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Summary (English)

This thesis deals with the generation of probabilistic forecasts in urban hydrol-
ogy. In particular, we focus on the case of runo� forecasting for real-time control
(RTC) on horizons of up to two hours.

For the generation of probabilistic on-line runo� forecasts, we apply the stochas-
tic grey-box model approach. Building on previous work concerning the devel-
opment of conceptual stochastic rainfall-runo� model structures, we

• investigate approaches for the calibration of model parameters that tune
the models for multistep predictions,

• develop an approach for generating probabilistic multistep predictions of
runo� volume in an on-line setting,

• develop a new approach for dynamically modelling runo� forecast uncer-
tainty.

We investigate how rainfall inputs can be optimally combined for runo� fore-
casting with stochastic grey-box models and what e�ect di�erent types of radar
rainfall measurements and forecasts have on on-line runo� forecast quality.

Finally, we implement the stochastic grey-box model approach in a real-world
real-time control (RTC) setup and study how RTC can bene�t from a dynamic
quanti�cation of runo� forecast uncertainty.
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Summary (Danish)

Denne afhandling omhandler metoder for beregning af probabilistiske prognoser
for a�øbssystemer. Vi fokuserer især på �owprognoser for horisonter op til 2
timer med henblik på styring af a�øbssystemer.

Vi bruger stokastiske grey-box modeller for at generere probabilistiske online
�ow prognoser. Tidligere forskning har beskæftiget sig med udviklingen af sto-
kastiske, konceptuelle model strukturer for a�øbssystemer. Med udgangspunkt
heri fokuserer denne afhandling på at:

• udvikle nye metoder for parameter kalibrering som fokuserer på modellens
evne til beregning af prognoser af �ow på langtidshorisonter,

• udvikle nye metoder for at generere probabilistiske prognoser af strøm-
ingsvolumen på langtidshorisonter til online formål,

• udvikle nye metoder for en dynamisk beskrivelse af prognoseusikkerheden.

Vi undersøger hvorledes forskellige typer regn målinger bedst kan kombineres
når formålet er at lave probabilistiske a�øbsprognoser med grey-box modeller,
samt hvilken type regn måling og -prognose er mest velegnet som grundlag for
a�øbsprognoser.

Endelig implementerer vi stokastiske grey-box modeller i en online styring og
tester hvordan en styring af a�øbssystemer kan pro�tere fra en dynamisk be-
skrivelse af prognose usikkerheden.



iv



Preface

This thesis was prepared at the department of Applied Mathematics and Com-
puter Science (DTU Compute) at the Technical University of Denmark in partial
ful�lment of the requirements for acquiring a Ph.D. degree.

The thesis deals with the development of methods for probabilistic forecasting of
runo�s from urban drainage systems and their application for real-time control.

The thesis consists of a summary report and 7 papers, documenting the work
carried out during the period between January 2011 and January 2014. Three of
these papers are published or accepted in international peer-reviewed journals,
two papers will be submitted shortly after the hand-in of this thesis and two
papers are under preparation.

København, 28-February-2014

Roland Löwe
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Part I

Summary Report





Chapter 1

Introduction

1.1 Models in Urban Hydrology and their Objec-

tives

In general, models are created with di�erent complexities and based on di�erent
principles. In hydrology, it is reasonable to classify models according to their
complexity. For example, this approach can be found in [Ref96] for determin-
istic hydrologic models and, more generally, in [Lju10]. [Bre12] classi�es urban
hydrological models according to this approach (�gure 1.1).

The exact classi�cation varies among authors. Yet, the general line of thought
is that white-box models are based on �rst order principles which describe the
actual physical process, while black-box models are purely data-based and typ-
ically do not allow for a physical interpretation of model structure and param-
eters. Grey-box models cover the area between the two extremes.

Other than depicted in Figure 1.1, models applied in urban hydrology are gener-
ally not white. Even rather detailed model structures as MOUSE ([DHI03]) or
WEST ([VMA+03]) build on conceptual assumptions for example in the runo�
formation and transformation processes or in the description of treatment pro-
cesses.
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Figure 2.1: The modelling spectrum. White-box models are physically-based whereas black-box
models utilise statistical methods and tools for estimating the model parameters and assessing the
uncertainties. The two model approaches can be combined into a grey-box model with more or
less white and black colour.

models (McIntyre et al., 2011), see the diagram in Figure 2.1 that picturise the
modelling spectrum. Spatially distributed modelling is a typical example of the
physically-based model, to construct a model that explicitly accounts for as much
of the physics and the natural heterogeneity as computationally possible. Within
urban drainage modelling we recognise this white-box model type as e.g. MOUSE,
InfoWorks or CANOE that all build on the Saint-Venant equations for hydraulic
calculation, see references to the models in Dotto et al. (2011). Such models
are rarely applied in connection with model predictive control in real-time al-
though currently the possibility of updating internal states are being investigated
(Hansen et al., 2011). The possibility to fuse a white-box model with a black-
box model using output error correction update has been pursued. Vojinovic et al.
(2003) used a combination of a white-box model (MOUSE model) and a black-
box model (a radial basis function neural network (RBFNN) model) as a stochas-
tic error-correction model and obtained significant improvements in model predic-
tions. Bruen and Yang (2006) used a full hydrodynamic model (HYDROWORKS,
now called InfoWorks) together with different black box models (Artificial Neural
Networks (ANNs) and linear time series models of Box et al. (2008)) to simulate
and predict flow volume and attained significant improvement in overall efficiency.
These output correction methods could equally well be applied using models of

12

Figure 1.1: Classi�cation of urban hydrological models according to their
structural complexity (from [Bre12])

The task of the hydrologist is thus, to identify a model that makes optimal use
of the available data and is suitable for a given purpose rather than aiming at
a perfect physical process description.

