47)  30 (19) 36 (24) 36 (23) 

a
Cut-offs for the low-BMI group were <25 and <30 kg/m

2
 for Japanese and Caucasians, respectively. 

Data are presented as number of participants (%) or mean (SD). To convert the values for glucose to mg/dL, divide by 0.05551. To convert the 

values for insulin to mU/L, divide by 6.945. BMI denotes body mass index, FPG fasting plasma glucose, and FSI fasting serum insulin. 
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FIGURE LEGENDS 

Figure 1. Plasma glucose (Panels A and B) and serum insulin (Panels C and D) profiles in 

Caucasians and Japanese NGT, IGT and T2D participants following standard oral glucose 

tolerance tests. Data are presented as mean±SEM. 

 

Figure 2. Left panels: Mean ±SEM of insulin sensitivity (Panels A and B) and beta-cell 

function (Panels C, D and E). Statistical tests were obtained from ANOVA with ethnicity, 

glucose tolerance state, and the interaction between the two in the model. Right panels: BMI-

adjusted measures. Statistical tests were obtained by including BMI in the ANOVA model. 

*P<0.05, **P<0.01. Gray (dark): Caucasians, blue (light): Japanese.  

 

Figure 3. Insulin sensitivity (Panels A and B) or beta-cell function (Panels C, D and E) versus 

BMI. The ordinate is presented on a logarithmic scale. Correlation coefficients are calculated 

on the basis of log-transformed values for all individuals. All correlations were statistically 

significant (p<0.01). Black (open): Caucasians, blue (filled): Japanese.  

 

Figure 4. Disposition indices (DI) (mean±SEM) calculated as products of the insulinogenic 

index (Panel A) and the insulin secretion ratio (Panel B) and the Matsuda index. Statistical 

tests were obtained from ANOVA with ethnicity, glucose tolerance state, and the interaction 

between the two in the model.  
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FIGURES 

A Glucose – Caucasian 

Time (min)

(m
m

o
l/
L

)
G

lu
c
o

s
e

4
6

8
1

0
1

2
1

4
1

6

0 20 60 90 120 150 180 240 300
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J Insulin secretion ratio, BMI-adjusted 
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D Insulinogenic index vs. BMI (r=0.33) 
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Summary 
 
Objective: Type 2 diabetes (T2D) a disease in which differences between ethnic groups have been 

reported. However, an extensive comparison of the pathophysiology in different ethnicities using an 

oral minimal model based approach has not yet been published. In this paper we aimed at assessing 

the potential differences in beta-cell function, insulin sensitivity and hepatic extraction between 

Caucasian and Japanese subjects ranging from normal glucose tolerance (NGT) to impaired glucose 

tolerance (IGT) and to type 2 diabetics (T2D). 

 

Research design and methods: Beta-cell function and insulin sensitivity was calculated for 150 

Caucasians and 120 Japanese subjects using glucose, insulin, and C-peptide measurements obtained 

from an oral glucose tolerance test (OGTT). Subjects were stratified according to glucose tolerance 

(NGT, IGT, and T2D) and into high and low BMI groups. Caucasian subjects were stratified to the high 

group, when BMI≥30 kg/m
2
, and Japanese when BMI≥25 kg/m

2
. Basal, dynamic, and static beta-cell 

responsivity (Φb, Φd,Φs) and SI were assessed by oral C-peptide and glucose minimal models, and 

hepatic extraction were estimated using the C-peptide minimal model in combination with a newly 

developed insulin model. Furthermore, the two disposition indices (DId, DIS), which adjust beta-cell 

secretion for insulin action were calculated in order to describe the ability of the beta-cell to 

compensate for insulin resistance.  

 

Results: Despite similar OGTT glucose profiles, Japanese in general had lower insulin and C-peptide 

secretion as compared to Caucasians both at basal conditions and following the OGTT. At all disease 

states, the basal beta-cell function (Φb) was lower in Japanese (P<0.01). Estimates of the dynamic  

(Φd) and static (Φs) beta-cell responsivity indices indicated significantly lower values in the Japanese 

IGT group compared to Caucasians (P<0.05). In contrast, values of insulin action (SI) showed higher 

sensitivity in the Japanese IGT subjects. Hepatic extraction at basal (HEb) and during the OGTT 

(HEpost) was similar in the NGT and IGT groups, but significantly higher in the Japanese T2D subjects 

compared to the Caucasians (P<0.01). The disposition indices (DId, DIS) were similar in Japanese and 

Caucasians at all disease states.  

