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from the Council for Strategic Research through the Storm and Wastewater Infor-
matics (SWI) project.

The thesis consists of a summary report and a collection of six papers, which have
been published or submitted to international peer reviewed journals or conferences.
In the thesis the papers are referred to by their roman number, e.g. as Paper I.

Papers included in the thesis:

Paper 1. Breinholt, A., Santacoloma, P.A., Mikkelsen, P.S., Madsen, H., Grum,
M., Nielsen, M.K. Evaluation framework for control of integrated urban drainage
systems, In: 11ICUD, Proceedings of 11th International Conference on Urban
Drainage, Edinburgh, Scotland, 31st August-5th September 2008.

Paper II. Breinholt, A., Grum, M., Madsen, H. , Thordarson, F.&., Mikkelsen,
P.S. Informal uncertainty analysis (GLUE) of continuous flow simulation in
a hybrid sewer system with infiltration inflow - consistency of containment
ratios in calibration and validation?, submitted.

Paper II1. Breinholt, A., Thordarson, F.&., Mgller, J.K., Grum, M., Mikkelsen,
P.S., Madsen, H. Grey-box modelling of flow in sewer systems with state de-
pendent diffusion, Environmetrics, Vol. 22 (8), pp. 946-961, 2011 (DOI:
10.1002/env.1135).

Paper IV. Thordarson, F.&., Breinholt, A., Mgller, J.K., Mikkelsen, P.S. Grum,
M., Madsen, H. ,Evaluation of probabilistic flow predictions in sewer systems
using grey box models and a skill score criterion. Stochastic Environmental
Research and Risk Assessment. (in press)(DOI: 10.1007/s00477-012-0563-
3).



Paper V. Breinholt, A., Mgller, J.LK., Madsen, H., Mikkelsen, P.S. A formal sta-
tistical approach to representing uncertainty in rainfall-runoff modelling with
focus on residual analysis and probabilistic output evaluation - distinguishing

simulation and prediction, submitted.

Paper VI. Breinholt, A., Thordarson, F.@., Mgller, J.K., Grum, M., Mikkelsen,
P.S., Madsen, H. Identifying the appropriate physical complexity of stochastic
gray-box models used for urban drainage flow prediction by evaluating their

point and probabilistic forecast skill, submitted.

Other publications:

The following papers and reports were also prepared during the project period. The
scientific content is covered, or partly covered by the included papers. Therefore,
these publications are not included in the monograph.

Breinholt, A., Grum, M., Madsen, H. , Mikkelsen, P.S. Uncertainty Analysis of
Storm- and Wastewater models, SUDM & 2RWHM. The 8th International
Conference on Urban Drainage Modelling. The 2nd International Conference
on Rainwater Harvesting and Management, 7-12 September, 2009, Tokyo,
Japan, Proceedings.

Hansen, L.S, Borup, M., Breinholt, A., Mikkelsen, P.S. Performance of MOUSE
UPDATE for level and flow forecasting in urban drainage systems, MIKE by
DHI International Conference Copenhagen 2010," Modelling in a World of
Change" 6-8 September, 2010, DHI, Hgrsholm, published in proceedings/book.

Breinholt, A., Sharma, A.K. Case Area Baseline Report - Arhus Public Water
Utility', Technical Report, DTU Environment. Department of Environmental
Engineering. March 2010.

Breinholt, A., Sharma, A.K. Case Area Baseline Report - Copenhagen Energy
and Lynette Fellesskaber?*, Technical Report, DTU Environment. Department
of Environmental Engineering. March 2010.

Breinholt, A., Sharma, A.K. Case Area Baseline Report - Avedoere Wastewater
Services®, Technical Report, DTU Environment. Department of Environmen-
tal Engineering. July 2009.

Uhttp://www.swi.env.dtu.dk/upload/swi/caserapport%20%C3%A 5rhus%20270310.pdf
Zhttp://www.swi.env.dtu.dk/upload/swi/casereport%20ke_1f%20270310.pdf
3http://www.swi.env.dtu.dk/upload/swi/case%20area%20baseline%20report%20aved % C3%B8re%20100327.pdf

i



The papers are not included in this www-version, but can be obtained from the Li-
brary at DTU Environment: Department of Environmental Engineering Technical
University of Denmark Miljoevej, Building 113 2800 Kongens Lyngby, Denmark
(library @env.dtu.dk)

il



Y



Acknowledgements

First of all I would like to thank my supervisor Associate Professor Peter Steen
Mikkelsen (DTU Environment) for valuable and highly appreciated support and
contribution to this thesis.

Also many thanks go to my co-supervisor Professor Henrik Madsen (DTU Infor-
matics) for many significant contributions to the statistical and modelling chal-
lenges and also for lending me a chair at DTU Informatics.

I would also like to thank my co-supervisor Dr. Morten Grum (Kriiger A/S) for
valuable comments and contributions to many of the papers included in this thesis.

I am very grateful for the cooperation with my fellow PhD student Fannar Orn
Thordarson (DTU Informatics) who introduced me to CTSM and helped me out
with various Latex and Matlab problems and for his willingness to discuss the
statistical subjects. Also I am thankfull to Assistant Professor Jan Kloppenborg
Mpgller (DTU Informatics) for his willingness to help with CTSM and to answer
questions and discuss possible new approaches to solve the statistical and mod-
elling problems that I came across during my PhD. I would also like to thank As-
sociate Professor Niels Kjglstad Poulsen (DTU Informatics) for beeing willing to
answer questions regarding control theory and for setting up a model platform for
control of urban drainage system although it was not finalised within the project.

I am also very grateful for the data and support I received from Spildevandscen-
ter Avedgre (SCA) and especially I would like to thank Jacob Ngrremark for his
support.



vi



Summary

Models are commonly applied for design of urban drainage systems. Typically
they are of deterministic nature although it is well accepted that they only reflect
reality approximately. When measurements are available they can be used for cal-
ibration of models. However, deviations between model outputs and observations
will often remain and should hence be quantified, especially when used for model
predictive control.

The objective with this thesis has been to quantify and qualify the modelled out-
put uncertainty. For this purpose a catchment in Ballerup (1,320 hectares) was
selected and data included flow from downstream the catchment, rain measured at
two rain gauges and monthly evaporation. The data period covered subperiods of
2007-2010. The catchment area consists of both combined and separated drainage
systems and significant infiltration inflow enters the system through permeable sur-
face areas. The simple serial linear reservoir flow routing principle was applied for
modelling both the fast rainfall runoff from paved areas and the slow infiltration
inflow from permeable areas. The wastewater flow variation was modelled by a
harmonic function. Models of different complexity in terms of describing features
such as flow constraints, basins and pumps were tested for their ability to describe
the output with a time resolution of 15 minutes.

Two approaches to uncertainty quantification were distinguished and adopted, the
stochastic and the epistemic method. Stochastic uncertainty refers to the random-
ness observed in nature, which is normally irreducible due to the inherent variation
of physical systems. Epistemic uncertainty on the contrary arises from incom-
plete knowledge about a physical system. For quantifying stochastic uncertainties
a frequentist approach was applied whereas the generalised likelihood uncertainty
estimation method (GLUE) was adopted for the epistemic approach. Two different
uncertainty estimates were furthermore distinguished: prediction and simulation
uncertainty. To quantify the prediction uncertainty the model should accommodate
an updating step thereby benefitting from observations that arrive in continuation
of the predictions made. The simulation uncertainty on the other hand is calculated
from data of a limited measuring campaign and the model does not accommodate a
model correction step. The stochastic approach was applied for uncertainty quan-
tification in both prediction and simulation whereas the epistemic uncertainty was
assessed only in simulation. A maximum likelihood method was applied for pa-
rameter estimation in the stochastic approach, i.e. one optimal parameter set was

vii



derived that minimises the errors between model outputs and observations. Con-
versely in GLUE, parameters are viewed as stochastic variables and many accept-
able parameter sets were therefore identified.

The predictive stochastic models were built on stochastic differential equations that
include a drift term containing the physical description of the model and a diffusion
term describing the uncertainty in the state variables. Additionally the observation
noise is accounted for by a separate observation noise term. This approach is also
referred to as stochastic grey-box modelling. A state dependent diffusion term
was developed using a Lamperti transformation of the states, and implemented to
compensate for heteroscedastic state uncertainty and to avoid predicting negative
states. A flow proportional observation noise term introduced by a log transform
was furthermore used to avoid predicting negative flows.

In the simplest stochastic prediction models all parameters were estimated easily;
however increasing the deterministic model complexity involved that some of the
parameters had to be fixed. The statistical assumptions that require the residuals
to correspond to a white noise process were fulfilled for the one-step prediction
but beyond the one-step prediction auto-correlated residuals were obtained. The
Akaike’s (AIC) and the Bayesian (BIC) information criteria were used to identify
preferred models for the one-step prediction whereas a skill scoring criterion ad-
dressing both the reliability and the sharpness of the confidence bounds was used
when assessing the forecasting performance beyond the one-step. The reliability
was satisfied for the one-step prediction but were increasingly biased as the pre-
diction horizon was expanded, particularly in rainy periods.

GLUE was applied for estimating uncertainty in such a way that the selection of
behavioral parameter sets continued until a required coverage of observations was
obtained (targeting 90%). A likelihood measure were used for ranking the param-
eter sets and two different ways of drawing parameter sets were tested, a Latin Hy-
percube Monte Carlo method and a modified Monte Carlo Markov Chain method.
When using the stochastic models for simulation, it was found that the simulation
uncertainty was best described when estimating parameters by the output error
minimisation method. In order to remove the heteroschedastic residuals structure
it were necessary to apply a transformation of the observations, however autocorre-
lation remained in the simulation case. A skill scoring comparison of a simulation
and a prediction model showed that a major improvement is gained by updating
the model states continuously, i.e. updating of model states results in much lower
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forecasting uncertainty at shorter prediction steps.

In the GLUE methodology there are no requirements to the residuals. Nevertheless
the aim is the same as for the stochastic simulation models, namely to cover a
proportion of observations consistent with the considered quantile with maximum
sharpness, i.e. to minimise the skill score. In one calibration case, even though
very broad prior parameter ranges were specified, it was difficult to acquire a 90%
coverage of observations and the reliability in rainy periods was much lower than
in dry weather. However the GLUE method proved quite consistent in the sense
that similar coverage rates were obtained in both calibration and validation periods
with the same set of retained parameter sets.

A comparison of the stochastic and epistemic approaches to uncertainty evaluation
was conducted by comparing the sharpness, the reliability and the skill score on
the same set of data. Very similar performance was obtained with the stochastic
method as the preferred. The thesis has demonstrated that the statistical require-
ments to the formal stochastic approach are very hard to fulfill in practice when
prediction steps beyond the one-step is considered. Thus the underlying assump-
tion of the GLUE methodology, that uncertainty in modeling and simulation is not
only of stochastic nature, seems fairly consistent with the results of this thesis.

A major drawback of the GLUE methodology as applied here is the lumping
of total uncertainty into the parameters, which entails a loss of physicality of
the model parameters. Conversely the parameter estimates of the stochastic ap-
proach are physically meaningful. This thesis has contributed to developing sim-
plified rainfall-runoff models that are suitable for model predictive control of urban
drainage systems that takes uncertainty into account.
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Dansk sammenfatning

Modeller anvendes hyppigt til design af regn- og spildevandssystemer i urbane
oplande. Sadanne modeller er normalt deterministiske omend det er velkendt, at
modellerne sjeldent afspejler virkeligheden perfekt. I de tilfeelde hvor malinger
er tilgeengelige kan modellerne kalibreres. Men ofte vil der vare afvigelser som
ignoreres, og denne usikkerhed bgr reelt kvantificeres hvilket sarligt gaelder i
forbindelse med styringer der omfatter modelpradiktioner.

Formalet med athandlingen har saledes veret at finde metoder til at kvantificere og
kvalificere modellernes output usikkerheder. Til dette formal blev et caseopland
beliggende i Ballerup (1.320 ha) udvalgt, og flowdata malt nedstrgms fra oplan-
det blev anvendt til modellering og usikkerhedskvantificering. Input til modellerne
omfattede regn fra to regnmalere samt manedlige fordampningsdata. Den samlede
dataperiode udgjorde 2007-2010. Caseoplandet rummer bade felles og separat
kloakerede oplande og er pavirket af uvedkommende infiltrationsvand fra perme-
able omrader. Det linere reservoir princip blev benyttet til modellering af reg-
nafstrgmning og infiltration og en harmonisk funktion beskrev spildevandsflowet.
Derudover antog modellerne forskellig kompleksistet med hensyn til beskrivelsen
af flowbegraensninger, overlgb samt pumper. Modellernes output blev sammen-
holdt med observationerne med en tidsoplgsning pa 15 minutter.

Der er skelnet mellem to overordnede tilgange til usikkerhedskvantificering, den
stokastiske og den epistemiske . I den stokastiske verden opfattes usikkerheder
som tilfeldige, irreducerbare og som kvantificerbare stgrrelser, mens usikkerheder
i den epistemiske tilgang beror pa utilstraekkelig viden om et givent fysisk system.
Til kvantificering af usikkerheder benyttes henholdsvis en frekventistisk statistisk
metode til at representere den stokastiske tilgang, og GLUE metoden (Generalised
Likelihood Uncertainty Estimation) som repra@sentant for den epistemiske tilgang.
Derudover blev skelnet mellem usikkerhedsbestemmelse i simulation og predik-
tion. Hvilken type usikkerhedsbestemmelse der kan estimeres vil ath@nge af om
der er on-line malinger tilgengelige for Igbende opdatering/korrektion af modellen
eller ej. Praediktionsusikkerheden bestemmes ved Igbende opdatering mens simu-
lationsusikkerheden bestemmes ud fra en afgrenset maleperiode. Den stokastiske
metode blev anvendt til bestemmelse af usikkerheden i bade pradiktion og sim-
ulation, mens den epistemiske kun blev anvendt til bestemmelse af usikkerheden
under simulation. I den stokastiske metode benyttes maksimum likelihood esti-
mation til at finde det optimale parametersat dvs. til at minimere fejlen mellem
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modellens output og observationerne. I GLUE derimod opfattes parametersaet som
stokastiske variable og mange egnede parametersat findes.