Modelling tasks in urban hydrology can be separated into o�-line and on-line
applications. O�-line applications typically focus on design or analysis of the
system and comprise decision horizons of several years. They very often include
'What if?' tasks, leading to an analysis of e�ects resulting from an anticipated
change in the system. In this �eld, complex model structures have their main
range of application as they permit for the use of a maximum of physical (static)
information such as pipe diameters, the location of sealed area in a catchment
or the dimensions of treatment facilities.

On-line applications, on the other hand, are related to supervision of the system
and decision making over short horizons in the range from minutes to days.
Computational speed of the models is often relevant in this area, limiting the use
of complex model structures. In turn, some current measurement information
about the system is typically available and should be used in the model. In this
case, the use of statistical techniques such as auto-calibration or state updating
is typically simpli�ed by simple model structures. Examples of on-line modelling
tasks in urban hydrology are
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• forecasting runo� or treatment capacity for real-time control ([VG14])

• software sensors deriving information about the system from an indirect
measurement ([DDR13])

• automated cleaning and correction of measurements ([ATCV13])

Most of these tasks pro�t from model structures which are simple, and thus
numerically and statistically easy to handle, but have a physical interpretation.
Such a structure allows for the automatic estimation of parameters from mea-
surements as well as for algorithms to update model states and parameters. At
the same time, physical information can be included using for example prior
parameter estimates. We denote such models as grey-box models.

The thesis is centred around the application of a special class of grey-box mod-
els, so called stochastic grey-box models (see chapter 3), for runo� forecasting
in urban hydrology. Generally, every model that is �tted to data may be consid-
ered as a stochastic model, but the di�erent approaches distinguish themselves
in whether and how they explicitly account for the time-dynamic and autocor-
related model error structures. One of the major advantages of the stochastic
grey-box modelling approach is that it allows us to describe these error struc-
tures time-dynamically in a way which is suitable for on-line purposes.

1.2 Forecasting and Real-time control of Urban

Drainage Systems

An important area of application for on-line models is real-time control of urban
drainage systems. Following the de�nition of [SCC+04], we denote as real-
time control the operation in real time of actuators in the system based on the
monitoring of process variables.

The most common objective for real-time control is to use existing drainage in-
frastructure e�ciently. This permits the operators to reduce environmental (and
economic) impacts (such as combined sewer over�ows, sludge escape from the
wastewater treatment plant, energy consumption or use of treatment chemicals)
with moderate investments into the infrastructure.

While existing implementations have focused largely on the reduction of com-
bined sewer over�ows and thus the reduction of investments into storage basins
(for example [FPM11, FB05, SLBF13, SGT+13]), foreseen challenges such as
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the inclusion of water systems into smart cities ([RTSS13, MB10]) or the ef-
�cient utilisation of storage space in sustainable urban drainage are likely to
contribute to a development where real-time operation of drainage systems be-
comes a standard rather than an exception.

Implementations of real-time control systems on the global or system ([SCC+04])
level can coarsely be distinguished into strategies that were developed o�-line
and strategies where an optimal control decision is determined on-line ([SBB02]).
O�-line strategies can be seen as the traditional approach to real-time control
and have, as a result of their robustness and usually easy interpretation, been
implemented in a multitude of urban water systems. Typically such strate-
gies are implemented in the form of 'IF-THEN' rules, possibly supplemented by
fuzzy systems. Examples of such implementations can be found in [FB05] and
[SLBF13]. With suitable decision rules, such systems can also make use of for
example precipitation forecasts ([MMI05]).

An on-line optimisation strategy dynamically determines the actuator settings
on-line based on (model) forecasts of future system states (such as basin �llings)
and a model-based evaluation of the e�ects of di�erent actuator set points.
Forecasts are required in such a system to gain information about parameters
such as expected future runo�, treatment capacity or energy consumption.

This type of optimisation approach is often considered problematic because
the underlying forecast models need to be simple enough to run in an opti-
mization routine but at the same time provide realistic forecasts of the system
states ([BS05]). Yet, these systems are appealing due to the objectivity of the
derived control decisions, the use of forecast information and thus a poten-
tially higher e�ciency as well as the rather simple adaptability of the system
to new requirements. Recently developed schemes have successfully combined
on-line optimization and forecast models for the operation of drainage systems
([PCL+05, PCR+09]) and partly combined these schemes with decision rules to
determine boundary conditions ([GTC+11]).

New developments also account for the uncertainty of forecasts during decision
making in the control setup ([VG14]). This is an important step due to high
uncertainty related to rainfall measurements and forecasts, and the uncertainty
inherent in the model structures. However, a missing link is the development of
models that can provide probabilistic forecasts (which quantify forecast uncer-
tainty) in an on-line setting over a multitude of horizons from 10 minutes to 12
hours. Stochastic grey-box models may provide such a means as suggested by
[BMPN00, BTM+11, CNH96, TBM+12].
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1.3 Objective of the PhD project

The aim of this PhD project is to develop probabilistic forecast models that can
be applied on-line in urban hydrology. Requirements for such models are:

• Forecast models need to be fast in order to be applicable in on-line rou-
tines.

• Forecast models need to provide accurate forecasts that are reliable and
sharp (see Section 2.2)

• Forecast models need to provide probabilistic forecasts over a multitude
of forecast horizons and account for correlation between the di�erent hori-
zons.

This thesis focuses on the generation of probabilistic runo� forecasts for horizons
up to 120 minutes using stochastic grey-box models. However, the developed
methods can and will also be applied to other problems such as forecasting
pollutant loads and the capacity of the wastewater treatment plant. The thesis
builds on and extends previous work in particular by [BTM+11] and [TBM+12].
It particularly focuses on practical applicability and aims to answer the following
questions:

1. What type of rainfall inputs should be used for short-term runo� forecast-
ing and, in particular, do we bene�t from using quantitative precipitation
estimates (QPE) from weather radar?