 

Conclusions: Our findings show the existence of differences in beta-cell function and insulin 

sensitivity between Caucasians and Japanese and a similar ability to compensate for increased insulin 

resistance at all states of glucose tolerance. Furthermore we have shown that significant differences in 

hepatic insulin extraction ratios exist at the state of T2D. 
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Introduction 

 

The existence of ethnic difference in the pathogenesis of type 2 diabetes (T2D) has been shown in a 

variety of papers (Fukushima et al. 831-35;Kuroe et al. 71-77;Takeuchi et al. 370-76;Jensen et al. 

2170-78;Torréns et al. 354-61;Fukushima, Suzuki, and Seino S37-S43;Hanefeld et al. 868-

74;Chandalia et al. e812;Chandler-Laney et al. 2086-92;Ferrannini et al. 3251-57;Liew et al. 784-

89;Nakanishi et al. 571-77;Weiss et al. 571-79;Izuka et al. 41,45;Mitsui et al. 53-58;Tripathy et al. 975-

80). Many of these papers rely on data obtained in Caucasians and Japanese, and the general 

hypothesis outlined is that Japanese can not compensate with increased insulin secretion when 

progressing from normal glucose tolerance (NGT) to impaired glucose tolerance (IGT) to the same 

degree as Caucasians. Some of these studies refer specifically to the difference in first-phase insulin 

response (Hanefeld et al. 868-74;Fukushima, Suzuki, and Seino S37-S43), although other studies 

have reported contrasting results (Torréns et al. 354-61).  

In general comparisons between Japanese and Caucasians have been performed using 

data from different studies with different inclusion criteria etc. This could potentially lead to biased and 

misleading conclusions. To our knowledge no study has reported results from a study where inclusion 

and enrolment of patients has been matched for the purpose of studying the potential difference in 

development of T2D between the two ethnicities.    

It is well-known that pathogenesis of T2D involves decreased insulin sensitivity in  

combination with impaired beta-cell function (Lyssenko et al. 166-74) . One approach to investigate 

ethnic differences in development of the disease is to assess beta-cell function and insulin sensitivity 

in subjects with different glucose tolerance using data from an oral glucose tolerance test (OGTT).  

Classical measures for beta-cell function and insulin sensitivity such as the homeostatic 

indices (Matthews et al. 412-19) or the Insulinogenic index (Phillips et al. 286-92) have been widely 

applied in previous analyses of ethnic differences (Fukushima et al. 831-35;Suzuki et al. 1211-15,Ref. 

article 1). One drawback with these methods of calculating beta-cell function is that they only take into 

account a fraction of the available data obtained from the OGTT and are typically calculated using 

glucose and insulin samples. As approximately 50% of newly secreted insulin is degraded in liver 

(Vølund, Polonsky, and Bergman 1195-202), and the hepatic extraction ratio can be different from one 

individual to another, such measures can potentially lead to misleading conclusions.  

Alternatively beta-cell function may be estimated by a mathematical model which applies C-

peptide concentrations to obtain measures for insulin secretion rate. For such an assessment, the oral 

minimal model of C-peptide (Breda et al. 150-58) has been applied to provide indices for both first- 

and second phase insulin secretion estimated as the dynamic and static beta-cell responsivity index 

(Basu et al. 866-72;Basu et al. 2001-14;Sunehag et al. 233-39). When combined with a model for 

insulin kinetics, information of hepatic extraction during an OGTT can be obtained, thus providing a 

more complete metabolic description compared to classical methods (Campioni et al. E941-E948).   
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As stated previously, it is well-established that T2D is characterised by insulin resistance 

accompanied by beta-cell defects (Bergman et al. S212-S220). In non-diabetic subjects a close 

relationship between insulin resistance and beta-cell function is observed (Kahn et al. 1663-72).  