I den stokastiske metode formuleres modellen ved hjelp af stokastiske differen-
tialligninger som indeholder to vigtige led, et driftsled og et diffusionsled. Drift-
sledet rummer den fysiske beskrivelse af modellen mens diffusionsledet beskriver
usikkerheden i tilstandsvariablene. Derudover findes et separat usikkerhedsled der
beskriver observationsusikkerheden. Den benyttede stokastiske metode er 1 denne
afhandling ogsa benavnt stokastisk grey-box modellering. For at tage hgjde for til-
standsafthaengig usikkerhed blev et tilstandsafthangigt diffusionsled implementeret
ved hjelp af Lamperti transformation hvilket sikrede positive tilstandsvariable.
Tilsvarende sikrede et flowafth@ngigt observationsled positive flows.

I de simple modeller kunne alle parametre estimeres, men med voksende mod-
elkompleksitet blev det vanskeligere at estimere alle parametrene hvorfor nogle
parametre matte fikseres. De statistiske forudsatninger for de stokastiske modeller
indebarer at residualerne skal svare til en hvid stgjproces. Dette var en rimelig
antagelse for et-trins praediktionen men antagelsen var ikke opfyldt for flertrins-
praediktionen samt ved simulation pga. autokorrelerede residualled. Information-
skriterierne Akaike’s (AIC) og det Bayesianske (BIC) blev benyttet til udvalgelse
af den mest velegnede model til et-trins praediktionen, mens et interval skill score
kriterium blev anvendt til udvalgelse af den mest velegnede model til flertrins
praediktioner samt simulation. Interval skill scoren sammenholder den faktiske
procent af observationerne der falder indenfor et givent konfidensband med den
forventede (reliabiliteten), og tager hgjde for konfidensbandenes bredde. Relia-
biliteten for konfidensbandene viste god overenstemmelse for et-trinsprediktionen
men reliabiliteten faldt med voksende praediktionshorisont og var generelt darligere
1 regnvejr end 1 tgrvejr.

I GLUE metoden bestemmes usikkerheden ved udvelgelse af parameterset indtil
en passende dekning af observationer opnas (f.eks. 90%). Rangordningen af og
valget af egnede parameters&t blev foretaget ved hjelp af et uformelt likelihood
mal, og udtrekning af parametersat skete pa to mader dels via en latin hypercube
Monte Carlo metode, og dels med en Markov Chain Monte Carlo metode.

Det viste sig at den mest optimale simulationsmodel var en model hvor den sam-
lede outputfejl blev minimeret, og hvor det var ngdvendigt at transformere male-
data for at fjerne de heteroskedastiske residualled. Autokorrelationen kunne dog
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ikke fjernes, og kan nappe fjernes i en simulationsmodel, hvorfor det statistiske
grundlag ikke var helt opfyldt. Parametrene var generelt signifikante 1 simula-
tionsmodellerne men enkelte parametre matte fikseres. En sammenligning af skill
scoren for en simulationsmodel og en pradiktionsmodel viste, at en vasentlig
forbedring i preediktionsevne opnas ved lgbende opdatering af modellen.

I GLUE metoden er der ingen krav til residualerne men malet er det samme, nemlig
at opna simulationsintervaller med hgj reliabilitet og smalle usikkerhedsband. I ét
tilfeelde viste det sig vanskeligt at opna 90% dekning af observationerne, pa trods
af brede prior parameterintervaller. Generelt var reliabiliteten meget darligere i
regnvejr end i tgrvejr. Men metoden var malt pa reliabilitet forholdsvist konsistent
mellem kalibrerings- og valideringsperioderne.

De to metoder blev endvidere aftestet pa det samme datagrundlag med hensyn til
reliabilitet, bredde af konfidensband samt skill score, og gav nogenlunde samme
resultat, omend den stokastiske metode alligevel var bedre malt pa skill scoren.
En fordel ved den stokastiske metode er at den kan bruges til at udlede parameter-
vardier.

De statistiske foruds@tninger for den stokastiske metode kunne kun overholdes for
et-trins praediktionen. Under fler-trins pradiktionen og under simulation er der
signifikant autokorrelation. Pa dette grundlag ma det konkluderes at usikkerheden
ikke kun er stokastisk men at den ogsa beror pa utilstreekkelig viden sddan som
tilh&ngerne af den epistemiske anskuelse h&vder. Denne afthandling har bidraget
til udvikling af simple modeller som er velegnet til brug for modelpradiktiv styring
af aflgbssystemer nar usikkerheden indregnes.
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1 Introduction
1.1 Modelling within urban drainage engineering

Models of urban drainage systems serve many important purposes, some of which
are listed below:

* Design of drainage systems.
 Evaluation of an existing drainage systems performance by checking that the

statutory requirements are met.
* Investigating upgrading or redesign proposals.
* Check where flooding of basements and terrain will occur.
* Investigating the consequences of climate change.
* Modelling of pollution discharges.
* For real-time control of pumps, gates, orifices, weirs and waste water treat-

ment plants to optimise the mututal performance.

The models applied for the listed purposes are normally deterministic models as-
suming to model reality perfectly. However due to the presence of various uncer-
tainties these models should not be expected to reflect reality perfectly. In this the-
sis different methods to quantify output uncertainty will be addressed in the case
when data are available for model output comparison, and rainfall-runoff (RR)
modelling will serve as illustrative examples.

1.2 Sources and approaches to uncertainty quantifi-
cation in rainfall-runoff modelling

Although many uncertainty typologies exist each serving a specific purpose, in this

thesis the focus is on uncertainty in model-based decision support, and uncertainty

is recognised as any departure from the ideal of complete determinism, a definition
also adopted by Walker et al. (2005).

It is generally accepted that errors and biases (or uncertainty) in RR modelling
results from the following sources (Refsgaard et al., 2007; Renard et al., 2010;
Peel and Bloschl, 2011):

1. Input uncertainty due to sampling and measurement errors and inadequate
spatio-temporal rainfall variability coverage.

2. Output observation uncertainty, i.e. inaccurate flow/level measurements.



3. Model structural uncertainty due to incomplete understanding and simplified
descriptions of modelled processes as compared to reality.

4. Parameter uncertainty, i.e. uncertainty related to parameter values.

A thorough account of references to each of these sources is given in Peel and
Bloschl (2011). Within RR modelling many different approaches to uncertainty
evaluation exists (Matott et al., 2009) but uncertainty can be broadly classified as
stochastic or epistemic. Stochastic uncertainty refers to the randomness observed
in nature, which is normally irreducible due to the inherent variation of physical
systems. Epistemic uncertainty on the contrary arises from incomplete knowledge
about a physical system (Refsgaard et al., 2007; Fu et al., 2011; Beven et al., 2011).
In this thesis both a stochastic and epistemic approach to uncertainty evaluation
will be adopted and compared.

1.3 Distinguishing simulation and prediction models
with focus on control

In general we should distinguish models suitable for prediction from models suit-
able for simulation. A model tailored for long-term simulations should describe
the important long-term phenomena of the system whereas a model tailored for
prediction or forecasting (referred to also as a real-time- or on-line model) ac-
commodates an updating step thereby benefitting from observations that normally
arrive in immediate continuation of the predictions made. Due to this continuous
updating/correction of the model a simple model structure will often suffice for
predicting the short term (Carstensen et al., 1998; Dorado et al., 2003).

Simulation models are used for all the purposes listed in Section 1.1 while pre-
diction models are relevant only in connection with real-time warning or control
systems for urban drainage systems. Simulation models are often used to test and
compare different control strategies (in a deterministic way) but outputs gener-
ated from simulation models are also normally used for model predictive control.
In both cases the uncertainty of the output plays a significant role. An untapped
model predictive control potential is identified in many sewer systems and gener-
ally considered to be a cheap alternative to traditional storage solutions (Paper I),
but as the model predictions are uncertain, there is a risk that a wrong decision may
be taken on the basis of the model predictions. In general predictive uncertainty
can be defined as the uncertainty that a decision maker has on the future evolution



of a predictand that he uses to trigger a specific decision (Beven, 2009a). The re-
quirement is then to provide predictions at the lead time of interest with minimum
uncertainty, and to quantify this uncertainty.

Suppose we want to switch on some storm water control strategy at the WWTP in
order to increase the hydraulic capacity if the predicted flow exceeds the current
capacity of the WWTP. Assuming it takes 2-3 hours before the plant reaches its
maximum hydraulic capacity, then this is our desired lead time. In sewer systems
with long response time we may find sufficient lead time inside the sewer system
by monitoring the level of a storage basin, pumping station or the flow in a large
intercepting pipe, and use this information to trigger the storm water control. How-
ever, it may also well be that these measurements are insufficient for predicting the
hydraulic load to the WWTP or that such measurements are unavailable in real
time, and a model then will be needed.

If the sewer system does not facilitate sufficient lead time because of a fast system
response time in the catchment (small catchment and/or steep slopes), it becomes
necessary to extend the lead time by the use of model predictions from rain gauge
input, or if this also provides too short lead time, from forecasting the rain in-
put e.g. using radars. But as indicated in Figure 1.1 increasing the lead time by
forecasting the rain input normally also entails that the model predictions become
much more uncertain, and hence the risk that we may make a wrong decision will
increase. Achleitner et al. (2009) used radar forecasts to extend the lead time and
found uncertainty on rain volume increased up to some hundred percent for a lead
time of 3 hours. Depending on the costs of making a wrong decision we would be
more or less willing to increase the lead time and the risk of making a wrong de-
cision. Considering again the WWTP control example two wrong decisions could
be taken: (1) switching to wet weather control without the need occurring or (2)
not switching to wet weather control but with the need occurring. Such a decision
should essentially be subjected to risk analysis. In the first case the costs would be
increased outlet concentrations of nutrients and organic substances (and probably
also increased energy costs) for a prolonged period with associated extra tax ex-
penses. In the second case the WWTP would be unprepared and wastewater would
have to be bypassed without treatment with large impacts for the recipient. There
may also be a model predictive control potential in optimising the utilisation of
internal up-stream storage in the sewer system, and lead time will then be required
for predicting the inlet to the storage tanks or a pumping station (see Figure 1.1)
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Figure 1.1: Uncertainty generally increases with lead time. Redrawn from (Paper I). See text for

details.

which could be obtained from forecasted rain inputs as already discussed.

1.4 Key research aims

Because of the significant role uncertainty plays in model predictive control of
sewer systems this thesis is dedicated to qualifying and quantifying uncertainty in
RR modelling notably in simulating and predicting flows in sewer systems. The

thesis covers the specific aims listed below.

Model development:

* Development of simple RR models for simulation and prediction of flow rates
in sewer systems that are capable of describing the output uncertainty satisfy-

ingly.

The stochastic grey-box approach for prediction:
The chosen stochastic approach is a frequentist approach that is based on stochas-
tic differential equations formulated in state-space (Kristensen et al., 2004a,b) that



uses the maximum likelihood estimation method for parameter estimation. The
system states that contains both a drift term and a diffusion noise term is con-
tinuously updated according to the measurements and the estimation method is
therefore optimised to describe the one-step prediction error well. The model de-
velopment involved the following steps:

* Testing of parameter significance.
* Developing suitable diffusion terms and observation noise terms.

* Checking that the actual residuals conform to the model assumed to define
the likelihood function and suggesting model improvements on the basis of
deviations from the assumptions.

» Using statistical criteria for evaluating model performance and model com-

parison.

* Testing of the model’s suitability to describe the uncertainty when the predic-
tion horizon is expanded beyond the one-step ahead prediction with focus on
confidence bounds, i.e. probabilistic predictions rather than point predictions.

* Testing how the derived confidence bounds perform overall and in dry weather
and wet weather periods, respectively.

* Applying a skill scoring criterion to select the best model among several
model candidates when the prediction horizon is expanded beyond the first
step.

The stochastic approach for simulation:

The simulation model is not continuously updated, because it is intended for long
term investigations or because data are unavailable for real time updating. The
simulation model development involved the following steps:

* Testing of parameter significance.
* Developing suitable observation and diffusion noise terms.

* Checking that the actual residuals conform to the model assumed to define
the likelihood function and suggest model improvements on the basis of devi-
ations from the assumptions.

* Testing the performance of the confidence bounds.



» Applying a skill scoring criterion to select the best model among several sim-
ulation model candidates.

The epistemic approach to simulation:

The chosen epistimic approach is based on the Generalised Likelihood Uncer-
tainty Estimation (GLUE) approach (Beven and Binley, 1992). When applying
this methodology the following items had particular focus:

* Defining a likelihood measure and a criterion for pinpointing the behavioural
parameter sets, aiming to cover a large fraction of the observations.

* Choosing a method for sampling the model space to identify the behavioral
parameter sets.

* Examining the assumption that behavioural parameter sets deduced from a
calibration period enables the derivation of reasonable uncertainty limits in a

validation period by checking of observation coverage.

Comparison of the stochastic and epistemic approach for simulation:
The two approaches to uncertainty evaluation are finally compared and the differ-
ences discussed by:

* Using a skill score criterion for comparison of the two uncertainty approaches
when applied to the same data.

 Considering the underlying assumptions of each method.

1.5 CQutline

This summary report includes nine chapters. Following this introduction, a litter-
ature review is provided in Chapter 2 that presents an overview of the uncertainty
methods commonly applied within RR modelling, some updating techniques are
described and the level of model complexity discussed. Finally the litterature re-
view overviews some of the typical benchmarking tools applied for model compar-
ison. Then the catchment and data that underlie the research is presented in Chap-
ter 3. Chapter 4 gives an introduction to the simplistic modelling concept that was
pursued in all the papers and also reviews the different models applied for either
simulation or prediction in a deterministic setting. Chapter 5 outlines the stochas-
tic approach to uncertainty evaluation and Chapter 6 the epistemic approach. An



overview of the benchmark-indicators used for prediction and uncertainty assess-
ment are provided in Chapter 7 and Chapter 8 presents the results and discusses the
two approaches to uncertainty assessment. Subsequently, the conclusions of this
thesis are drawn in Chapter 9 and some future research perspectives are outlined in
Chapter 10.






2 Literature review

Assuming we are interested in realising a model predictive control potential and
therefore want to quantify the uncertainty associated with some model prediction
how should we approach that? A natural starting point is obviously to consult the
literature on this aspect.