2. Do quantitative precipitation forecasts (QPF) provide bene�ts for short
term runo� forecasts?

3. Do short-term runo� forecasts bene�t from a combined rainfall input,
making use of both rain gauge and radar rainfall measurements?

4. How can forecast models and parameters be identi�ed in the context of
noisy data and providing forecasts over a multitude of horizons?

5. How can dynamically changing forecast uncertainties be correctly captured
in a probabilistic model structure?

6. How can probabilistic forecasts be generated for decision making in real-
time control?

7. What e�ect does the consideration of forecast uncertainty have on the
e�ciency of real-time control schemes?
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1.4 Thesis Outline

This thesis is structured as follows. Part I is a report which provides the back-
ground and introduces and summarizes the papers. Within this part, Chapter 2
gives an overview of the general requirements for probabilistic forecast and intro-
duces ways to evaluate probabilistic forecast quality. The methods introduced
in Chapter 2 are used in the later chapters and the articles.

Chapter 3 introduces the grey-box modelling approach. This approach is the
basis for the generation of probabilistic runo� forecasts throughout the thesis.
The chapter explains how to apply grey-box models for rainfall runo� modelling,
how to estimate model parameters, how to generate probabilistic forecasts etc.
and discuss how the approach relates to other uncertainty techniques applied in
hydrology.

Chapter 4 discusses how and what rainfall data should be used for on-line runo�
forecasting over short horizons. We focus in particular on the questions whether
rain gauge or radar data should be applied and how the two data sources can
be combined.

In Chapter 5 we discuss the practical implementation of probabilistic forecasts
from stochastic grey-box models in real-time control and what implications fore-
cast uncertainty has on decision making.

Finally, in Chapters 6 and 7 we conclude the thesis with reference to the objec-
tives de�ned in section 1.3 and provide an outlook for future work.

Part II is a collection of publications and it contains the following papers.

Paper A is a journal article published in Water Science and Technology. It
deals with the combination of radar and rain gauge measurements using
a state-space modelling approach and the application of di�erent rainfall
data for probabilistic runo� forecasting.

Paper B is a journal article accepted by Journal of Hydrology. It assesses the
impact on on-line runo� forecasting skill from time-constant and time-
varying radar adjustment and investigates whether an improved spatial
model resolution is desirable for on-line runo� forecasting.

Paper C is a journal article published in Stochastic Environmental Research
and Risk Assessment. It develops a method for estimation of probabilistic
on-line runo� forecasting models based on the skill of multi-step-ahead
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forecasts and assesses the e�ect of forecast uncertainty on the expected
risk of combined sewer over�ow (CSO).

Paper D is a journal article in preparation for Water Resources Research. It
compares the stochastic grey-box modeling approach with a Bayesian bias
approach for uncertainty modelling in a common urban case study.

Paper E is a journal article in preparation for Environmental Modelling and
Software. It describes the implementation of stochastic grey-box models
for probabilistic runo� forecasting into an existing real-time control scheme
and evaluates the forecast quality that can be obtained in six di�erent
subcatchments.

Paper F is a journal article in preparation for Environmental Modelling and
Software. It evaluates the e�ect of runo� forecast uncertainty on decision
making in real-time control.

Paper G is a manuscript in preparation for Hydrology and Earth System Sci-
ence Discussions. It describes di�erent model structures for describing
forecast uncertainty in stochastic grey-box models and their e�ect on the
calibration of multi-step probabilistic forecasts.
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Chapter 2

Veri�cation of Probabilistic
Forecasts

As explained in Section 1.3 the thesis focuses on the generation of probabilistic
forecasts for short horizons (<2 hours) in urban hydrology. The most common
approach to forecasting in hydrology is still the generation of deterministic or
point forecasts. In this case, the forecast quality can be measured in terms of
the error of the forecasts as compared to observations. Di�erent measures such
as the root mean square error, the delay to peak or the volume error can be
applied here.

For probabilistic forecasts we obtain not a single forecast value but probabilities
that the forecasted quantity takes a given value. This can for example be ex-
pressed parametrically by generating a probability distribution of the forecasted
quantity or non-parametrically by generating various realisations or ensembles
of the forecasted quantity. In either case, we evaluate probabilistic forecast
quality in terms of

• the location of the forecasted distribution with respect to the observations,
quanti�ed for example by the mean absolute error of the forecast median,

• the spread of the forecasted distribution, quanti�ed for example by the
width of prediction intervals,
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• and, in the case of multivariate forecasts over multiple forecast horizons,
the correlation between di�erent horizons.

The purpose of this section is to introduce the measures applied for forecast
veri�cation in this work. For a good overview on measures that can be used
for evaluating point forecast quality, we refer the reader to [BCG+13]. Scoring
rules for probabilistic forecast evaluation are summarized by [GR07].

In this work we largely omit the veri�cation of the correlation structure of
forecasts generated for di�erent forecast horizons as the forecasts are always
generated as multi-step forecasts from a single model. A correlation between
di�erent horizons is thus implicit in the forecasting method.

2.1 Scoring Rules for Point Forecast Quality

Following a de�nition by [Wil11], a generic forecast skill SS can be de�ned as

SS =
A−Aref

Aperf −Aref
. (2.1)

Here A is a measure of forecast accuracy, Aref the accuracy obtained for a
reference (or benchmark) forecast and Aperf the accuracy obtained for a perfect
forecast. Positive values of SS indicate that the evaluated forecast performs
better than the reference. The score values can range between negative in�nity
(if our forecast performs much worse than the reference) and 1 (if our forecast
performs equivalently to the perfect forecast).