Progression to T2D is hypothesised to happen when beta-cells can not compensate 

increasing insulin resistance (Stumvoll, Goldstein, and van Haeften 1333-46). The disposition index 

reflects beta-cell function interpreted in light of prevailing insulin sensitivity, and be used as a 

surrogate marker for diabetes state from a pathophysiological point of view (Cobelli et al. E1-E15).   

To our knowledge, no study has extensively assessed the progression to T2D in a matched 

cohort of Caucasian and Japanese subjects applying state of the art methods for estimation of beta-

cell function, insulin sensitivity, and hepatic extraction. Thus, whether a similar pathophysiology 

characterises the transition from NGT to IGT to T2D in Japanese and Caucasians still seems to be 

unresolved.    

In our study, we assessed the metabolic sequence of events that takes place in the transition 

from NGT to IGT to T2D in Caucasians and Japanese by using a frequently-sampled OGTT in each 

cohort. By applying the oral minimal models (Breda et al. 150-58), (Dalla Man, Caumo, and Cobelli 

419-29), (Campioni et al. E941-E948) we determined indices for beta-cell function, insulin sensitivity, 

hepatic extraction, and disposition indices at each glucose tolerance state.   

 

Methods 

 

Study design and participants 

This study included 150 subjects enrolled at Rigshospitalet, Denmark, and 120 subjects 

enrolled at Tokyo University Hospital in Japan. The 270 subjects in total, were stratified according to 

BMI and glucose tolerance state as outlined in WHO criteria (normal glucose tolerant (NGT), impaired 

glucose tolerant (IGT), or type 2 diabetes (T2D)) (WHO). Subjects were aged 40 to 65 years, and 

each cohort had a similar distribution of males and females. Baseline characteristics and distribution of 

subjects is presented in Table 1. The study protocol was approved by The Regional Committee on 

Biomedical Research Ethics in Denmark (Journal no H-C-2008-101) and by the Research Ethics 

Committee of Graduate School of Medicine, the University of Tokyo in Japan. Informed consent was 

obtained from all participants and the handling of data was approved by the Danish Data Protection 

Agency. 

 

 

Procedures 

All subjects received an oral bolus corresponding to 75g of glucose. Plasma samples were collected at 

times -30, 0, 10,20,30,60, 90, 120, 150, 180, 240, and 300 min for determination of glucose, insulin 

and C-peptide plasma concentrations, and were assayed at the same lab using validated methods. In 
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order to assess measures for beta-cell function and insulin sensitivity, we respectively applied the oral 

minimal model (OMM) for C-peptide (Breda et al. 150-58), and glucose (Dalla Man, Caumo, and 

Cobelli 419-29). The OMM for C-peptide provides measures of basal, dynamic, and static (Φb, Φd,Φs) 

beta-cell responsivity, whereas the OMM for glucose provides measures of insulin sensitivity (SI). The 

combination of the C-peptide model with a model for insulin delivery rate proposed by Campioni et al. 

was applied for estimation of hepatic extraction at basal and under the glucose challenge (Campioni et 

al. E941-E948). Disposition indices DId and DIs were calculated using the product of indices for beta-

cell responsivity and insulin sensitivity. All estimation procedures were carried out using a single-

subject approach and commercial software package Matlab v. 14. 

 

Statistical analysis 

Data are presented as means ± SE. For each measure of insulin sensitivity and beta-cell function, an 

ANOVA was used to test for effects of glucose tolerance state and race. In addition, comparisons 

between Japanese and Caucasians at each glucose tolerance state were performed using the 

unpaired t-test. A p-value<0.05 was considered significant, and a p-value<0.01 was indicated with two 

significance stars. 

 

Results 

 

Plasma glucose, insulin, and C-peptide profiles 

Concentration vs. time profiles together with standard-errors of the mean (SEM) for NGTs, IGTs, and 

T2Ds are shown in Fig. 1. For the glucose profiles, both baseline and maximal concentrations 

appeared similar between Caucasian and Japanese, but had apparent difference in return to baseline 

for NGTs and IGTs.  