2.1 Approaches to uncertainty evaluation of model
outputs and parameters

As mentioned in Chapter 1 uncertainty can be broadly classified as stochastic or
epistemic. These distinct interpretations of uncertainty are reflected in two major
methodologies used for uncertainty evaluation, on one hand we have the formal
statistical methods, and on the other hand we have the Generalized Likelihood
Uncertainty Estimation (GLUE) methodology (Beven and Binley, 1992; Beven,
2006; Beven et al., 2011). Within the formal statistical inference to uncertainty
evaluation two fundamentally different approaches to the estimation problem are
distinguished, the frequentist (or classical) approach that normally searches for a
single optimal parameter set, and the Bayesian approach that allow probabilities to
be associated with the unknown parameters (Gallagher and Doherty, 2007; Dotto
et al., 2009). Another important difference is that the Bayesian approach requires
a prior distribution of the parameters whereas the frequentist approach does not.

The Bayesian approach typically involves a Markov Chain Monte Carlo (MCMC)
method (Engeland et al., 2005; Yang et al., 2007; Dotto et al., 2011; Schoups
and Vrugt, 2010) with the DiffeRential Evolution Adaptive Metropolis (DREAM)
scheme (Vrugt et al., 2009b,c; Vrugt, 2011) as the current state of the art for es-
timating the posterior parameter distribution. Both approaches apply a likelihood
function that is based on formal statistical assumptions about model residuals and
normally that they correspond to a white noise process (Dotto et al., 2011; Yang
et al., 2008). A comparison between a frequentist approach and a Bayesian ap-
proach based on the Metropolis-Hastings algorithm showed that very similar pa-
rameter uncertainty and confidence bands are found when the residuals are station-
ary and ergodic (Engeland et al., 2005).

The GLUE method rejects the concept of an optimum model and parameter set,
and instead acknowledges the existence of multiple likely models and parameter
sets (in GLUE termed equifinality). In contrast to the stochastic approach GLUE
also reject the use of statistical likelihood functions because they overestimate the



information content in a set of calibration data and increase the possibility of statis-
tical type 1 and type 2 errors (Beven et al., 2011). Instead GLUE allows for the use
of informal likelihoods (or fuzzy measures or likelihood measures) and treats resid-
ual errors implicitly in making predictions. The GLUE methodology has been crit-
icized for being statistically incorrect and for generating prediction limits without
statistical coherence (Mantovan and Todini, 2006; Mantovan et al., 2007; Stedinger
et al., 2008; Vrugt et al., 2009a; Clark et al., 2011). This is due to the subjectivity
in adopting a subjective likelihood measure, and in the choice of using a subjective
threshold value to distinguish "behavioral” from "non-behavioral" parameter sets.
In response hereto advocators of GLUE (Andréassian et al., 2007; Beven et al.,
2007, 2008; Beven, 2009b; Beven et al., 2011) claim that the assumptions required
for formal statistical analysis hardly ever are satisfied within hydrological mod-
elling due to epistemic errors that leads to non-stationary model-residuals that are
unsuitable for statistical likelihood functions.

In most GLUE applications all the uncertainty sources outlined in Chapter 1 are
lumped into the parameters and GLUE will generally give the largest parameter un-
certainty compared with the stochastic approaches. Comparisons of the Bayesian
and the GLUE methodology for uncertainty evaluation of outputs and parameters
(Jin et al., 2010; Li et al., 2010) suggest that the two methods can, given certain
requirements to the cut-off threshold value for choosing the behavioural parame-
ter sets, give more or less the same simulation output uncertainty. It is important
to recognise that a GLUE analysis can equally well be carried out using MCMC
algorithms to speed up the search for behavioural parameter sets (Blasone et al.,
2008; Lindblom et al., 2011; Vezzaro and Mikkelsen, 2012), however in that case
by replacing a formal likelihood with an informal likelihood measure.

Currently research in trying to unravel the individual sources to uncertainty is on-
going and the BATEA (Bayesian total error analyis) method (Kavetski et al., 2006;
Thyer et al., 2007; Renard et al., 2010) is one such stochastic tool. According
to Renard et al. (2010) this can be useful for (1) diagnosing the main causes of
uncertainty, suggesting avenues for improving the predictive precision of RR mod-
els; (2) identifying RR model deficiencies indicating opportunities for model im-
provement; and (3) comparing RR models without obscuring the comparison by
input/output data errors. However, even though the method can be shown to make
statistically reliable inference and meaningfully disaggregate multiple sources of
uncertainty, in practice, if no independent estimates of data uncertainties is avail-
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able, the discrepancy between observed and simulated responses only provides
information about total errors. Attempts to separate uncertainty sources from one
another has also been investigated within GLUE (Liu et al., 2009; Westerberg et al.,
2010; Krueger et al., 2010).

2.2 Data assimilation and model complexity

When using a prediction model for uncertainty quantification there is the need for
correcting (updating) the model in real-time when a new observation is recieved.
According to Refsgaard (1997) there are four variables that can be used either sep-
arately or in combination for updating. These are updating in inputs or parameters,
output error prediction/correction and state updating. The most common of these
are state updating and output error updating, where the error series is modelled
in stochastic terms and this is used to improve the forecasts (Romanowicz et al.,
2008).

A warning concerning the aim with the prediction model is issued in Beven (2009a),
that decisions normally will involve the N-step ahead lead time and not just the
one-step ahead prediction, the residuals of which is commonly minimised during
parameter estimation. In cases when a particular decision relies on the N-step
ahead forecast, it is therefore of upmost importance to check that the derived un-
certainty limits are reliable at those prediction steps and not just the one-step ahead
forecast.

Within RR two main modeling philosophies can be distinguished, namely the
physically-based models (or white-box models), and the data-driven models (or
black-box models) (Todini, 2007). The physically-based models has been crit-
icized for resulting in models that are overly complex, leading to problems of
overparameterisation and equifinality, which may manifest itself in large predic-
tion uncertainty. On the other hand the data-driven approach has been criticised
for beeing too reliant on the training sets.

In the middle of this modelling spectrum a data-driven approach has been advo-
cated, where complexity is added to the model only when it improves the descrip-
tion of the data, without using an a priori defined model structure. The idea is
to arrive at models that are complex enough to explain the data, but not more
complex than necessary, a strategy often referred to as Occam’s razor or the prin-
ciple of parsimony (Schoups et al., 2009; Todini, 2011). Such models are also re-
ferred to as grey-box models (Kristensen et al., 2004a,b) or databased-mechanistic

11
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Figure 2.1: The modelling spectrum. White-box models are physically-based whereas black-box
models utilise statistical methods and tools for estimating the model parameters and assessing the
uncertainties. The two model approaches can be combined into a grey-box model with more or
less white and black colour.

models (Mclntyre et al., 2011), see the diagram in Figure 2.1 that picturise the
modelling spectrum. Spatially distributed modelling is a typical example of the
physically-based model, to construct a model that explicitly accounts for as much
of the physics and the natural heterogeneity as computationally possible. Within
urban drainage modelling we recognise this white-box model type as e.g. MOUSE,
InfoWorks or CANOE that all build on the Saint-Venant equations for hydraulic
calculation, see references to the models in Dotto et al. (2011). Such models
are rarely applied in connection with model predictive control in real-time al-
though currently the possibility of updating internal states are being investigated
(Hansen et al., 2011). The possibility to fuse a white-box model with a black-
box model using output error correction update has been pursued. Vojinovic et al.
(2003) used a combination of a white-box model (MOUSE model) and a black-
box model (a radial basis function neural network (RBFNN) model) as a stochas-
tic error-correction model and obtained significant improvements in model predic-
tions. Bruen and Yang (2006) used a full hydrodynamic model (HYDROWORKS,
now called InfoWorks) together with different black box models (Artificial Neural
Networks (ANNSs) and linear time series models of Box et al. (2008)) to simulate
and predict flow volume and attained significant improvement in overall efficiency.
These output correction methods could equally well be applied using models of
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less complexity with simplified conceptual hydrologic flow routing methods such
as simple linear reservoirs as used in KAREN or Muskingum flow routing as used
in CityDrain (Dotto et al., 2011). Another possibility would be to update the states
of one of these more simple models using state-space filtering methods based on
either the Kalman filter (KF), the extended Kalman filter (EKF) or the ensemble
Kalman filter (EnKF) that updates through states and output errors. The Kalman
filter methods demands assumptions to be made about the nature of the residuals
and typically that they are Gaussian distributed, and various transformations are
therefore normally necessary to facilitate this, i.e. the Normal Quantile Transform
(NQT) or Box-Cox transformations (Beven, 2009a; Coccia et al., 2011).

Todini (2011) mentions the DBM (Data Based Mechanistic Modelling) approach
of (Young and Garnier, 2006; Taylor et al., 2007; Young, 2011) as a tentative at-
tempt to go beyond the black-box concept by selecting among the resulting model
structures those that are considered physically meaningful. Alternatives without
requirements to the residual distribution are the sequential Monte Carlo methods,
also known as particle filters, that apply a Bayesian learning technique, and GLUE
that can also be applied for assessing the uncertainties in real-time forecasting
by recursively updating of the behavioural parameter sets. According to (Beven,
2009a) particle filters do have some limitations, they are computationally very ex-
pensive and exhibit problems with estimating the posterior distribution.

2.3 Benchmarking models and their uncertainty per-
formance

To benchmark models and methods within RR modelling many more or less infor-
mative performance measures have been used. Deterministic model performance
measures include the Nash & Sutcliffe efficiency coefficient (denoted £ or NS)
and the coefficient of determination R? (Dotto et al., 2011), the mean square er-
ror(MSE) (Achleitner et al., 2009) or root mean square error (RMSE). According
to Franz and Hogue (2011) much of the hydrological modeling community is still
performing model evaluation using standard deterministic measures such as those
listed above, and these are deficient for fully analysing model performance and
should be substituted with probabilistic assessment of model performance. Some-
times model performance is supported solely by hydrograph plots of a few events
in which typically 95% or 90% uncertainty limits are plotted together with model
observations (Yang et al., 2007; McMillan and Clark, 2009). When uncertainty
limits or probabilistic forecasts are assessed the width (the sharpness) and the cov-
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erage (reliability) of observations are calculated either for one or more uncertainty
limits (Renard et al., 2010; Hostache et al., 2011), and the deterministic perfor-
mance measures sometimes used to assess the performance of the median (En-
geland et al., 2010). The NS has also been suggested for comparing upper and
lower limits among models (Laloy et al., 2010). In a GLUE study Xiong et al.
(2009) introduce seven indices for characterizing the prediction bounds from dif-
ferent perspectives and suggest that they be employed for assessing and comparing
the uncertainty bounds in a more comprehensive and objective way. These indices
takes the coverage, the width of the bounds and the symmetry of the bounds into
account.

For probabilistic performance evaluation the discrete ranked probability score, that
evaluates the squared difference between the cumulative distribution function of
the forecast and the cumulative distribution function of a perfect forecast at some
predefined thresholds, was applied by Morawietz et al. (2011). The Brier score was
demonstrated by Engeland et al. (2010) as an uncertainty evaluation tool for model
comparison. The Brier score is an attractive measure for quantifying performance
of a probabilistic forecast since it combines the reliability, the resolution and the
marginal distribution of a probabilistic forecast (Gneiting et al., 2007), however
many other probabilistic evaluation methods exists (Gneiting and Raftery, 2007).

Quite commonly prediction limits or forecasting uncertainty are used in a con-
text where they actually refer to simulation uncertainty. As noted by Andréassian
et al. (2007) past misunderstandings on the uncertainty estimation issue would
have been avoided if authors had clearly defined what type of model application
they were discussing. That simulation and prediction models serve two different
purposes was the subject of debate (Beven, 2009b; Vrugt et al., 2009d) following
a paper by (Vrugt et al., 2009a) in which the prediction uncertainty of a formal
statistical (Bayesian) approach was compared to the simulation uncertainty of an
informal (GLUE) approach and used to conclude that the Bayesian approach gave
smaller spread and higher coverage than the GLUE generated bounds. When mak-
ing model- and/or uncertainty comparisons like these we should therefore compare
like with like, that is, simulation models with simulation models and prediction
models with prediction models (Beven, 2009b). To avoid misunderstandings the
term "simulation uncertainty" will therefore be used when referring to uncertainty
limits or confidence bounds generated by a simulation model and "prediction un-
certainty" when generated from a prediction model.
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3 Case study
3.1 Catchment

The catchment is located in the western part of greater Copenhagen in Ballerup
Municipality, see Figure 3.1. The drainage system consists of both combined and
separated sewer pipes, however most of the catchment is separated. Some catch-
ment characteristics are given in Table 3.1. The drainage system facilitates a few
detention basins and some pumping stations as indicated on Figure 3.1. When the
system capacity is exceeded combined sewage overflows from the sewer system.
A significant amount of infiltration inflow is occasionally entering the sewer sys-
tem, and a flow meter has been installed downstream the catchment as indicated
on Figure 3.1 to trace this infiltration contribution.

----- Catchment border

P316 Rain gauge
. Flow meter
..... Separated catchment

Combined catchment

Pumping station
Storage basin

Sewer pipes

1 eol[]c@

Surface water

'
- ot ) “ @
‘ P321

— .
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Figure 3.1: The Ballerup catchment area.

STLLLTTTr 4

The three nearest rain gauges from the national Danish tipping bucket network
(Jorgensen et al., 1998) are P39, P316 and Psgg, see Figure 3.1. All rain gauges are
located outside the studied catchment.

3.2 Data

Flow data with a time resolution of 5 minutes was retrieved from two different
flow meters. The flow data used in Papers II, III & IV were retrieved from a
semi-mobile ultrasonic Doppler type which was considered to be less reliable for
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Table 3.1: Catchment characteristics (Tomicic, 2006).

Total area Imp.area
Ballerup

Municipality [km?] [%] [km?] [%]

Combined 0.92 7 033 77
Separated 12.27 93 0.10 23

Total 13.20 100 0.43 100

measuring high flow rates. It was therefore replaced in 2010 with an Isco 2150
area-velocity type flow module that is considered more reliable especially during
heavy rainfalls. Flow data from this flow meter was applied in Papers V & VI. All
the flow data was retrieved from Avedgre Spildevandscenter.

In the Papers II, III & IV rain data from P;y; and P34 were used whereas rain
data from Pso9 replaced those from Pj,; in Papers V & VI, due to a longer outage
period of Ps5;. The tipping bucket rain gauges have a resolution of 0.2 mm and
rain data was retrieved from Danish Meteorological Institute (DMI).