In hydrology, the most commonly applied forecast skill is the Nash-Sutcli�e
e�ciency NSE ([NS70]). For a point forecast ŷi which is compared to an
observation yi we obtain

NSE =
1
n

∑
(yi − ŷi)2 − 1

n

∑
(yi − y)2

− 1
n

∑
(yi − y)2

. (2.2)

The measure of forecast accuracy A in this case is the mean squared error. The
mean squared error obtained for the perfect forecast is Aperf = 0. As reference
forecast, the average y over all observations yi is applied. This, however, is a
very weak reference which will lead to NSE values indicating positive forecast
skill even for very badly performing models as is also argued by [SKZ+12].

We can de�ne a more critical forecast skill by replacing the mean of the observa-
tions in equation 2.2 by the last observed value. This leads to the persistence
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index PI ([BCG+13])

PI =
1
n

∑
(yi − ŷi)2 − 1

n

∑
(yi − yi−1)2

− 1
n

∑
(yi − yi−1)2

. (2.3)

The application of the persistence index is di�cult in situations where the obser-
vations are very noisy. This problem can be solved by replacing the last known
observation yi−1 in equation 2.3 by the result of an exponential smoothing ySi−1
of the observations up to the last known observation:

ySi−1 = λ · ySi−2 + (1− λ) · yi−1 (2.4)

The parameter λ must be tuned in a calibration period. In this tuning, the
squared forecast error of the reference forecast from exponential smoothing is
minimized. We follow this approach in paper E and denote it as smoothed
persistence index.

When dealing with probabilistic forecasts, we often evaluate a point forecast
derived from the median of the probabilistic forecasts. We choose the median
to reduce the in�uence from long tails of the distribution on the forecast error.

2.2 Elements of Probabilistic Forecast Quality

Generally, the aim of probabilistic forecasting is to maximize the sharpness of
predictive distributions subject to calibration ([GR07, Pin07]). "`Calibration
refers to the statistical consistency between the distributional forecasts and the
observations, and is a joint property of the forecasts and the events or values that
materialize. Sharpness refers to the concentration of the predictive distributions
and is a property of the forecasts only"` ([GR07]).

The above de�nition implies that probabilistic forecasts should be evaluated by
checking if they are probabilistically calibrated (see for example [Pin13]). This
requires assessing over the whole distribution, whether the observed probabili-
ties match the predicted (or nominal) ones. Subsequently the sharpness of the
distributions should be assessed.

In the following section, we introduce the measures we have applied for the eval-
uation of calibration and sharpness of probabilistic forecasts in this thesis. In
particular, the evaluation of probabilistic calibration over a whole distribution
can be hard to communicate to practitioners. We have therefore in many cases
used a simpli�cation. We extracted the median from the probabilistic forecast
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and evaluated the corresponding point forecast error. This will give an indi-
cation on how good the forecast model captures the physical behaviour of the
considered system. To evaluate the calibration and sharpness of the distribu-
tion, we then focus on the reliability and width of for example 90% prediction
intervals. In addition, a probabilistic score can be applied to evaluate the overall
�t of the predicted distribution.

2.2.1 Calibration

A probabilistic forecast can be considered calibrated or reliable in a probabilistic
sense, if the forecasted probability distribution matches the distribution of the
observations of the considered variable. A simple way to evaluate reliability of a
forecast is to analyse if the predicted (nominal) probabilities match the observed
ones, i.e. whether, for example, for a given con�dence level α between 0 and 1,
a prediction interval with coverage (1− α) · 100 % indeed includes (1− α) · 100
% of the observations.

We express reliability Rel for a con�dence level α as the portion of observations
included in a (1−α) · 100% prediction interval. Initially, in paper C the inverse
de�nition, describing reliability as the portion of observations not included in a
(1−α) ·100% prediction interval was used. We switched to the former approach
later as it is more intuitive.

Following [TBM+12], a reliability bias for con�dence level α can be de�ned
as

RB = Rel − (1− α) (2.5)

and becomes negative if the forecasted distribution is unreliable (a (1−α) · 100
% prediction interval includes less than (1−α) · 100 % of the observations) and
positive if it is overreliable (a (1− α) · 100 % prediction interval includes more
than (1− α) · 100 % of the observations).

Reliability Rel can be analysed for di�erent con�dence levels and plotted in
a reliability diagram ([MW77]). A perfectly reliable forecast will result in a
straight line in this diagram. This is exempli�ed in Figure 2.1. If the reliability
bias RB is plotted instead, a perfectly reliable forecast will yield a constant line
at 0. The forecast evaluated in Figure 2.1 is unreliable for predicted coverages
between 10 and 80% and overreliable for predicted coverages above 80%.

The reliability bias has an upper and a lower bound depending on the considered
level (1−α). A more general approach for the evaluation of predictive distribu-
tions is the predictive QQ-plot which is well described in [RKK+10]. From
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Figure 2.1: Observed reliability Rel (left) and corresponding reliability bias
(RB) for an example forecast (blue) and a perfect forecast (red)

the probabilistic predictions we can for each observation yt derive the value of
the cumulative predicted distribution F (yt) = p(Yt ≤ yt). If the observations yt
are consistent with the predicted distributions, these p values follow a standard
uniform distribution, in the interval [0, 1]. This can be illustrated graphically
in a quantile-quantile plot (see Figure 2.2). A calibrated probabilistic forecast
will lead to a straight line in this plot.
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“reliability” to quantify the statistical consistency between
the time series of xt and its PD, and “resolution” to quantify
the sharpness of the PD.