In contrast, basal and maximum concentrations of insulin were significantly higher in 

Caucasians in all glucose tolerance groups (P<0.05). For all groups it was further observed, that the 

insulin response in Caucasians mainly seems to be higher following time points after 30 min. Similar 

trends were observed for C-peptide concentrations being higher in Caucasians both at baseline and at 

maximum concentrations in all groups of glucose tolerance states. 

 

Insulin action 

Figure 2 presents mean values and SEM of indices for insulin action (SI), beta-cell function (Φb, Φd,Φs), 

and hepatic extraction ratios (HE) at each disease state (NGT, IGT, and T2D) for Caucasian and 

Japanese. Generally a decrease in insulin sensitivity from NGT to T2D was observed for both groups. 

Insulin sensitivity was found to be significantly lower in Caucasian IGTs compared to Japanese 

(P<0.05), but no difference was found for NGT and T2D subjects. Results from ANOVA performed 

including all glucose tolerance states on the insulin sensitivity index (SI) indicated no overall significant 

effect of ethnicity (P>0.05).     
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Beta-cell function  

No clear trend for beta-cell function at fasting was observed from NGT to T2D, although beta-cell 

responsivity at basal was significantly lower in Japanese compared to Caucasians at all levels of 

glucose tolerance (P<0.01). In contrast, for both cohorts, the dynamic and static beta-cell function 

indices decreased around 50% from NGT to T2D. For the dynamic response, a significantly lower 

mean value was found for the Japanese IGT group compared to the Caucasian IGT group (P<0.05), 

whereas the static index appeared lower in Japanese at all disease states and reached statistical 

significance both in the IGT and the T2D group (P<0.01,P<0.05). The ANOVA analysis revealed that 

for the dynamic index, the interaction term between type and ethnicity was significant (P<0.05), 

whereas for the static index, ethnicity in itself was found to be significant (P<0.01). 

  

Hepatic extraction 

Caucasians and Japanese had statistically similar hepatic extraction in both the NGT and the IGT 

group, although numerically the Japanese had slightly higher mean values (Fig. 2). For the T2D group, 

the difference was significant (P<0.01) indicating higher hepatic extraction ratios both at basal (HEb) 

and post-glucose load (HEpost) in Japanese compared to the Caucasians. Testing the overall effect on 

the hepatic extraction ratios revealed that ethnicity in itself was significant both for basal – and post-

glucose hepatic extraction ratios (P<0.01, P<0.01).    

 

Disposition indices 

Values of disposition indices, calculated to adjust insulin secretion with insulin action, are presented in 

Figure 3.  No statistical significant difference at any of the disease states were observed for any of the 

disposition indices (DId, DIs) between Caucasians and Japanese, which was supported by ANOVA 

indicating no significant effect of ethnicity.  

 

Discussion 

 

The present study evaluates and provides new insights regarding the pathogenesis of T2D in 

Japanese and Caucasians. Beta-cell function, insulin sensitivity, hepatic extraction ratios, and 

disposition indices were estimated using mathematical methods applied on data from a frequently-

sampled OGTT. Indices were calculated for 3 subgroups in each of the Caucasian and Japanese 

cohorts, stratified according to glucose tolerance into NGT, IGT, or T2D groups.   

 Compared to NGT subjects, the IGT subjects had lower insulin sensitivity both in the 

Japanese and Caucasian subjects, although the decrease in insulin sensitivity is much more 

pronounced in Caucasians, resulting in higher insulin sensitivity in Japanese than in the Caucasians at 

the IGT state.  

 Higher maximum insulin and C-peptide concentrations were observed at all stages in the 

Caucasian subjects compared to Japanese, and the difference seems more pronounced for insulin 

than for C-peptide. We speculate that this could be due to a higher hepatic insulin extraction ratio and 

thus applied the newly developed model by Campioni et al. for assessment of hepatic extraction from 
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an oral test (Campioni et al. E941-E948). As seen in Fig. 2, the hepatic insulin extraction ratio was 

quantitatively higher in Japanese both before and during the OGTT, and the difference was significant 

for the T2D group.      

The beta-cell function relative to insulin resistance was assessed using dynamic as well as 

static disposition indices. Both indices were found to be similar at all disease states, thus showing that 

Japanese and Caucasian have the same ability to compensate for increased insulin resistance during 

transition from NGT to T2D.  