Monthly evaporation data from 2007 was received from DHI, and applied in Pa-
pers V & VL

The calibration period of Papers II, III & IV covered the period April-October
2007 whereas the validation period of Paper II encompassed April-October 2008
& 2009. In papers Papers III & IV the calibration period was also the validation
period. In Papers V & VI the calibration and validation period was also identical
covering June-September, 2010.

For application of the data in the models which run in 15-minute time steps the
evaporation data was linearly interpolated between the months, rain data was summed
in 15 minute windows, and every third flow measurement was used.

For discussion of the model results in Papers II & IV it was considered benefi-
cial to distinguish dry from wet weather periods using an observed flow threshold
of 540 m?/h. In Paper V a flow threshold of 450 m?/h separated dry from wet
weather periods.

In all the models rain data from the two rain gauges are used for input and large

spatial rainfall heterogeneity is clearly present. Figure 3.2 illustrates this by show-
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ing the recorded rain event volume on a shifted log-scale from the two rain gauges
P36 and P3p;. The rain events were distinguished from one another by one hour

dry periods.
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Figure 3.2: Rain events recorded at rain gauge P31 and Ps2; on a shifted log scale [log(1 +
acc.mm,)], April-October, 2007-2009.

An example of the classification of flows into wet and dry weather periods are pro-
vided in Figure 3.3 and the slow infiltration inflow to the sewer system is recog-
nised in the enhanced recession part of the hydrograph (08/24-09/04) shown in
Figure 3.4.
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Figure 3.3: Illustration of the two flow subclasses dry and wet weather periods. The diurnal
wastewater flow variation is clearly recognised. Flow data from 2010.
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Figure 3.4: Infiltration inflow is recognised in the enhanced recession curve of the hydrograph.
Flow data from 2010.

18



4  Simplistic deterministic sewer flow
modelling

Since the aim with the modelling approach is to derive simple parsimonious mod-
els with identifiable parameters and ability to describe the output uncertainty well,
a simple modelling approach was chosen and hence the stochastic grey-box mod-
elling principle is adopted. However in this Chapter the models are described deter-
ministically, and in the following two chapters 5 and 6 the two distinct approaches
to uncertainty evaluation will be outlined.

4.1 Lumped conceptual modelling of sewer flow

For modelling the rainfall-runoff response the simple principle of flow routing of
the Nash cascade is chosen which models flows in subcatchments by conceptually
routing water through a series of reservoirs thereby achieving attenuation of the
water wave in a simplistic manner compared to the dynamic wave of the Full Saint
Venant equations or the kinematic/diffusive wave approximations (Schiitze et al.,
2002). This allows for rapid simulation but has the drawback that backwater effects
cannot be directly simulated. Figure 4.1 shows the concept of the Nash cascade and
illustrate how the outlet hydrograph change with the number of reservoirs in the
cascade. From Figure 4.1 it appears that at least two reservoirs are necessary to
mimic a typical rainfall-runoff hydrograph such as those presented in Figure 3.3
(left) and Figure 3.4. As the cascade is expanded with more reservoirs the time to
peak flow is prolonged. The storage S(t) [m®] in each reservoir can be described

by the storage equation

S(t) = kQ(t), 4.1)
where Q(t) [m?/h] is the outflow and k [h] is a storage constant. The continuity
equation of the storage is given by

PO~ 10 - e, “2)
where I(t) [m3/h] is the inflow and ¢ is time. Assuming all reservoirs to have
identical capacity, the time to flow peak is given by ¢, = (N — 1)k and the time to
half of the input volume has passed the reservoirs is given by K = Nk .

The system of linear reservoirs can be written on a state space form, where the nth
state, S, forn =2,..., N, is given by
dsS,(t) 1 1

dt = Esn—l(t) - Esn(t)v (43)
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Figure 4.1: A cascade of IV linear reservoirs and the corresponding hydrographs shown to the
right. Figure from Thordarson (2012).

and 4.3 can then be generalised to describe the storage in NV linear reservoirs

Sa(t) -5 0 0 Si(t) 1

d | S0t r Sa(t) 0

= B I ] ). (4.4)
Sn(t) 0 S R ENO 0

The wastewater flow variation D, was described by a harmonic function reflecting

the diurnal pattern of water discharge from households
2

27t 27t
D, = Zl (si sin ZTW + ¢; cos ZTW) , 4.5)

where L is the period of 24 hours, the parameters si, ¢1, s and ¢, are non-physical
parameters and ¢ is time. To fully account for the wastewater flow a constant aver-
age flow ag [m3/h] is added to D;.

4.2 Overview of simplistic models applied

In all models the wastewater flow was described by (4.5). Statistical tests showed
that two sinus and cosinus constants were optimal.

Conceptual model applied in Paper 11
In Paper II a model suitable for simulation was developed and hence both fast
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and slow runoff components were considered. The conceptual model (Figure 4.2)
consists of two linear reservoirs for modelling the fast runoff (S, Sy2) from paved
areas and three linear reservoirs (S, Ss2, Ss3) for modelling the slow infiltration in-
flow from permeable areas. Comparing the observed hydrographs of Figure 3.4 and

Precipitation Pag Pazs

v

[ (o [ a | «——— Ballerupimpervious area

A A,
Fast runoff Slow runoff

“mTea

Wastewater

Flow gauge

Figure 4.2: Graphical representation of the conceptual model used in paper Paper II.

Figure 3.3 (left) with the hydrographs in Figure 4.1 it appears that two reservoirs
are sufficient for modelling the fast response because the observed hydrographs has
a rather steep rising limb. The slow infiltration inflow is expected to have a more
slow rising limb and a system of three reservoirs were therefore assumed adequate.
Hence the model can be written on a state space form accordingly with (4.4):

Rainfall-runoff from paved areas

IS A Paiss + (1 — a)ArPagy s + ag — =S
d | F47316,t ( ) F4321t 07 K PfLE dt. (4.6)

St KlfoLt - %SfQ,t

where A [ha] is the impervious fast runoff area, K [h] is the retention time of the
fast runoff, o [—] is a rain gauge weighting coefficient, and Ps;5 & Ps; are the rain
gauge inputs [m/h].
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Slow infiltration inflow from permeable areas

St aAsPsier + (1 — a)AsPaor s — K%Ssl,t
d Ss2,t = Klsssl,t - KLSSsZ,t dtu (47)
Ss3,t %832,15 - KLSSS?),t

where A, [ha] 1s the permeable area associated with the infiltration inflow and K,
[h] is the slow infiltration retention time constant.

Observation equation

2 3
Y, = ESth + ZSSB,t + Dy, (4.8)

where Y; [m?/h] is the modelled flow that is a sum of the outflow from the fast and
slow runoff components and the wastewater flow.

Conceptual model applied in papers III & IV
In papers III & IV simplified prediction models were developed with a determin-
istic state space part equivalent to (4.6) (see Figure 4.3a), and thus a reduced ob-

servation equation was needed

Observation equation

2
Y, = ?fsflt + Dy, 4.9)

Conceptual model applied in paper V

In paper V a simulation model was developed (Figure 4.3e). The model has both
a fast and slow runoff component, however the slow infiltration description differ
from the description used in Paper II by facilitating a storage Sg [m?®] that mimics
the degree of saturation of the infiltration surface. The basin is emptied by evap-
oration £ [m/h| and the inflow to the sewer system is controlled by the degree of
saturation (the filling degree of Sg) using an exponential relationship. The model
is also equipped with a detention basin S, [m?®] and a pumping station for emptying
the detention basin. In case of heavy rainfall overflow will take place from Sy; to
Sq 1f the maximum capacity of Sy is exceeded, 1.e. if Sy; > Sfime.. Likewise
if the maximum capacity of S, is exceeded, i.e. if Sy > Syma. Sewage overflow
will take place. The detention basin is emptied by a pump with constant pumping
rate (),, however to mimic the slow startup and slowdown of the pumping rate the
pumped water is directed through three linear reservoirs (Sp1, Sy2, Sp3). The state

space formulation then becomes:
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Figure 4.3: Conceptual representation of the models used in paper Papers III -VI. P, and P
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are the rain gauge inputs from either P32 & Ps16 or P3p9 & Ps316.

Rainfall-runoff from paved areas

S Cri(aAfPsgs + (1 — a)ApPsgy s +ag) — =S
d flt _ l,t(a f4316,t ( O[) f4321,t CLO) Ky fLt dt, (410)

Sf27t Klfsfl,t - KlfoZt
Where C is a Kronecker delta function that governs the inlet to Sy, such that if
the condition Sy; < Sf1ma. holds, C7 = 1 and sewage is directed to Sy, and if the
opposite condition holds S; > Sfi e then C; = 0 and sewage is directed to Sy
instead.

Slow infiltration inflow from permeable areas

Skt exp ( ) (OéA Paigr + (1 — a)AsPaa t) — O ASE,

d Ss1t _ (1 — €xXp ( )) (OCA Paigr + (1 — a)AsPaa t) - K%Ssu dt
Sea ZSas — =S ’
Sea 2 S0 — S

(4.11)
where ¢ [m] is a saturation constant and C, is another Kronecker delta function
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that secures a positive volume in Si by assuming the value 1 when the condition
SE > Spmin 18 satisfied and zero when the opposite holds.

Detention basin and pumping station

Sa. (1 — Cu) (AfP316,t + (1 —a)ArPso + ao) — C3,C4,1Qpt — Qof
J S| _ C34CatQpt — K%Spl,t "
Spa,t K%Spu - %szt ’
Sp3,t | K%szt - %Sp&t ]
4.12)

Sd,t _Sd,max)

(
where Q,r: = Csy n
maximum volume of the detention basin S;,,.. 1S exceeded, and Cj 1s zero when

is the overflow from the detention basin when the

the condition Sy < Sy mas 18 true, otherwise one. The initiation of the pump require
C5 and C to take the value one. Cj5 is one if S; > Sy, min otherwise zero, where
Sa, min 1s the minimum volume of the detention basin. C, is one when Sy <
vSf1,maz Otherwise zero which secures that the pump is activated after the rain has
passed.

Observation equation

2 3 3
= Esﬂ,t + —Ss3t + —Sp3s + Dy, (4.13)

Y,
! K, K,

The observation equation is extended with the outlet from the pumping station.

Conceptual models applied in paper VI
In paper VI all the models of Figure 4.3 a-e) with various physical content incor-
porated (from Figure 4.3 a-e) were used for prediction.

The state space formulation of the model in Figure 4.3a is equivalent to (4.6) and
the observation equation to (4.9). The only extension of the model shown in Figure
4.3b compared to Figure 4.3a is the overflow possibility in Sy, and this implemen-
tation changes the state space formulation to (4.10).

In Figure 4.3¢ the model is further extended with a detention basin and a pumping
station and the overflow is now directed to the detention basin and the observation

equation becomes:

Observation equation

2 3
Y, = Esﬁ,t + F‘Sp&t + Dy. 4.14)

p
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In Figure 4.3d the model is equipped with the infiltration inflow description de-
scribed for paper V and formulated in (4.11) and once again the fast runoff is
given by (4.10) and the observation equation by (4.8). The last model shown in
Figure 4.3e is already outlined (used in paper V).
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5 The stochastic approach to uncertainty
evaluation

The stochastic approach that was chosen for this thesis is a frequentist approach
that is based on an Extended Kalman Filter (EKF) and a maximum likelihood
function for parameter estimation. The models are formulated in state-space and
uncertainty is accounted for in the states and in the output. How this works is
explained in the following.

5.1 Stochastic grey box models

The deterministic models introduced in Chapter 4 can be formulated using a gen-

eral notation

dXt — f(Xt,Ut,t,G)dt (51)
Y, = g(Xy, Ui, 11, 0), (5.2)

where (5.1) is the system equation, describing the evolution of the states in contin-
uous time and the function f(-) € R" corresponds to the deterministic state space
formulations of the simple models introduced in Chapter 4, and (5.2) is the obser-
vation equation that relates the observations to the states in discrete time by the
function g(-) € R! consistent with the observation equations introduced in Chapter
4. The time ¢t € R, indicates the continuous time and & (k = 1,..., K) are the
discretely observed sampling instants for K number of measurements. Y € R'is a
vector of output variables, X € R" a vector of state variables, 8 € R” contains the
unknown parameters of the system and U, € R™ is a vector of input variables.

To address uncertainties in the system the model consisting of (5.1) and (5.2) is
extended with a diffusion term and an observation noise term as follows

dXt = f(XtaUt7t70) dt+a<Xt7Ut7t70) dwt (53)
N—_—— — N—_—— ——
drift term diffusion term
Y, = g( Xy, Uy, 14, 0) + e (5.4)
~—

obs. noise term

where (5.3) again is the system equation and (5.4) the observation equation. f(-)
is denoted the drift term and o(-) € R™*" is denoted the diffusion noise term or
the process noise function which represents the uncertainty of the states in the
system, and w; is an n-dimensional standard Wiener process, which simply means
that the errors between the predicted states and the indirectly observed states are
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assumed to be Gaussian distributed. The measurement error e;, is assumed to be
an [-dimensional white noise process with e, € N (0, S(Uy,1,0)). The system
formulation of (5.3) and (5.4) is sometimes referred to as a stochastic grey box
model due to the coupling of system knowledge (from white box models) and
information from data (black box models) that are jointly utilised for estimation
of the parameters.

5.2 Maximum likelihood parameter estimation

To estimate the parameters given N number of measurements [yo, Y1, - .., Yk, - - -, YN]»
and by introducing the notation Yy = [yx, Yx—1,- - -, Y1, Yo, the likelihood function
is expressed as a product of conditional densities

L(6;Yn) =P (¥x|0) = <HP<yk|yk1,e>> P (y]6). (5.5)

where Bayes theorem P(A N B) = P(A|B)P(B) is repeatedly used at each time
step to formulate the likelihood function as a product of the one step ahead condi-
tional densities and where P (y,|@) is a parameterisation of the starting conditions.
It is assumed that the system equations are driven by a Wiener process which have
Gaussian increments and thus the conditional probabilities in (5.5) can be approx-
imated by Gaussian densities.