6.3. Reliability

[113] If the PD is reliably quantified, the observations
correspond to realizations from the PD. This can be examined
using the predictive QQ‐plot [Laio and Tamea, 2007; Thyer
et al., 2009]. If the realizations xt are consistent with Ft, the
p values Ft(xt) = p(Xt ≤ xt) will follow a uniform distribution
on the interval [0,1]. This can be checked graphically: devia-
tions from the bisector (the 1:1 line) denote interpretable
deficiencies (see Figure 3). To simplify the comparison of QQ
plots, they are summarized using two indexes that quantify
the reliability of the PD:


x ¼ 1� 2

0
x ð23aÞ



0
x ¼

XNx

i¼1

j pxðiÞ � pðthÞxðiÞ j =Nx ð23bÞ

�x ¼ 1� �
0
x ð24aÞ

�
0
x ¼

XNx

i¼1

1 0;1f gðpxðiÞÞ
� �

=Nx ð24bÞ

1 0;1f gðzÞ ¼
1 if z ¼ 0 or z ¼ 1

0 otherwise

8<
: ð24cÞ

where px(i) and px(i)
(th) are the ith observed and theoretical

p values of xt, Nx is the number of xt values and 1A(x) is the
indicator function of the set A.

[114] The index a is related to the area a′ between the
p value curve and the 1:1 line, and reflects the overall
reliability of the PD. It varies between 0 (worst reliability,
with all observed p values equal to 0 or 1) and 1 (perfect
reliability).
[115] The index x is the complement of the fraction x′ of

observed p values equal to 0 or 1, which correspond to xt
values outside the range of the PD. It varies between 0 (worst
reliability, with all realizations outside their predictive range)
and 1 (no incompatible realizations). Note that x = 1 does
not imply perfect reliability. Consequently, this index is used
primarily for detecting highly unreliable PDs. For the rain-
fall PD these indices are denoted as ar and xR, while for
the runoff PD, they are denoted as aQ and xQ.

6.4. Resolution

[116] “Resolution” denotes the sharpness (effectively, the
“average precision”) of the PD. Note that two inferences can
both yield reliable PDs, but with different resolutions. In this
paper, the resolution is quantified by indexes p(abs) and p(rel)

defined as the average absolute and relative precision of the
predictions Xt, respectively:

�ðabsÞ
x ¼ 1

Nx

XNx

t¼1

1

Sdev½Xt� ð25Þ

�ðrelÞ
x ¼ 1

Nx

XNx

t¼1

E½Xt�
Sdev½Xt� ð26Þ

where E[] and Sdev[] are the expectation and standard
deviation operators. In this paper, we use the index pR

(abs) =
px=log(�)
(abs) to assess the resolution of the rainfall PD, and the

index pQ
(rel) = px=~q

(rel) for the resolution of the observed runoff
PD. The analysis of log multipliers is based on the absolute
measure because the multiplicative error model (14a) already
represents relative errors.
[117] The data used in (23)–(26) can be prefiltered. In

order to focus on hydrologically significant events, the
computation of indexes in this paper is restricted to observed
rainfalls exceeding 10 mm/d and observed runoffs exceeding
1 mm/d.

7. Experiment A: Estimating Input Errors
When the CRR Model Is Exact

[118] Experiment A examines the OI‐3 calibration scheme
(with weak prior knowledge of rainfall error hyperpara-
meters) when the calibration data contains input/output errors
but the model does not contain structural errors. This estab-
lishes the “best‐case” scenario for parameter estimation,
indicating what can be achieved when the model is accurate
(indeed, exact), and provides a necessary benchmark for the
comparison of more complicated calibration scenarios where
structural errors are present.

7.1. Assessing Well Posedness

[119] MCMC convergence was readily achieved, suggest-
ing that the inference is well posed. This is consistent with

Figure 3. Schematic of the predictive QQ plot and derived
indexes.

RENARD ET AL.: IDENTIFIABILITY OF INPUT AND STRUCTURAL ERRORS W05521W05521

11 of 22

Figure 2.2: Predictive QQ-Plot comparing quantiles from 'p values' of observa-
tions and a standard uniform distribution U[0,1] (from [RKK+10])

2.2.2 Sharpness

Assuming that a probabilistic forecast is calibrated, a good forecast will require
only a very narrow spread of the predictive distribution to capture the observa-
tions, while a bad forecast will yield a wide spread of the predictive distribution
and thus only little information content to the decision maker.

In this work we assess the sharpness (Sh) of probabilistic forecasts by measur-

ing the average width of a (1− α) · 100 % prediction interval. De�ning ût, l̂t as
the upper and lower prediction bounds generated for such an interval at time
step t and considering observations for N time steps, sharpness can be expressed
as:

Sh =
1

N

N∑
t=1

(
ût − l̂t

)
. (2.6)

Lower sharpness values indicate a higher information content in the probabilistic
forecast. The sharpness measure Sh, however, depends on the absolute value of
the forecasted quantity. [JXZS10] therefore introduced the average interval
length ARIL as a normalized measure by dividing the sharpness value of the
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forecast generated at time step t by the corresponding observation yt:

ARIL =
1

N

N∑
t=1

ût − l̂t
yt

. (2.7)

2.2.3 Scoring Rules for Probabilistic Forecast Quality

In practice, probabilistic forecasts will rarely be perfectly calibrated. A compar-
ison of di�erent forecasts must thus take both, the calibration and the sharpness
of the forecasts into account.

There are di�erent approaches to combine these two qualities into a single value.
We consider two of these approaches in this work: the interval score SC focuses
on the evaluation of prediction intervals and the continuous ranked probability
score CRPS can be considered as a mean squared error measure of the whole
predictive distribution.

For a single time step, the interval score of a (1−α) ·100 % prediction interval
with upper bound u and lower bound l and the corresponding observation y is
found as

SCα = u− l +
2

α
(l − y) ·H(l − y) +

2

α
(y − u) ·H(y − u) (2.8)

where H denotes the Heaviside function and takes the value of one if its argu-
ment is greater than zero and zero otherwise. The score for a whole time series
is the average of the score values derived for the single time steps. This score
evaluates the width of the prediction interval and adds a penalty for observa-
tions not included in the prediction interval. Smaller score values correspond to
better forecasts.