In an earlier publication, we applied simple indices for calculation of insulin sensitivity 

(HOMA-IR (Matthews et al. 412-19) and Matsuda Composite (Matsuda and Defronzo 1462-70)) and 

beta-cell function (HOMA-B and Insulinogenic (Phillips et al. 286-92)) which all apply glucose and 

insulin data. This was supplemented with a minimal model-based approach for several reasons. First 

of all, this enables us to accurately assess the hepatic extraction ratios before and after the OGTT. 

Secondly, the model-based approach takes all samples from the OGTT into account, and can handle 

uncertainty in measurements. Thirdly, the length and timing of the first- and second phase insulin 

secretion can be different from one individual to another, which is taken into account only in the 

model-based approach.  

In general, the findings presented here are in line with our earlier findings, although some 

specific differences exist. These differences originate mainly from the before-mentioned difference in 

the amount of samples included in the calculation of insulin sensitivity and beta-cell function. One such 

difference is the insulin sensitivity in NGTs measured by the Matsuda Composite or using the glucose 

minimal model. The Matsuda Composite index uses data up to 120 minutes, whereas the minimal 

model uses the full profiles, which in our case is up to 300 min. The undershoot observed in the 

glucose curve for Caucasians with NGT does not contribute to the Matsuda Composite index value, 

and was reported to be quantitatively higher in Japanese subjects than in Caucasians (Ref. article 1). 

This is in contrast to the findings presented here for the minimal model insulin sensitivity, indicating 

quantitatively higher sensitivity in the Caucasian NGTs.  

Continuous deterioration of insulin sensitivity in the progression to T2D have been reported 

both for Caucasians and Japanese (Bock et al. 3536-49;Jensen et al. 2170-78) (Fukushima et al. 831-

35). In line with our findings, Nishi et al. also observed decreased insulin sensitivity from NGT to IGT 

to T2D in Japanese (Nishi et al. 46-52). This provides evidence, that pathogenesis to T2D is 

characterised by continuous decreasing whole-body insulin sensitivity both in Caucasians and 

Japanese.   

In our previous paper (ref. Article 1), we reported first-phase insulin secretion using the 

insulinogenic index, and we found no statistical difference between Caucasian and Japanese IGTs. In 

contrast, in the present analysis, we found a statistical difference in the dynamic index (Φd) which is 

also a surrogate marker for the first-phase insulin secretion. This controversy originates from the fact, 

that the insulinogenic index uses insulin data, instead of C-peptide, and only uses measurements up 

to 30 min. For analysis of beta-cell function, it is generally accepted that use of C-peptide data 

provides the most accurate measure, due to possible differences in hepatic extraction ratio. In spite of 
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this, the insulinogenic index is widely applied and generally accepted in the diabetes literature as a 

marker of first-phase insulin secretion ability.      

Differences between Japanese and Caucasians in beta-cell function have been suggested in 

a number of studies (Fukushima et al. 831-35;Fukushima, Suzuki, and Seino S37-S43;Tripathy et al. 

975-80). These studies suggest that Japanese cannot compensate insulin resistance with increased 

beta-cell function to the same extent as Caucasians. In our study, we found lower beta-cell function in 

Japanese IGTs, and T2Ds calculated using the dynamic and static beta-cell index.  

Due to the inherent relation between beta-cell function and insulin sensitivity (Kahn et al. 

1663-72), we also calculated the dynamic and static disposition indices which takes into account the 

degree of insulin sensitivity. The disposition indices can thus be used as markers for the ability of the 

beta-cell to compensate for prevailing insulin sensitivity. As expected, both indices declined with 

worsening of glucose tolerance. Furthermore, at all glucose tolerance states, similar values were 

obtained for Japanese and Caucasians. This provides evidence for a similar ability to compensate for 

insulin resistance in the two cohorts, which supports our previous findings based on non-model based 

indices for beta-cell function and insulin sensitivity (Ref. Article 1). 