The Gaussian density is completely characterised by its mean and covariance of the
one step prediction, which are denoted by grp—1 = E{yi|YVi-1,0} and Ry, =
V{yk|Yr-1, 0}, respectively, and, by introducing an expression for the innovation
formula, €, = y. — Yir—1 the likelihood function can be rewritten as (Madsen,
2008)

N 1 _ T p-1
exp( ZskRk‘kflsk

H Vet (Ryr) (vV2m)

where the conditional mean and covariance are calculated using an EKF. The con-

L(0; V) = P(y0]6). (5.6)

ditional likelihood function (5.6) minimises the one step prediction uncertainty and
hence the estimation is optimised for making predictions. In the simulation case
there i1s no new information for conditioning as this information is not available
during simulation. For a given set of calibration data this changes the likelihood
function to minimise the output error for the whole considered period

L(6;Yn)= ﬁexp lz %(yk - Qk)ﬂ : (5.7
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The parameter estimates can be obtained by conditioning on the initial values and
solving the optimisation problem

6 = arg max{log (L(8; Y n|y0))}- (5.8)
0c®

Numerical methods are needed to optimise the likelihood function (Kristensen and
Madsen, 2003).

The maximum likelihood method also provides an assessment of the uncertainty
for the parameter estimates in (5.8) since the maximum likelihood estimator is
asymptotically normal distributed with mean 6 and covariance matrix

So=H

The matrix H is the Fisher Information Matrix (Madsen and Thyregod, 2011)
given by

0? o

In practice an approximation for H is obtained by the observed Hessian h;; evalu-
ated for # = 6. Due to the asymptotic Gaussianity of the estimator in (5.8), a t-test

can be performed to check if the estimated parameters are statistically significant
(Madsen and Thyregod, 2011).

To solve the estimation problem the open source software CTSM! is used (Kris-
tensen and Madsen, 2003; Kristensen et al., 2004a,b). The program was developed
at the department of Informatics and Mathematical Modelling (IMM) at the Tech-
nical University of Denmark (DTU). CTSM is capable of estimating parameters in
both linear and non-linear models using respectively an ordinary Kalman filter for

linear models and an extended kalman filter for non-linear models.

5.3 Seeking an appropriate diffusion term

As can be seen from (5.3) the diffusion term can be a function of the states, the
inputs, the time, and the parameters. One may readily expect the uncertainty of
the states to be somehow related to the rain input and more or less constant in dry
weather periods suggesting the following diffusion term to apply

0'() - Jdry + Uwet(Pl,t + PQ,t) ) (510)

where o4, represents the dry weather state uncertainty and o, represents the
added rain proportional uncertainty in rainy periods. The rain dependent diffusion

!Continuous-Time Stochastic Modelling - www.imm.dtu.dk/ctsm
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term was tested in combination with the drift term of (4.6) but was however found
unsuitable for two reasons. Firstly because of the time delay between a rainfall is
recorded to a state impact is observed (this time delay would be different for every
reservoir), and secondly because rapidly changing precipitation is frequently ob-
served during rain, especially during convective rainfall events, whereas the states
would exhibit much more damped changes due to the equalisation of the runoff
from a large catchment. To overcome these problems different time lags and mean
precipitation values were tested in CTSM (the mean precipitation of the last half
hour, three quarters, 1 hour) and also various low pass filters of the rain data using
the following threshold function

Pm(l.’['
1+ eap(by — bi(Py + o))’

where P, is the low pass filtered rain input, P,,,, the maximum rain input and by

Py

(5.11)

and b; are threshold parameters. However, none of these proposals turned out en-
tirely satisfying for describing the one step state prediction uncertainty, either it
was impossible to estimate the parameters or the residuals of the one-step predic-
tion did not assume a white noise process.

Instead in Paper III different state-dependent diffusion terms were tested in com-
bination with (4.6) using a state exponentiated diffusion term

o) = [aiXZ;] , (5.12)

where o] represents the standard deviation of the one step state uncertainty that is
scaled with the reservoir volume X;. A state proportional uncertainty (y;=1) was
shown to best and adequately describe the one step prediction uncertainty. The
advantage of using a state-dependent diffusion term is not just related to a better
connection between rain input and state uncertainty, that is implicitly accounted
for by a state dependent diffusion term, but furthermore due to the natural physical
restrictions of the system. The state variables in the models correspond to the
stored volume of water in the reservoirs and obviously these have a lower limit of
zero since the water volume cannot turn negative. This lower restriction implies
that the diffusion of the states must approach zero as the water volume in the drift
term approaches this lower boundary of zero and the state proportional diffusion
term ensures this. The state proportional diffusion term was also applied in Paper
V in combination with the drift term of the states Sy, in (4.10), Ss3 in (4.11), and
Sps 1n (4.12). In Paper VI different models was tested and the state proportional
diffusion term was added to various drift terms (see Paper VI for details).

30



Similarly to the lower restriction of the reservoirs an upper restriction can also be
argued in heavy rain storms where the sewer system reaches its maximum con-
veyance capacity or in connection with a storage basin that reaches its maximum
volume. One way to deal with such upper constraints of the system is to use a
logistic state dependency, which was applied in Papers V & VI. This state logistic

diffusion term can be written
o () = [0 X, (Kiaars — X)) (5.13)

where X ... 1s the upper restriction and « is a shaping factor to control the state
uncertainty around the upper restriction. Figure 5.1 shows how the two different
state dependent diffusion terms impacts the total uncertainty of the state as the
water volume in the reservoir increases for different o; values (here shown for a

fast rainfall-runoff reservoir Sy).
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Figure 5.1: Proportional and logistic state dependency (Arc-shaped). In (a) x = 1.2 and in (b)
o1 = 4e~°. Figure from Paper V.

It is clearly demonstrated that a logistic diffusion term leads to a decreasing state
uncertainty as the water filled volume approaches the maximum capacity of the
reservoir (in Figure 5.1a at 10,000 m?). It is also shown that the shape of the logis-
tic state dependency depends on o,. Conversely the state proportional uncertainty
is unrestricted and keeps rising with the filling of S;; which is more appropriate in
cases where there is no upper constraint such as for the slow infiltration reservoirs
in Paper V. In Figure 5.1b it is shown how the shaping also depends on the value
of . The logistic diffusion term (5.13) was applied to the fast runoff state S;; and
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added to the drift term of (4.10) in Paper V and Paper VI to constrain the flow
during heavy rainfall where the maximum conveyance capacity is reached.

In general it is not possible to implement state dependent diffusion terms in CTSM
directly because they require higher order filtering techniques that have been shown
to become numerically unstable (Vestergaard, 1998). But if a transformation is
available for the SDE that has a state dependent diffusion term, such that the diffu-
sion term of the transformed process becomes independent of the state, the filtering
techniques in CTSM can be applied to obtain efficient and numerically stable pa-
rameter estimates (Baadsgaard et al., 1997). A detailed account of how to apply
the Lamperti transformation to obtain a state independent diffusion term is given
in paper Paper III and will not be repeated here.

5.4 Seeking an appropriate observation noise term
As mentioned in Chapter 2, within RR modelling a transformation of the obser-
vations ¥())) is often required to stabilise the variance and obtain a Gaussian dis-
tribution of the residuals. In CTSM the observation noise is additive but can be
a function of the input, time or parameters, however not a function of the out-
put g(-) in (5.4) which is often desirable. A transformation of the observations to
Zy = [z, 2k_1, - - -, 21, 20) Will change the observation equation to

Z), =V () + &, (5.14)

where ¢, € N(0,S,) is then assumed to be a Gaussian white noise process with
variance S,. An output proportional observation noise term was applied in the
prediction models of Papers III-VI requiring a log-transformation of the observa-
tions. This changed the observation equation accordingly

2, = log (zjk) + €. (5.15)

The output proportional observation noise term is argued based on the assump-
tion that flow meters typically become less accurate with increasing flow size.
The effect of a log-transformation is visualised in Figure 5.2 with 1000 random
numbers from the flow interval 0-3000 m?/h. The desired flow proportional ob-
servation noise is demonstrated in Figure 5.2a+b using an output proportional ob-
servation noise with v/S = 0.1 as an example, whereas Figure 5.2¢+d shows the
log-transformed Z domain in which /S, = 0.1 is constant, which shows that the
proportionality can be estimated in CTSM. Hence when /S, has been estimated
in CTSM, taking the inverse ¥~!(Z) = exp(Z) to return to the ) domain, it is seen
that the standard deviance increases proportionally with the output.

32



4000 . 300
a) , b)
o
3000 L i —
= BN =< 200
~ RIS
"E 2000 5. -
§f & 100
n
T 1000 @
0 0
0 1000 2000 3000 0 1000 2000 3000
g [m/h] g [m/h]
10 0.2
c) d)
8 0.15
. 6
: % o
@« 4
r
5 0.05
0 0
0 1000 2000 3000 2 4 6 8
g [mm/h] z

Figure 5.2: Y and Z domain using a log-transformation of the observations. Illustrated with
1000 randomly generated flow values of § in the interval 0-3000 m3/h. (a) A flow proportional
noise term of v/S = 0.1 is added to ¢ and the result is an increasing uncertainty with the flow
magnitude. (b) Illustrates the proportionally increasing standard deviance of the observation noise
with the flow magnitude. (c) The Z domain after log-transformation of the values in (a). (d) A
constant standard deviance /S, = 0.1 is observed in the Z domain.

In Paper V a different observation transformation was applied that was derived
from a residual analysis of a simulation model with additive constant observation
noise and from considering the constraints of the system. Again the aim with the
transformation was to stabilise the variance and obtain homoscedasticity. A logistic
observation transformation function of the following form was considered

2, = log <—yk - ymi”) + €,
Ymaz — Yk

(5.16)

where y,,:, and y,,,., represented respectively a lower and upper flow boundary that
was chosen by inspection of the flow data. The idea is to reduce the noise as the
flow approaches these lower and upper boundaries. The effect of this observation
noise term is illustrated in Figure 5.3 with 1000 randomly generated numbers from
the flow range 30-3000 m?/h. In Figure 5.3a+b we observe that the uncertainty is
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Figure 5.3: Illustration of how an arc-shaped observation noise term can be estimated using
a logistic observation transformation that leads to a constant observation noise term in the Z
domain. Ilustrated with 1000 randomly generated flow values in the interval 30-3000 m?/h. (a)
Shows how the uncertainty is small around lower (30 m?3/h) and upper (3000 m?/h) boundaries
and is largest in between. (b) Shows the arc-shaped development of the observation noise term as
a function of flow magnitude. (c) In the transformed Z domain the uncertainty is constant. (d)
The observation noise term in the Z domain is constant (with v/S, = 0.3). Modified figure from
Paper V.

small at the upper and lower boundaries and the noise increases with the flow rate
until the middle of the flow range (around 1500 m?3/h) and then starts to decrease
again. The resulting standard deviance is arc-shaped. When applying the trans-
formation in (5.16) a constant standard deviance of /S, = 0.3 (Figure 5.3c+d)
is obtained meaning that the arc-shaped noise term can now be determined using
CTSM. Having estimated /S, the inverse can be taken

ek Ymax Ymin
pu— . 17
Yk ( 1 oh ) ) (5 )

and the observation noise in the )V domain calculated.
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5.5 The transformed grey box model with transformed
observations

The transformed grey box model with a transformed observation equation can now
be written
dX, = f(X,, uy, t,0)dt + & (uy, t,0)dw, (5.18)

Zy =V (§( Xy, wr, 11, 0)) + €, (5.19)

where the functions f(-), o(-) and g(-) in Eq’s. (5.3) and (5.4) have been reformu-
lated, respectively to f(-), &(-) and g(-) in relation to the Lamperti transformation
of the state space and it is noticed that X has been removed from & (-). Further-
more X have been transformed to X and the observations to Z. It should be
emphasised that the parameters of the drift term and the diffusion term are unaf-
fected by the Lamperti transformation, and hence the parameter estimates can be
directly inserted into the original system equation (5.3). In the Papers III-VI a
system consisting of (5.18) and (5.19) was applied.

5.6 Generating predictions and uncertainty limits us-
ing stochastic grey box models

With the given sequence of input up to time k + 1 as Uy; = [Upy1,--- ,Ug]" and
the output sequence up to time k as Y, = [Y;, ..., Yy, the optimal prediction in a
least square sense is equal to the conditional mean (see proof by Madsen, 2008). If
we disregard transformations for now the one step ahead prediction YHW{ can be
written

Vit = E{ Vi1 Ve Upi1 }
=9 (Vis1, Unt1,te41,0)

The one step predictions are generated from the conditional expectation of the
future states
X1k = B[ Xyt | Xpe: Uns ] (5.20)

where X K|k 18 the filtered reconstructed state of the EKF (Kristensen and Madsen,
2003) at time k , given all measurements up to k£ providing a mean and a variance
for the normally distributed state (Madsen, 2008).

It is important to recognise that the normal assumption for the model output is valid
only for the one step ahead prediction and if more than the one step (h > 1) ahead

predictions are considered, the k + h probabilistic forecasts can be generated using
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a numerical approach (the Euler scheme) for simulating the SDEs of the system
equation (5.3) (Kloeden and Platen, 1999)
h/A
Xk =Xk + (Z F (Xt -vam: Urtia, 0) )A
i=1
ha (5.21)

+ Z Xk;+ (i-1)alks Uksin, 0) AW G-1a

where A is the time step for the Euler approximation (assumed small), and AW}, is
a randomly generated increment of the Wiener process {WW}, i.e. AWy, = Wy a —
Wy. In Papers IV, V & VI the Euler scheme was applied with A = 1 minute
which means that 15 euler steps were taken per prediction step in the models.

With an increasing prediction horizon (h > 1) the variance of the stochastic term
kak increases and the accuracy of a single point prediction, generated from
(5.21), is reduced. To obtain a predictive distribution of the & step ahead prediction
a high number of state simulations are needed for each A step and 1000 was con-
sidered an adequate number in the papers mentioned above. Thus at all the A’s the
required 1000 simulations are run with (5.21). At the desired prediction step k£ + h
the 1000 predicted states are inserted in the observation equation (5.19) to obtain
1000 predicted output values Zk+h| k-

A predictive empirical distribution can be profiled by sorting the 1000 predicted
outputs from the highest (rank 1) to the lowest (rank 1000) value. For example to
obtain the 90% bounds the lower bound is found at rank 950 and the upper at rank
50 and the median is found at rank 500. Following this example all the desired
quantiles can be estimated.

For a simulation model without diffusion terms the uncertainty bounds are simply
derived from the assumed normally distributed observation noise term (5.4).
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6 The epistemic approach to uncertainty
evaluation

The generalised likelihood estimation (GLUE) methodology is considered an epis-
temic method to uncertainty evaluation (Beven et al., 2011) and is described in this
Chapter.