For a single time step the continuous ranked probability score for a proba-
bilistic forecast s with cumulative distribution F (s) and observation y is de�ned
as

CRPS = −
∫ ∞
−∞

(F (s)−H(s ≥ y))2ds. (2.9)

Again, H denotes the Heaviside function and the score for a whole time series is
the average over the di�erent time steps. This score can be depicted graphically
as shown in Figure 2.3. The observation is represented as a stepwise cumu-
lative distribution function (red). The CRPS measures the area between the
observation and the predicted cumulative distribution function (black). Better
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forecasts yield lower di�erences between the two distributions and thus lower
score values.
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Figure 2.3: Graphical interpretation of the CRPS - the score corresponds to
the marked area between the observation (red) and the predic-
tive distribution (black), both expressed as cumulative probability
functions F

Analytical expressions for the CRPS are available if the distribution of the
probabilistic forecast is known. However, in most cases we have used a scenario
(or ensemble) approach for the generation of probabilistic forecasts. [Brö12]
proposed an approach for the evaluation of the CRPS using ensembles which
is based on approximating the cumulative distribution function of the forecast
with a piecewise constant function.

Considering k = 1, ...,K ensemble members with values ek, we obtain

F (s) =

K∑
k=1

ωkH(s− ek). (2.10)

H denotes the Heaviside function. The weights ωk are assumed > 0 for all
k and

∑
k ωk = 1 and correspond to the probability that the forecasted value

equals any ensemble member ek. Thus ωk = 1
K . This expression of F (s) can be

inserted in equation 2.9 to evaluate the CRPS for an observation y.

Probabilistic scores can be normalized according to equation 2.1. The measure
of accuracy A is then the CRPS, for example. In this case the score value
Aperf for the perfect forecast is 0. A reference can be derived from the so-
called "`climatological"' forecast. We use all the observations in the considered
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dataset to derive an empirical distribution. This same "`climatological"' forecast
distribution is then applied at every time step and the CRPS is derived for each
observation. Averaging over all time steps, we obtain the reference score Aref .
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Chapter 3

Grey-box Modelling of
Sewer Flows

3.1 Introduction to Stochastic Grey-box Models

The thesis focuses on the generation of probabilistic runo� forecasts using stochas-
tic grey-box models (c.f. Section 1.3). As described in Section 1.1 we consider
a grey-box model to be a (strongly) simpli�ed representation of reality which
can, nevertheless, be interpreted physically. In this work a stochastic grey-box
model is de�ned as the implementation of such models in a state-space frame-
work using stochastic di�erential equations (SDE). This terminology was largely
developed at the Department for Applied Mathematics and Computer Science
at the Technical University of Denmark and can be found in numerous previous
works (for example [BNMP99, BTM+11, KMJ04, Møl10, NM06]).

Generally, such a model structure consists of a system of time-continuous state
(equation 3.1) and time-discrete observation equations (equation 3.2). The for-
mer describe the evolution of the considered system and often may be considered
the "`actual model structure"'. The latter relate the system states (for exam-
ple �lling of virtual basins in a reservoir cascade) to actual observations (for
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example �ow measurements).

dXt = f(Xt, ut, t, θ)dt︸ ︷︷ ︸
Drift term

+σ(Xt, ut, t, θ)dωt︸ ︷︷ ︸
Diffusion term

(3.1)

Yk = h(Xk, uk, tk, θ) + ek (3.2)

In equation 3.1 X corresponds to a vector of (unobserved) system states, u
to a vector of external forcings (model inputs), t to the considered time point
and θ to a vector of model parameters. Other than an ordinary di�erential
equation (ODE), the system equations are divided into a (physical) drift term
(expressed as function f) and a (stochastic) di�usion term (expressed as function
σ). The latter can be used to model uncertainties resulting from insu�cient
model structures and uncertain inputs. The di�usion term is driven by a Wiener
process with increments dωt. These are normally distributed with mean 0 and
variance dt (c.f. [Mad08] and paper D). It is important to note that drift and
di�usion term represent a coupled system and that generally the expected value
for the states Xt is not equal to the solution of the ODE represented by the
drift term.

In equation 3.2 the system states for discrete time steps k are related to a vector
of observations Yk by the function h. The observations are assumed to be subject
to a normally distributed error ek with mean 0.

An extended Kalman �lter (EKF) is applied to adjust the system states based
on current observations Yk of the system ([KMJ04]). The models applied in this
thesis are implemented in the open source software CTSM ([JKB+13]) and the
routines implemented in this software are applied mainly for �ltering and (with
exceptions) for parameter estimation.

3.2 Rainfall Runo�Modeling with Stochastic Grey-

box Models

3.2.1 The Linear Reservoir Cascade

In this work, we exclusively apply a linear reservoir cascade considering either
two or three reservoirs for runo� forecasting. This approach is conceptually
simple, in fact, in most cases structural model de�ciencies can be observed.
However, it also allows for the identi�cation of problems arising in parameter
estimation and for modeling forecast uncertainties in the non-ideal case where
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Figure 2.4: A system of N linear reservoirs. Corresponding hydrographs for
the output Qn(t) are shown to the right.

lives. For rural areas, or areas that have not been developed, the drainage oc-
curs naturally as a part of the hydrological cycle (Figure 2.1) and infiltrates into
the vadose zone. For developed areas, however, or so-called urbanised areas,
the human factor has severely influenced the drainage of the excess water in
the catchment.