 In order for the two cohorts to be representative for their corresponding population, each of 

the cohorts was stratified in high and low BMI groups according to regional obesity definitions. This 

lead to a cut-off of 25 kg/m
2  

for Japanese and 30 kg/m
2  

for Caucasians. As we strived to obtain a well-

balanced design with similar number of subjects in the high and low BMI groups, the Caucasian 

subjects on average had higher BMI compared to the Japanese. In the previous publication (ref. 

Article 1), we showed that the BMI difference could explain the majority of the difference in insulin 

sensitivity and beta-cell function at each disease state. Here we did not take BMI into account, as the 

key point was to compare the findings presented in the previous publication with results from the 

minimal models and to present the findings for hepatic insulin extraction ratios, which clarifies the 

underlying physiology for the differences observed between the two cohorts. It is worth mentioning 

that BMI may also explain a major part of the differences in minimal model insulin sensitivity at each 

disease state as this was observed also for the Matsuda index (Ref. Article 1).  

In our study, we applied a cross-sectional in contrast to a longitudinal study approach. Thus, 

the results cannot provide evidence about whether Japanese and Caucasians can tolerate the same 

period of insulin resistance before progression to T2D. In other words, whether Japanese can cope 

with the stress on the beta-cells in the same period of time as is the case for Caucasians. This is a 

suggestion for future research. 

In summary, our study showed that Caucasian and Japanese NGT, IGT, and T2D had 

similar glucose profiles following the OGTT. Despite these similarities, beta-cell function calculated 

using the oral minimal model for C-peptide, in general was lower in Japanese compared to 

Caucasians in IGT and T2D states. Finally, the combined effect of insulin sensitivity and beta-cell 

function as estimated by the disposition index showed that Japanese and Caucasian NGTs, IGTs, and 

T2Ds have similar beta-cell function relative to insulin resistance. This provides evidence that the 

ability to compensate for increasing insulin resistance is similar in Caucasian and Japanese.     
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Tables  
 
 
Table 1: Baseline demographics of participants 

 
a
Cut-offs for the low-BMI group were <25and <30 kg/m

2
 for Japanese and Caucasians, respectively. 

Data are presented as number of participants (%) or mean (SD). To convert the values to mg/dL, divide by 0.0555. To convert 
the values for insulin to mU/L, divide by 6.945. BMI denotes body mass index, FPG denotes fasting plasma glucose, and FSI 
fasting serum insulin 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Caucasians Japanese  

NGT IGT T2D NGT IGT T2D 

Total  63 39 48 46 26 48 
Low BMI

a
 32 (51%) 14 (36%) 24 (50%) 25 (54%) 12 (46%) 27 (56%) 

Age (years) 53 (7) 54 (8) 57 (7) 49 (7) 54 (8) 57 (7) 
Sex (male) 29 (46%) 15 (38%) 29 (60%) 21 (46%) 12 (46%) 33 (69%) 
Height (m) 1.7 (0.1) 1.7 (0.1) 1.8 (0.1) 1.6 (0.1) 1.6 (0.1) 1.6 (0.1) 
BMI 29.8 (5.9) 33.0 (6.3) 30.4 (5.7) 24.0 (3.2) 26.3 (5.0) 25.3 (4.4) 
Waist-to-hip 0.91 (0.09) 0.94 (0.08) 0.97 (0.08) 0.93 (0.05) 0.94 (0.05) 0.95 (0.05) 
FPG [mmol/L] 5.5 (0.5) 5.9 (0.4) 8.3 (2.0) 5.5 (0.5) 6.0 (0.6) 7.7 (1.3) 
FSI [pmol/L] 46 (36) 56 (34) 77 (47) 30 (19) 36 (24) 36 (23) 
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Figures 
 
Figure 1:  Glucose, insulin, and C-peptide profiles for Caucasian (black) and Japanese (blue) at the 
three different disease stages (NGT, IGT, and T2D). Data are mean ± SEM. 
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Figure 2 : Measures of insulin sensitivity (SI), beta-cell function (φb, φd, φs), and hepatic extraction (HEb, 
HEpost) 
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Figure 3 : Disposition indices (DId, DIs), calculated as the product of insulin sensitivity and beta-cell 

function indices (φd, φs). 
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