6.1 Introducing stochastic parameters

In the GLUE methodology the deterministic model formulation is once again con-
sidered

dXt = f(Xta Ut7t7€|)dt (61)

stoch.var.
Y = g( Xy, U, 1, 8), (6.2)
stoch.var.
and stochasticity is introduced by interpreting the parameters as stochastic vari-
ables. By doing so the need for stochastic model terms such as the diffusion and
observation noise terms in the grey box model is unnecessary and model errors
are instead implicitly accounted for by uncertainty in the parameters. This is in
contrast to the interpretation of the stochastic approach outlined in Chapter 5 in
which the parameters have constant but uncertain values. GLUE acknowledges the
existence of many (almost) equally well performing parameter sets, a phenomenon
referred to as equifinality by GLUE users (Beven, 2006).

6.2 The pseudo-Bayesian approach

In GLUE, a prior likelihood of each parameter set ©, is specified L, (9;), typically
a non-informative uniform prior is chosen, and a likelihood measure L (©,|Y) is
selected such that a posterior likelihood L, (®;|Y) can be found from Bayes equa-
tion

I, (@) = 12O

where C'is a scaling constant to ensure that the cumulative of all the parameter sets
is unity (Beven and Binley, 1992; Beven and Freer, 2001; Beven, 2012).

(6.3)

Most often an informal likelihood measure is applied, and many different variants
have been suggested (Freer et al., 1996; Beven and Freer, 2001; Thorndahl et al.,
2008; Frenti et al., 2009a). Having chosen a likelihood measure for parameter set
evaluation a choice regarding which parameters to retain for predictive analysis
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needs to be taken before the posterior parameter distribution can be summarised.
Because of these subjective choices the term pseudo-Bayesian was used by Man-
tovan and Todini (2006); Freni et al. (2009b).

6.3 Choosing a likelihood measure and the behav-
loral parameter sets
In Paper II two different likelihood measures was chosen; one for dry weather pe-

riods L4, and one for wet weather periods L., and the periods were differentiated
by a flow threshold of 0.15 m3/s

Law=1- 2, 02>02 & Yie (Y <015m?/s) (6.4)
O-O
Lyw = eiH(Z?), Y, € (y > 0.15m3/s) , (6.5)

where o2 is the residual error variance, o2 is the observation variance, ; denotes
the dry weather observations, Y- denotes the wet weather observations and H is
a shaping factor that was fixed to 1. A combined likelihood measure inspired by
Choi and Beven (2007) was then calculated by multiplication of the dry and wet
weather likelihoods

L (6|Y) = w1 Lawws L, (6.6)

where w; and w, are weighting coefficients both set to 1, hence the model per-
formance in dry and wet weather periods is equally weighted even though the dry
weather period amounts 80% of the whole period considered. The more positive
the likelihood values are, the better. Parameter sets returning negative likelihood
values are not included because in that case the observed mean would be a better
predictor than the model.

In a comparative study for describing the flow simulation uncertainty in Section
8.3, the GLUE method is compared with the grey box approach. In this study
the Nash-Sutcliffe model efficiency coefficient (NS) is used as likelihood measure
which is defined in (6.4), however in this case without subdividing flow data into
dry and wet weather periods. This was chosen because the scope was to compare a
traditional GLUE uncertainty analysis normally based on NSE with the stochastic
approach.

The choice of which parameter sets to accept and which to reject is completely sub-
jective but commonly GLUE users resort to a "statistical" approach in this choice
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and demands that the GLUE generated simulation limits encompass a consistent
proportion of the observations (Lindblom et al., 2011; Vezzaro and Mikkelsen,
2012). This approach was adopted in both GLUE studies (Paper II and the com-
parative study to be reported in Section 8.3). In Paper II we aimed at covering
90% of the observations by the 90% uncertainty bounds and in the comparative
study this was extended to include ten "quantiles" , see Chapter 7.

6.4 Searching the parameter space

Before the parameter space can be searched an appropriate distribution and pa-
rameter range for each parameter needs to be specified. In Paper II a uniform
distribution was used for all parameters but a reasonable prior range for each pa-
rameter was not easily decided and a broad range was therefore initially selected.
In general two methods for searching the parameter space are applied, either a plain
Monte Carlo method and its more efficient counterpart Latin Hypercube Sampling
(LHS) that both search randomly (Thorndahl et al., 2008; Freni et al., 2009b; Jin
et al., 2010; Li et al., 2010), or a Markov Chain Monte Carlo method (MCMC)
(Blasone et al., 2008; McMillan and Clark, 2009; Lindblom et al., 2011; Vezzaro
and Mikkelsen, 2012) that is designed to locate the high performing areas of the
parameter space in an efficient and intelligent way.

The LHS technique was used in Paper II, and initially 100,000 random parameter
sets were generated and so-called dotty plots (Beven, 2009a) were then studied
to locate the higher likelihood areas. The parameter ranges were then adjusted
accordingly and a new LHS started. Finally likelihood values of 200,000 parameter
sets were produced of which 18,720 returned positive values and therefore were
retained for further analysis.

In the comparative study it was decided to take advantage of an MCMC sampling
method as other GLUE users have advocated for, the advantage being less com-
putation time and avoidance of iterative prior range specification. Two MCMC
schemes were investigated, initially the DRAM schme developed by Haario et al.
(2006) and secondly the DREAM (DiffeRential Evolution Adaptive Metropolis)
scheme developed by Vrugt et al. (2009c), however DREAM was found to be much
more effective in finding the high performance parameter sets and this scheme was
therefore chosen. The algorithm will not be detailed here and the reader is referred
to Vrugt et al. (2009a,c) and Vrugt (2011) for more information. With its default
settings and a formal likelihood function the DREAM scheme proved to be ex-
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tremely effective in locating the best performing parameter sets and adjustments
were therefore necessary to ensure more frequent visits of lower likelihood areas.
McMillan and Clark (2009) describe a way to implement the NS likelihood mea-
sure in the SCEM-UA algorithm which is the predecessor of DREAM. They argue
that in order for NS to be used in the algorithm it must be nonnegative and mono-
tonically increasing with improved performance. To meet the former condition, the
NS is set to zero when negative values are returned. The NS is only used via the
posterior density ratio R of two samples, which can be expressed in the following
form

o, —0.,  K-SSE
1_022 —0'2—0'622 _K_SSEQ’

6.7)

o

where K is a constant. However they found that the chain only slowly migrated
towards high-performance regions due to two issues: (1) Poor representation of
relative model performance and (2) Lack of ability to order poor model fits. For
example the probability of moving from 0.9 to 0.8 is quite high as the posterior
density ratio is 0.8/0.9 = 0.89. To deal with this issue K can be reduced which
causes higher weight to be placed on small improvements in NSE. To address
issue 2, the exact sums of squared error scores (SSE) were retained such that all
model fits could be correctly ordered, even though this information was not used to
calculate the ratio R. Lindblom et al. (2011) suggested a slightly different posterior

density ratio
_ exp(—SSE/T)

~ exp(=SSEy/T)’
where 7' is a scaling factor that is manually adjusted until a certain proportion of the

(6.8)

observations are covered by the simulation limits. None of the suggestions resulted
in a completely satisfactory exploration of the parameter space but inspired to the
following posterior density ratio

_ (1-8SET\ "’
= (m) 7 (6)

where T was chosen lower than ¢2 and J is an even number manually adjusted
until a satisfactory distribution of low and high likelihood values are found. The
original SSE values were retained as recommended.

6.5 Generating uncertainty limits

To obtain the uncertainty limits the posterior likelihood values of all the K be-

havioural parameter sets ® g ; were calculated using (6.3). To each time step % the
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ith simulated flow Y*

SiM, 6

associated posterior likelihood L, (©p ;) value is sorted in descending order with

produced by the behavioural parameter set ® g ; and its

respect to flow magnitude. For example the 95% upper simulation limit can be
found by summation of posterior likelihood values from the highest flow value and
downwards until

K
> L, (©5:) = 0.05,
=1
and likewise the lower 95% simulation limit can be obtained by

K
> L, (©5;) = 0.95.
=1

The lower and upper bounds form the 95% simulation limits. Similarly other sim-
ulation limits can be derived.
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/7 Benchmarking models and uncertainty
approaches

7.1 Residual analysis

For the stochastic approach the statistical assumptions underlying the model should
be tested by analysing the model residuals for structure, dependence, normality and
homoscedasticity. The following tests are all described in Madsen (2008).

* The structure of the residuals should be inspected by plotting the standardised
residuals (std.residuals) as a function of the observations. If the statistical
assumptions are met the std.residuals appear randomly scattered about zero,
there should not be many std.residuals with magnitudes greater than 3, and
most of the std.residuals should have values less than 2.

* The std.residuals should also be checked for dependence and ideally they are
independent of each other. The autocorrelation function (ACF) and the partial
autocorrelation function (PACF) can be used to check that the std.residuals

are not serially autocorrelated.

* The std.residuals should also be normally distributed, and this can be exam-
ined by a quantile-quantile (QQ) plot or by the cumulative periodogram. In
both tests a straight line indicates a normal distribution.

* Finally the std.residuals should be tested for variance homogeneity (homoscedas-
ticity) which means that the variance of the std.residuals is constant across
observations. If the variance changes with the flow magnitude (heteroscedas-
ticity) some transformation of the observations (log-transform, square root, or
some Box-Cox transformation) may be required to stabilise the variance.

Residual analyses was performed in Papers III and V.

7.2 Probabilistic prediction and simulation measures

The scope with model development is to use the models for making predictions
and/or for simulation and assess the associated uncertainty (Gneiting et al., 2007;
Gneiting and Raftery, 2007). Therefore it is meaningful to evaluate the proba-
bilistic prediction and simulation performance, and hence not only consider the
residuals. To do so we should first consider the reliability of the predictions or the
simulation.
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7.2.1 Reliability bias

A prediction or simulation interval 1) of a given quantile level 3 is defined as
B — [f/(l); f/(u)] (7.1)

where Y© and Y™ are respectively the lower and upper limits of the model output
at levels /2 and 1 — 3/2. The interval is reliable if the observed coverage n'®
matches the nominal coverage 1 — 8 5 € [0;1]. For example if we consider the
90% prediction interval 1) we should expect to cover 90% of the observations.
The reliability bias can be defined as the discrepancy between the nominal and
observed coverage

VW =1—-p—-n? (7.2)
and hence the ideal reliability bias is b(*) = 0. It is seen from (7.2) that if the predic-
tion interval covers more observations than expected then b¥) < 0, and a negative
bias is observed, and conversely if the prediction interval covers less observations
than expected, i.e. b® > 0, this would entail a positive bias. The reliability bias
was calculated in Papers IV-VI wheras in Paper II the term coverage ratio (CR)
was applied which is simply the fraction of observations covered by the prediction
limits.

7.2.2 Sharpness

The sharpness (Gneiting et al., 2007) is a measure of the average size of the pre-
diction/simulation interval which is relevant because in general we are interested
in obtaining as narrow bounds as possible, while still reliable. Thus the sharper the
intervals the more narrow. Sharpness is defined as

K
=(8) 1 ~(u ~(1
37 = =3 (3 al"). (7.3)
k=1
(u)

where g, and g),(f) represent, respectively, the upper and lower limits of the output
at any given time step k£ and quantile level § of the entire period K. The term
sharpness were used in Papers IV-Paper VI and in Paper II another designation
the average band width (ABW) was used synonymously and the related term av-
erage relative interval length (ARIL) that measures the relative uncertainty of the

1 X @iiu) B g),(f)
ARIL = — Tk Tk ) 7.4
DN (7.4)

t=1

bounds

where y;, s the observed output. Hence ARIL can be used to compare uncertainties
obtained from different study areas or study periods (Jin et al., 2010).
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As both the reliability and the sharpness are average values calculated for the whole
evaluation period, it is important to consider also the resolution which means that
the performance measures should be calculated also in different subperiods corre-
sponding to different output domains, which is relevant because the performance
of the models may differ considerably during the two very different conditions dry
and wet weather periods.

7.3 Model performance comparison

7.3.1 Evaluation using information criteria

Aikaike’s information criterion (A/C') and the Bayesian information criterion (BIC)
(Madsen, 2008) can be used two score different model candidates suitability for

generating one step predictions or simulations and are thus tools for model selec-

tion. The information criteria are defined as

AIC =2n—2In(L) (7.5)

BIC = —2In(L) + nln(K), (7.6)

where n is the number of free parameters, L is the likelihood value, and K is num-
ber of observations. The preferred model is the model with the minimum A/C
and BIC values. AIC not only rewards goodness of fit (as measured by the like-
lihood), but also includes a penalty that is an increasing function of the number of
estimated parameters. This penalty discourages over-parameterisation. In calcu-
lating BIC' over-parameterisation is penalised even more than in AIC because the
penalisation depends on the number of observations. Both criteria have been used
for model performance comparison in Papers III and VI.

7.3.2 Evaluation using an interval skill score criterion

The interval skill scoring criterion is used to assess the ability of the model to
generate probabilistic predictions and simulations. The sharpness and reliability of
given quantile is combined in the interval skill score criterion Sc\® (Gneiting and
Raftery, 2007) that rewards narrow and reliable confidence bounds. For any given
quantile level for evaluation and K" measurements the interval skill score is defined
as

Se? = W =)+ (7.7)

k=1

l u u
{(ylﬂ;) —y) ke < Y+ (e — v 1y > 1Y,

™| N Nlr—l
- I~
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where the indicator 1 is one if the condition is true. In case the observation misses
the quantile interval a penalty is incurred which depends on the considered quan-
tile level, meaning that an observation miss at the 95% confidence interval is much
more expensive than a miss at e.g. the 5% confidence interval. Thus, the smaller
the interval skill score the better the probabilistic prediction performance of the
model, and so Sc!? can be used to evaluate the different models’ probabilistic per-
formance and eventually to select a preferred model. It is noted that the skill score
is suitable for comparison at different prediction horizons, which the A/C and
BIC criteria are not. The skill score was used for model comparison in Papers IV,
V and VI and also used to compare the simulation performance of the stochastic
approach and the GLUE approach in Section 8.3.
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8 Results and discussion

8.1 Results of the stochastic approach
8.1.1 Checking the statistical assumptions

Before the model can be used for simulation or prediction with confidence it is
of upmost importance to check that the assumptions that underly the likelihood
function holds in practice. The statistical assumptions of the grey-box models de-
mand the model residuals to correspond to a white noise process, which means that
the residuals should be serially uncorrelated, have constant variance and resemble
a Gaussian distribution. The assumptions were tested in Papers III and VI. For
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Figure 8.1: Validation of model a in Figure 4.3. (a) standardised residual plot; (b) autocorrelation
function (ACF) (c) cumulative periodogram; and (d) partial autocorrelation function (PACF). Plot
from Paper IIIL

the chosen model in Paper III the assumption of Gaussianity and mutual inde-
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pendence were tested (for model a in Figure 4.3) by investigating the standardised
residual plots, the autocorrelation function (ACF), the cumulative periodogram,

and the partial autocorrelation function (PACF) as seen in Figure 8.1.