Urban drainage was introduced in order to improve sanitary conditions in
the populated areas, and to divert the flow out of these areas. In order to
remove both wastewater and rainwater, and thereby minimise the inconve-
nience for the population, pipe networks are constructed below ground surface
in cities and towns. In cities the rain falls on either a permeable or impermeable
area. The permeable areas drain the water to the subsurface by infiltration, but
in the impermeable areas the excess water is collected from the paved areas,
e.g., roofs and streets, by open channels linked to the drainage systems. Fur-
thermore, through wastewater from the households the population also con-
tributes to the runoff system.

In papers E and F the linear reservoir model in (2.8) is applied to a simple
model of urban drainage system.

S3(t)

S2(t)

S1(t)

SN(t)

Figure 3.1: A system of N linear reservoirs. Corresponding hydrographs for
the output Qn(t) are shown to the right (from [Tho11]).

the model does not perfectly describe the data. We consider this case relevant
for practical applications.

A sketch of such a model layout is shown in Figure 3.1. We refer to [CMM88]
for a detailed explanation of the reservoir cascade. The principal assumption is
that runo� hydrographs can be described by routing the rainfall input through
a series of virtual reservoirs where the out�ow Qi,t at time t from a reservoir
depends on the storage level Si,t in the reservoir and on a time constant K.

Qi,t =
1

K
· Si,t (3.3)

Rainfall input is considered only to the �rst reservoir and, considering an e�ec-
tive catchment area A and rainfall input P , we obtain a system of di�erential
equations describing the runo� routing through the reservoir cascade:

d


S1,t

S2,t

...
SN,t

 =


A · Pt − 1

KS1,t
1
KS1,t − 1

KS2,t

...
1
KSN−1,t −

1
KSN,t

 dt (3.4)

where the out�ow hydrograph is found as

Qt =
1

K
· SN,t (3.5)
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This model structure can be considered a grey-box model as it does not rely on
�rst order principles but the model parameters e�ective catchment area A and
time constant K can be interpreted physically.

3.2.2 The Linear Reservoir Cascade as Stochastic Grey-

box Model

The model structure described above can easily be cast into a state-space layout
and thus be applied as a stochastic grey-box model. This approach was adapted
to modeling urban drainage systems by [BTM+11]. Considering N = 2 virtual
reservoirs, we obtain the state equations

d

[
S1,t

S2,t

]
=

[
A · Pt + a0 − 1

KS1,t
1
KS1,t − 1

KS2,t

]
dt+

[
g1(S, u, t, θ) 0

0 g2(S, u, t, θ)

]
dωt. (3.6)

Here, the dry weather �ow a0 is considered as input to the �rst model states to
avoid state values approaching 0 which can be problematic in the case of state
dependent noise descriptions. g1 and g2 symbolize generic functions for scaling
the variance of the di�usion.

The observation equation for time step k in hours h is found as

Yk = Qk =
1

K
S2,k +Dk + ek (3.7)

where the dry weather variation Dk is described by a set of trigonometric func-
tions

Dk =

2∑
i

(sisin
i2πk

24h
+ cicos

i2πk

24h
) (3.8)

A transformation may be applied to the observations which will be discussed in
Section 3.5. Depending on the catchment characteristics, more detailed model
structures may be applied as discussed by [Bre12].

3.3 Model Structures for Uncertainty in Stochas-

tic Grey-box models

Constant Di�usion
The di�usion term in equation 3.6 can take di�erent structures. In the simpliest
case, a constant di�usion term is applied:

gi = σi (3.9)
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where the parameter σi for the i-th state is determined as part of the parameter
estimation routine.

State Dependent Di�usion
[Bre12] and [TBM+12] have focused on di�usion structures that depend on the
current state of the model. Suggested candidates were

1. A direct linear dependency on the state

gi = σi · Si (3.10)

2. An exponentially scaled dependency on the state with scaling parameter
γ

gi = σi · Sγi (3.11)

3. A logistic dependency on the state that reduces the variance if the state
approaches an anticipated maximal level Smax. This approach corresponds
to the case of sewer �ows reaching the maximal pipe capacity.

gi = σi · Si · (Si,max − Si) (3.12)

The reasoning behind these approaches is that the uncertainty of �ow predic-
tions is high during rain events and low in dry weather situations. Even the
simple linear state dependency has proven to be a strong benchmark and hard
to outperform by other di�usion structures. In addition, these approaches have
the desirable property of scaling the di�usion to 0 if the states approach very
small values so that negative forecasts are avoided. The state dependent di�u-
sion term was therefore applied in several works (papers B,C and E).

Nevertheless, the state-dependent approaches are problematic for two reasons:

• Forecast uncertainty for dry weather periods and rain events is not ad-
dressed separately and lumped into the same parameters. This can lead
to an underestimation of forecast uncertainties during rain periods if ex-
tended dry weather periods are included in the parameter estimation (pa-
pers B and E).

• Forecast uncertainty depends on the forecasted states themselves. This
implies that, for example, an underestimation of observed �ows by the
forecast (in particular at the beginning of rain events) will also lead to an
underestimation of forecast uncertainty (and vice versa). In addition, fore-
cast uncertainty at the end of a rainfall event is typically small, although
�ows in the sewer system are still high. The state dependent di�usion
structure will not be able to capture this behaviour.
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Figure 3.2: Fraction S2

10+S2 for di�erent state values S. Realistic state values

in the considered catchments are > 300m3.

Input Dependent Di�usion
To overcome the above limitations, we propose a di�usion structure which de-
scribes forecast uncertainty as the sum of a constant dry weather uncertainty
σi,1 and an external forcing F scaled by a constant parameter σi,2. It is desirable
to avoid negative state forecasts to ensure stability of the model. Therefore, we
introduce a rational state dependency as shown in equation 3.13.

gi = (σi,1 + σi,2 · F )
S2
i

c+ S2
i

(3.13)

The constant c can be selected by the modeller. The fraction in equation 3.13
should ideally be one for any realistically anticipated state values and approach
0 as Si approaches 0 (Figure 3.2). We here use a value of c = 1.