The actual residuals conform fairly well with the statistical assumptions of the
residuals for the one-step ahead prediction although we did not check for het-
eroscedasticity in Paper III. There is a small departure from the whiteness as-
sumption as seen from the cumulative periodogram, and we also observe some
small spikes outside the 95% confidence interval at several lags in both ACF and
PACEF plots, which indicates that the periodicity of the wastewater variation is not

perfectly described by the harmonic function.

In Paper V a different calibration data set and a different model (See model e
in Figure 4.3) was employed and hence the residual tests provided other results.

From an investigation of the std.residuals of the one-step ahead prediction shown
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Figure 8.2: Investigation of the standardised one-step prediction residuals of Model M3 in Paper
V.

in Figure 8.2, from the root mean square error of the std.residuals (Figure 8.2¢), it
is seen that homoscedasticity is nearly achieved, and from the Q-Q plot shown in

48



Figure 8.2b that the residuals does not resemble a Gaussian distribution very well at
the tails, but up to the 95% confidence bounds the assumption is reasonable. From
the ACF plot it is concluded that autocorrelation has been satisfactorily removed.

Figure 8.3 displays a residual investigation of the preferred simulation model in
Paper V. Again the Gaussian distribution is not resembled too well at confidence
levels higher than 95%, but below the residuals looks more in line with the as-
sumed Gaussianity (see Figure 8.3b). There is clearly some heteroscedasticity left
in Figure 8.3¢ which indicates that other observation transformations could pos-
sibly be tested. Autocorrelation is highly significant (Figure 8.3d) and it should
be recognised that autocorrelation is unavoidable in simulation models with such

short time resolution (15 minutes).
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Figure 8.3: Investigation of the standardised residuals of simulation model M2 in Paper V.

8.1.2 Selecting among model candidates by information criteria

In paper Paper III the Aikaike information criterion (AIC) and the Bayesian Infor-
mation Criterion (BIC) were used to choose the preferred model among the model
candidates that differed with respect to the diffusion term only. It is recalled that
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Table 8.1: Model comparison by information criteria in Paper III.

log(L) DF AIC BIC Diffusion terms

Model 1 11379.81 13 -22733.62 -22643.12 State independent
Model 2 12555.67 13 -25085.34 -24994.84 State proportional
Model 3 12461.81 15 -24893.62 -24789.19 State exponentiated

the model with the minimum AIC and BIC values is the preferred and both infor-
mation criteria pointed at Model 2 which was the model with state proportional
diffusion terms (see Table 8.1).

In Paper VI these criteria were also applied to select a preferred model among
the model candidates at the one-step ahead prediction and in this paper the models
differed from each other primarily with respect to the drift term, i.e. the amount
of physical knowledge incorporated (see overview of models tested in Paper VI).
Table 8.2 gives the obtained ranking order in terms of information criteria for the
model candidates. As the model selection criteria are based on a likelihood func-

Table 8.2: Model selection from information criteria in Paper VL.

log(L) DF  AIC BIC  Priority, AIC Priority, BIC

Model 1a 9,864 11 -19,706 -19,629 5 5
Model Ib 9,874 12 -19,724 -19,639
Model Ic 9,876 11 -19,730 -19,653
Model2 9,843 7 -19,672 -19,623
Model3 9,997 14 -19,966 -19,867
Model 4 10,027 18 -20,018 -19,891

—_ N N W B
—_ N O\ W

tion that is a product of conditional densities for the one step prediction the criteria
cannot be used to evaluate model performance at longer prediction horizons than
the one-step (nor for simulation). Therefore we need another performance criterion
for model selection if the model is to be applied for the N-step ahead prediction.

8.1.3 Evaluating prediction and simulation bounds

As the ultimate scope with stochastic model building is to enable decision-making
on a more informative basis, we should also check the models probabilistic predic-
tion and simulation performance, and hence we are especially concerned with the
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correspondence between observed and nominal coverage of our confidence bounds
(the reliability bias). In Paper IV the reliability biases were examined for the 90%
confidence bounds up to 16 prediction steps (4 hours) ahead, see Figure 8.4. The
models differed with respect to the diffusion term only, indicated by ~; and - (see
Paper IV for details). All of the model candidates 90% prediction bounds at the
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Figure 8.4: Examining the reliability bias of the model candidates 90% prediction bounds as a
function of prediction horison. Figure from Paper IV.

one step ahead prediction are too wide covering approximately 5% more observa-
tions than prescribed. As the prediction horizon increases the agreement between
the expected and observed coverage actually improves up to about 1-1.5 hour (the
lines approaches zero), then an increasing coverage deficit materialises as the pre-
diction horizon is further expanded up to 4 hours where the deficit is 5-10 %.
Generally these results are encouraging, and it seems at first glance rather tempt-
ing to conclude that although some reliability biases are observed, this should not
prevent us from putting a reasonable degree of confidence in the models prediction
ability also at longer horizons.

Before doing so the important term "resolution” is considered and it is acknowl-
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edged that two distinct flow classes should be differentiated: dry and wet weather
periods. In Figure 8.5 this classification into dry and wet weather periods for sepa-
rate examination was realised by an observed flow threshold of 540 m?3/h. It shows
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Figure 8.5: Reliability of the 90% prediction limits examined for dry and wet periods separately.
Plots from Paper IV.

very clearly that the models prediction bounds perform fairly well in dry weather
periods (biases in the range 0-6%) as opposed to wet weather periods where only
the one-step prediction bounds are reliable for two of the models (M3 & MS5). Al-
ready at prediction step 2 coverage deficits of 10-40% is observed, and at 4 hour
predictions this worsens to 50-70%, suggesting that we should not put too much
confidence in any of the proposed models when making predictions in wet weather
beyond the one step.

To overcome these problems we may add more physical knowledge to the models
as was done in Paper VI but another way would be to increase the uncertainty
contained in the diffusion term. This was however not pursued due to instability
related problems when a state exponentiated diffusion term of more than one (v; >
1) was used. Most of the uncertainty origins from a non-representative rain input
and e.g. by placing rain gauges inside the catchment it is likely that more reliable
prediction bounds would be found.

If the prediction bounds were to be applied for activating a WWTP’s wet weather
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operation as discussed in Chapter 1, the model would be tailored for this, i.e. if this
decision requires a one-hour total volume prediction, then a one-hour total volume
prediction is what we would aim for in the likelihood function. Hence the reliabil-
ity bias for the one-hour prediction might not be as significant as observed here for
a model that is optimised for a 0.25-hour flow prediction. Another possibility to
improve the reliability of the predictions would be to set up a likelihood function

for minimising the error of several prediction steps.

In paper Paper V the reliabilities for both a prediction model (M3 one-step) and
three simulation models (M1-M3) were examined, see Figure 8.6 (left column)
that shows the reliability bias overall and classified into wet and dry weather, as
a function of nominal coverage. Considering the overall coverage, M3 appears to
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Figure 8.6: Reliability bias (left) and sharpness (right) for models M1-M3 calculated for the
whole period (overall) and in dry and wet weather periods separately. Plot from Paper V.

be the favoured model, but again we observe reliability variations when focusing
on dry and wet weather periods separately. The uncertainty bounds are generally
too wide in dry weather and too narrow in wet weather. Of the simulation models
M2 has the lowest reliability bias in wet weather, whereas in dry weather M2 and
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M3 show more or less equivalent reliability bias. If comparing the reliability bias
for M2 with the equivalent in Figure 8.5, we observe that a model tailored for
simulation (with biases of less than 10%) perform much better in the long-run
compared to a prediction model that exhibits large biases (in the range of 10-70%
in wet weather) at prediction horizons of more than two or three prediction steps in
Figure 8.5. In drawing this conclusion we should recall though that the two figures
are not directly comparable, because M2 contain more physical knowledge and is
estimated on a different calibration set than the models in Figure 8.5.

Notice also the improving effect of updating by comparing the reliability bias of
the simulation models with the prediction model (M3 one-step) in Figure 8.5.

As mentioned in Chapter 1 models are just approximations of reality and we should
perhaps add that so are stochastic models and their confidence bounds. Confronted
with this fact and challenge we are still interested in finding one preferred model
among the model candidates. In this choice we should not just consider reliability
but also the width of the prediction bounds (sharpness) because a trade off exists
between reliability and sharpness. Consider now Figure 8.7 that shows the dry and
wet weather sharpness for the 90% prediction bounds as a function of the predic-
tion horizon. Note the substantial difference in sharpness between the two weather
classes and between the models and note also how the sharpness evolves as the
prediction horizon increases. To determine which model to prefer given some pre-
diction horizon and some reliability bias we adopt the interval skill score criterion
as defined in Chapter 7, and recall that the model with the minimum skill score
value is the preferred. Table 8.3 shows the skill score for several prediction steps
conditioned on wet weather periods. It is noteworthy how the model choice de-

Table 8.3: Skill score calculated for the 90% prediction interval conditioned on wet weather
periods. Table from Paper IV.

Prediction Horizon
Y v2  0.25h  0.5h 1h 2h 3h 4h Average

M1 050 0.50 3973 7099 12430 18594 1996.8 20157 13704
M2 1.00 0.50 5729 8209 10445 1328.0 14399 1456.1 11104
M3 050 1.00 289.1 489.3 913.1 1607.8 18259 18745 1166.6
M4 075 0.75 3723 631.8 1051.3 16192 17853 18153 12125
M5 1.00 1.00 3655 583.0 903.5 13749 15479 15835 1059.7

pends on the prediction step, but if one single model is to be selected for the whole
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Figure 8.7: Sharpness of the 90% coverage, as a function of the prediction horizon and condi-
tioned on the flow: (a) for dry weather periods ; (b) for wet weather periods. An observed flow
threshold of 540 m?/h separated the two weather periods. Figure from Paper IV.

prediction horizon M35 is the choice due to the best overall performance. In Paper
V the skill score was used to compare the performance of three different simulation
models and a one-step prediction model. Figure 8.8 shows this comparison and no-
tice again here the effect updating has on the skill score. In all three cases (overall,
dry weather, wet weather) the one-step prediction model outperforms the simula-
tion models. However if the prediction model is launched in simulation mode i.e.
if used without updating, then the this model is inferior to a model tailored for
simulation (compare M2 and "M3 sim" in Figure 8.8). The skill score difference
between M2 and "M3 sim" becomes larger with increasing nominal coverage. The
obvious question for investigation is then at what prediction step the simulation
model M2 starts to outperform the prediction model. This was not investigated
in Paper V but stresses the importance of distinguishing between the two model

types.
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Figure 8.8: Interval skill score as a function of nominal coverage for all models, whole period
and separately for dry and weather weather periods. Plot from Paper V.

8.2 Results of the epistemic approach
8.2.1 Extraction of behavioural parameter sets

In Paper II the aim was to obtain a 90% coverage of the GLUE generated 90%
simulation limits, overall, in dry weather and in wet weather periods in the calibra-
tion period (2007). Again an observed flow threshold of 540 m?/h were applied
to separate the two flow classes. Two separate likelihood measures L, (for dry
weather) and L, (for wet weather) were multiplied to obtain the overall likeli-
hood measure L for extraction of the behavioural parameter sets, and the 10,000

56



best performing parameter sets (according to L) out of 200,000 Latin Hypercube
Monte Carlo sampled sets were retained for further analysis. Figure 8.9 shows how
L4, and L, varies as L decreases. It was found impossible to obtain the desired
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Figure 8.9: Likelihood vs. number of retained parameter sets. Shown for overall likelihood (L),
dry weather likelihood (Lg4,,) and wet weather likelihood (L.,,). Plot from Paper II.

90 % coverage using 10,000 parameter sets, and it was pointless to retain more,
as this had only minor influence on the coverage rate of the 90% simulation limits
(see Figure 8.11 top left, data of 2007).

In the second GLUE study a different model (model e in Figure 4.3 and data (from
2010) were applied. This time the traditional Nash & Sutcliffe efficiency likelihood
measure was used to rank the parameter sets and the aim was to obtain coverage
rates consistent with the nominal coverages selected for the study in Paper V. The
search for behavioural parameter sets was enhanced by the DREAM scheme and
20,000 parameter sets with L in the range 0.56-0.9 were retained and proved to fit
the purpose.

8.2.2 Parameter uncertainty

As all sources to uncertainty are transferred to the parameter sets a large parameter
uncertainty is generally expected. Figure 8.10 shows a dotty plot of the retained
parameter sets and it is seen how increasing the number of behavioural parameter
sets from 500 to 10,000 entails that the posterior parameter range approaches the
prior parameter range for many of the wet weather parameters, which is a clear
sign of equifinality as the prior parameter range initially was chosen to be quite
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wide. Generally the dry weather parameters are more well determined as evidenced
by the location of the dots that are concentrated in a smaller region of the prior

parameter space.
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Figure 8.10: Dotty plots of wet weather parameters (top) and dry weather parameters (bottom).
Plot from Paper II.

8.2.3 Consistency of the GLUE generated bounds

In Paper II the consistency of the GLUE generated simulation bounds was investi-
gated, i.e. it was tested if the coverage obtained during calibration corresponded to
the coverage obtained in validation. Two validation periods (2008 and 2009) were
included for this consistency analysis as seen in Figure 8.11. The coverage (CR)
increases and the curve flattens off as the number of retained parameter sets is in-

58



Overall Dry weather Wet weather

100 100 100
-0 -9
& = P
— 80 o=z 80 .,—.:/vr 80
X A=V —_— ’n B —_
= Poa S g~ S
g 6 3 ; 60 % 60 -2 J=E BB
¢ S o %
S 40 x 40 x 40
ot o ® = 2007 S
O 45 20 - W = 2008 20
2009
0 0 0
100 500 1000 3000 600010000 100 500 1000 3000 600010000 100 500 1000 3000 600010000
Retained parameter sets Retained parameter sets Retained parameter sets
1 1 1
< 0.8 0.8 0.8
g — =
= =0 S - =
T 0.6 a=%" = 06 .=ﬁ— c 06 _p=k=D
o 2% 5 2% < R A=
3 !r - ﬁF
04t 2 04| o = oaf W
= o o
24 < <
< 0.2 0.2 0.2
0 0 0
100 500 1000 3000 600010000 100 500 1000 3000 600010000 100 500 1000 3000 600010000
Retained parameter sets Retained parameter sets Retained parameter sets

Figure 8.11: CR (upper panels) and ARIL (lower panels) vs. the number of retained parameter
sets in the calibration year (2007) and the two validation years (2008 and 2009) for the total 6
months period (left panels), the dry weather periods (middle panels) and the wet weather periods
(right panels).

creased. Good consistency between the calibration year (2007) and the validation
years for the overall coverage is observed, however when looking separately at dry
and wet weather periods, less good consistency is clearly observed. Figure 8.11
also shows the average interval length (ARIL) of the 90% simulation bounds as a
function of the number of parameter sets included. It is seen that the width of the
simulation limits rises with the the number of behavioural parameter sets and good
consistency between ARIL values obtained in 2007 and 2008 is observed whereas
ARIL values of 2009 differ from 2007 and 2008 values.

8.3 Comparison of the stochastic and epistemic ap-
proaches

The best simulation model of Paper V (M2) was chosen to represent the stochastic
approach and a GLUE uncertainty analysis was conducted with the same model as
M2 (Figure 4.3) although without statistical noise terms representing the epistemic
approach. The uncertainty performance of the two approaches was then compared
with respect to reliability, sharpness and interval skill score calculated overall and
in dry and wet weather periods separately.

Figure 8.12 shows the comparison of reliability and sharpness as a function of

59



nominal coverage rates. First of all it is seen that deriving the behavioural param-
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Figure 8.12: Comparison of reliability bias (left) and sharpness (right) for the stochastic (M2)
and the epistemic (GLUE) approach calculated for the whole period altogether and in dry and wet

weather periods separately.

eter sets using the DREAM scheme so that an overall coverage consistent with
the nominal coverages succeeded. There is nearly no visible overall reliability
bias. In both dry and wet weather some bias is observed for both approaches but
the stochastic approach produces the sharper uncertainty limits in all three cases.
The skill score comparison in Figure 8.13 suggests that the stochastic approach
performs a bit better than the epistemic approach in this particular case study. In
concluding this it should be recalled that the GLUE derived uncertainty limits are
quite influenced by the chosen likelihood measure and therefore the conclusion
found here cannot be generalised but shows that GLUE is able to generate some-
what similar skill scores as the stochastic approach. It should also be mentioned
that the statistical assumptions behind M2 were not entirely satisfied and hence it
may be possible to find a transformation of the observations that would improve
the skill score for M2.

60



Overall skill score

600 T T T T
- + — M2sim /i‘
400+ — * — GLUE sim //::5/ 1
3 —4==7F
== T i
200;22*::*:::*#-—*:
0 | | | | | | | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Wet weather skill score
1500 T \
1000 - -3
[$) _ - : <
) _ =%
5001 I .
a<—===*====*===*=#—— *
O | | | | | | | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Dry weather skill score
400 T T
300 L
[N - /:E -+
& 200r I ,
_ == %=
_—x === == ==
1004 = = === = F= =~ -
O | | | | | | | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Nominal coverage [(1-B)]
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Table 8.4 compares the interpretation of parameter uncertainty of the two ap-
proaches. As all the uncertainty is lumped into the parameters in the GLUE
approach much wider parameter intervals are found in GLUE compared to the
stochastic approach. In the stochastic approach the assumption is that a single op-
timal parameter set exists and this parameter set can be found within the specified
limits with 95% confidence.

Table 8.4: Parameter uncertainty of the stochastic and epistemic approaches. [0,in; Omaz] indi-
cates the 95% confidence interval for the stochastic approach and for the epistemic approach the
minimum and maximum parameter values used in the posterior parameter distribution.

M2 GLUE

Parameter _ _ _ _

Omin  Omax Omin  Omaz
Wastewater:
$1 -46.8 -42.8 -227.3 1350
c1 -87.7 -92.1 -248.0 94.0
S92 -46.1 -40.7 -179.5 98.8
Co 20.0 25.2 -100.0 1484
ag 275.6  278.8 150.7 4584
Fast rainfall-runoff:
Ay 65.2 66.8 12.4 150.0
Ky 4.83 5.03 1.36 15.0
« 0.34 0.38 0.0 1.0
S t1,maz 8445 9209 2032 20,000
vy 0.55 0.67 0.0 0.9
Sd,max 18,165 25,813 116 40,000
Qp 884.6 8954 10 2,500
K, 2.1 2.9 0.2 14.0
Slow infiltration:
K, 82.7 87.5 24.1 10,000
S 1,634 1,710 103.9 8,000
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9 Conclusions

This main objective of this thesis has been to qualify and quantify output uncer-
tainty in simulation and prediction using simple rainfall-runoff models for urban
drainage systems because such models are attractive for control purposes and be-
cause uncertainty plays a significant role in the choice of an optimal control strat-
egy. To assess the prediction and simulation uncertainty in a realistic setting a
case catchment with real flow data was needed. The catchment of Ballerup was
chosen and inputs included data from point rain gauges and monthly evaporation
data. Flow data sampled downstream from the catchment were used for model
conditioning and uncertainty evaluation. The data period covered 2007-2010. The
1,320 ha catchment consists of both separated and combined sewage pipes, is sig-
nificantly affected by infiltration inflow and facilitates a few detention basins and
some pumping stations.

To quantify the model output uncertainty two uncertainty approaches were distin-
guished, the stochastic and the epistemic approach. A frequentist approach was
taken for the stochastic approach and the Generalised Likelihood Uncertainty Esti-
mation (GLUE) methodology was adopted for the epistemic approach. Both meth-
ods were applied for assessing the simulation uncertainty but only the stochastic
approach was applied for making predictions from continuous updating of model
states.

Model development

The simple serial linear reservoir flow routing principle was applied for modelling
both the fast rainfall runoff from paved areas and the slow infiltration inflow from
permeable areas. The wastewater flow variation was modelled by a harmonic func-
tion. Models of different complexity in terms of describing features such as flow
constraints, basins and pumps were tested for their ability to describe the output
with a time resolution of 15 minutes.

The stochastic grey-box approach for prediction

The stochastic grey-box modelling approach that incorporates only the most impor-
tant physical knowledge in the models and uses information from data to describe
the uncertainty and for estimating the model parameters was chosen. Uncertainty is
accounted for explicitly by two noise terms, the observation noise term and the dif-
fusion noise term. The parameters are estimated using the prediction error method
by maximising a likelihood function. All the estimated model parameters were
tested for significance by a t-test and although most of the parameters could be de-
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termined, some had to be fixed. Increasing the model complexity generally implied
that more parameters had to be fixed. A flow proportional observation noise term
was preferred to an additive observation noise term because the flow metre accu-
racy generally decreased with the flow magnitude and because the risk of receiving
negative flows is avoided. A state dependent diffusion term was also preferred to an
additive noise term because the risk of obtaining negative states could thereby be
avoided. The state dependent diffusion term that was implemented by a Lamperti
transformation of the states is also justified by the fact that the flow uncertainty
generally increases with the volume of the rain. The residual tests contributed to
developing the observation and diffusion noise terms and for the eventual approval
of the models. The Akaikes information criterion (AIC) and the Bayesian infor-
mation criterion (BIC) were applied to choose a preferred model among the model
candidates when considering the one-step prediction performance corresponding to
15 minutes lead time, and the two criteria agreed well. In general the models were
unsuitable for making probabilistic forecasts beyond the one-step especially during
wet weather periods. For the case when a longer prediction horizon is required a
skill scoring criterion was applied to select a preferred model out of several model
candidates. Even though a preferred model can be pinpointed from this criterion it
should be recognised that the model do not necessarily provide reliable forecasts.
Therefore the sharpness and the reliability bias that evaluates the difference be-
tween the nominal and observed coverage of a particular quantile were also used
to compare the models.

The stochastic approach for simulation

In the case that real time data are unavailable for continuous updating of the model
states a simulation model can be applied instead. Assuming flow data from a mea-
suring campaign are available for calibration it is possible to estimate the param-
eters by maximum likelihood estimation and estimate the total output uncertainty.
The parameter estimation can be conducted in two ways, either using the predic-
tion error method (as discussed above) or by minimising the total output error for
the whole calibration period. In the latter case the diffusion term is removed and
only the observation noise term is kept. Three different models were tested. Two of
the models contained only an observation noise term, one which was additive and
one which was logistic, whereas the last one contained both an observation noise
term and a diffusion noise term. Parameters were generally significant although a
few parameters had to be fixed. In order to remove the heteroschedastic residuals
structure it was necessary to apply a logistic transformation of the observations,
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however auto-correlation remained. The simulation model with a diffusion term
embedded did not remove the auto-correlation either and hence it seems unrealistic
to assume residual independency in the simulation case. The logistic observation
noise term improved the reliability of the confidence bounds significantly com-
pared to an additive observation noise term. This model also proved to be the most
reliable simulation model and the skill scoring criterion pointed to this model as
the preferred model of the three simulation models. The reliability of the preferred
models confidence bounds were similar in dry and wet weather periods. A skill
scoring comparison of a simulation and a prediction model showed that a major
improvement is gained by updating the model states continuously, i.e. updating of
model states results in much lower uncertainty.

The epistemic approach for simulation

The GLUE methodology is very different from the chosen stochastic approach
because of the absent requirements to the residuals and because parameters are
seen as stochastic variables. Nevertheless the aim is the same, namely to cover
a proportion of observations consistent with the considered quantile with maxi-
mum sharpness. Two different likelihood measures were applied for qualifying the
model parameters, the traditional Nash & Suttcliffe model efficiency coefficient
and an exponential variant. For sampling the model space a latin hypercube monte
carlo method (LHS) and a markov chain monte carlo method (DREAM) were both
applied. The algorithm in DREAM is very efficient in locating the high perform-
ing areas of the model space and the posterior density ratio had to be adjusted to
secure visits of lower performing areas. Generally the use of DREAM saves com-
putational time. To select the behavioral parameter sets a coverage criterion of
90% by the generated 90% uncertainty limits was proposed. It was however im-
possible to reach such a high coverage in the calibration period and the coverage
were much lower during rain than in dry weather. The consistency of the GLUE
generated uncertainty limits were then evaluated by comparing obtained coverage
rates between the calibration period and two validation periods and a reasonable
consistency was generally found.

Comparison of the stochastic and epistemic approach for simulation

To facilitate a comparison of the two approaches to uncertainty evaluation the
sharpness, reliability and skill score were calculated for both using the same data
set for calibration and evaluation. Results showed that very similar performance
was obtained, with the stochastic method as the preferred. It should be stressed that
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in order to test this more properly a data set other than the calibration data should
be used for validation. The work of this thesis has demonstrated that the statistical
requirements to the formal stochastic approach, i.e. that residuals should conform
to a white noise process, are very hard to fulfill in practice, especially in simulation
and for predictions beyond one step where significant auto-correlation remained.
The requirements were easier to fulfill for the one-step prediction which was due to
the continuous updating of the model states. As a consequence hereof the reliabil-
ity of prediction steps beyond the one-step prediction was quite biased, especially
during rain. Although the GLUE derived uncertainty limits did not prove com-
pletely consistent nor superior to the stochastic derived uncertainty description,
the underlying assumption of the GLUE methodology that uncertainty in model-
ing and simulation is not only of stochastic nature seems fairly consistent with the
results of this thesis. A major drawback of the GLUE methodology is the lumping
of total uncertainty into the parameters which entails a loss of physicality of the
model parameters. Conversely the parameter estimates of the stochastic approach
are physically meaningful. This thesis has contributed to developing simplified
rainfall-runoff models that are suitable for stochastic model predictive control of
urban drainage systems.
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10 Outlook

The benchmarking tools and the grey box models developed in connection with
this thesis may well be applied to other catchments for assessing the uncertainty
on model outputs in connection with model predictive control investigations. The
modelled output are in that case not limited to flow forecasting but could just as
well be applied for forecasting of water level, volume or concentrations.

It should also be mentioned that measurements from levels of storage tanks or
pumping stations could be directly used in the observation equation of the grey
box model which would be desirable in many cases for improving the prediction
performance if such measurements are available.

The predictions made in connection with this thesis all assumed future rain inputs
to be known. However because of the retention time of the system, i.e. between
a rainfall is recorded at the rain gauges until a corresponding runoff is observed
at the flow meter in the sewer system, it is often possible to obtain a flow forecast
without the need for rainfall input forecasts. This potential should be investigated
further.

As it was shown that a simulation model was more reliable than a prediction model
(estimated by minimsing the one step ahead errors) when considering several pre-
diction steps into the future it would be desirable to know up to which prediction
step we should apply the prediction model and hence at what prediction step the
simulation model becomes the preferred model. The skill score benchmaring tool
outlined in this thesis can be used for this investigation.

It was also shown that if the reliability were calculated separately for dry and wet
weather periods, the reliability in dry weather periods (with reliability biases in the
order of 5% at prediction steps up to 4 hours) were generally higher than in wet
weather periods in which a rapidly deteriorating reliability as a function of predic-
tion horizon was found (with reliability biases in the order of 50-80% at 4 hour
prediction steps). These findings suggest that the models predictive performances
for prediction steps larger than one needs to be improved, and one way could per-
haps be to replace the minimisation of the one step prediction error in the extended
Kalman filter with a % step error minimisation in accordance with whatever lead
time is required for the desired model predictive control implementation.

It is in connection with model predictive control of a waste water treatment plant
perhaps more important to predict the volume load to the plant over the next half
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hour and in that case a grey box model optimised for this might perform better than
a model optimised for predicting the inflow with 15 minutes time steps.

The use of rain radars to extend the lead time and obtain a more adequate spatio-
temporal rain input description also holds a significant flow prediction potential
and the use of the performance indicators outlined in this thesis could be used to

conclude on this potential.

Finally the next step should be to show how the probabilistic forecasts can be

utilised in model predictive control.
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