The di�usion structure proposed in equation 3.13 resembles the formulation
of model bias used to describe simulation uncertainty in [DHS+13]. The time
lagged rainfall input Pk−l is applied as external forcing F by the authors. The
rainfall input, however, exhibits strong relative variations at irregular patterns.
The di�usion scaling then becomes similarly irregular. Consequently, we apply
a smoothed and time lagged rainfall input instead.

Fk = λ · Fk−1 + (1− λ)Pk−l (3.14)

The smoothing parameter λ ∈ [0, 1] and the time lag l ∈ [0, 1, . . . ,∞) are
identi�ed as part of the parameter estimation procedure. Figure 3.3 depicts the
e�ect of smoothening rainfall observations using di�erent smoothing parameters.
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Figure 3.3: Rainfall observations in 10min resolution (grey) together with ex-
ponentially smoothened rainfall according to equation 3.14 with
l = 0 and λ = 0.9 (green) and λ = 0.98 (blue)

Instead of the rainfall input, we can also use a smoothed version of the observed
model errors as external forcing for the di�usion term in equation 3.13. If
we consider innovations (or one-step-ahead prediction errors) εk for a forecast
created at time step k − 1, we obtain

Fk = λ · Fk−1 + (1− λ)ε2k (3.15)

This may be interpreted as a model for generalized autoregressive conditional
heteroskedasticity (GARCH) as applied in Econometrics ([Bol86]). This kind of
external forcing for the di�usion term is expected to perform well in capturing
the forecast uncertainty over short horizons. Over longer forecast horizons,
the performance of this approach is questionable as the future model error is
unknown at the time of forecast generation (paper G).

3.4 From State-Dependent Di�usion to Constant

Di�usion - Lamperti Transformations

All structures of the di�usion term discussed in Section 3.3 include a dependency
on the state value itself. Such structures are di�cult to handle in CTSM as the
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extended Kalman Filter requires higher order terms ([Ves98]). We can avoid
this problem by applying so-called Lamperti transformations that move the
state dependency from the di�usion term of the SDE to the drift term. We
obtain a set of SDE's with a more complicated (and typically highly non-linear
drift term) and a state-independent (and ideally constant) di�usion term.

As discussed by [Møl10] and [Iac08], the application of such transformations
is also advisable for the simulation of SDE's. State dependent di�usions can,
together with the drift term, put restrictions on the state space. Considering for
example equation 3.6 with a linearly state-dependent di�usion, limits the state-
space to positive values for S1 and S2. When simulating the untransformed
equation it is numerically not guaranteed that this limitation is obeyed. How-
ever, after an appropriate transformation the process lives on the entire real axis
and numerical problems on the boundary of the domain are avoided ([Møl10]).

[Møl10] discusses the derivation of Lamperti transformations in detail. In this
work, we give only the principle and summarize the results for the linear and the
exponentially scaled state-dependent di�usion terms described in Section 3.3. In
Section 3.3 we derive the transformation for the input dependent di�usion.

3.4.1 The General Lamperti Transformation

Consider the stochastic di�erential equation for the i-th state of a model with
state vector X

dXi,t = fi(Xt, ut, t, θ)dt+ σi(Xt, ut, t, θ)dωt = fi(·)dt+ σi(·)dωt. (3.16)

Now consider a transformed state Zi,t = φ(Xi,t). Assuming a di�usion process
which does not depend on other model states, we can derive a SDE for the
transformed state using Itô's lemma ([Øks98])

dZi =

(
∂φ

∂t
+ fi(·)

∂φ

∂Xi
+
σ2
i (·)
2

∂2φ

∂X2
i

)
dt+ σi(·)

∂φ

∂Xi
dωi (3.17)

To obtain a transformed process with constant di�usion, the task is thus to
de�ne a transformation such that

1

σi(·)
=

∂φ

∂Xi
(3.18)
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3.4.2 Lamperti Transformation for the Input Dependent

Uncertainty Description

We consider the stochastic di�erential equation

dXi,t = fi(Xt, ut, t, θ)dt+

(
ϕ(F )

X2
i,t

c+X2
i,t

)
dωt (3.19)

where ϕ is a function depending on an external forcing F (c.f. equation 3.13)
and c is some constant.

As shown in equation 3.18 we �nd a transformed state Zi = φ(Xi) from

X2
i + c

ϕ(F ) ·X2
i

=
∂φ

∂Xi
. (3.20)

Integrating equation 3.20 results in

Zi =
1

ϕ(F )

(
Xi −

c

Xi

)
. (3.21)

The corresponding backtransformation is found as

Xi =
ϕ(F ) · Zi

2
+

√
(ϕ(F ) · Zi)2

4
+ c. (3.22)

Note that we only consider the positive root of the quadratic equation as the
untransformed state Xi must be positive.

We �nd
∂φ

∂t
= 0,

∂φ

∂Xi
=

X2
i + c

ϕ(F ) ·X2
i

,
∂2φ

∂X2
i

= − 2c

ϕ(F ) ·X3
i

(3.23)

and apply Itô's lemma ([Øks98]) to obtain the transformed state equation:

dZi =

(
0 + fi(·)

c+X2
i

ϕ(F ) ·X2
i

− c · ϕ(F ) ·Xi

(c+X2
i )2

)
dt+ 1 · dωi (3.24)

We substituteXi by equation 3.22 and use this new state equation for parameter
estimation and simulation of the stochastic model in the transformed space. Also
in the observation equation, we apply the backtransformation 3.22. Clearly, the
backtransformation guarantees positive state values Xi.

The disadvantage of applying the Lamperti transformation is that a simple
linear model equation can become strongly nonlinear in the transformed space
and thus di�cult to handle numerically.
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3.4.3 Overview of Applied Lamperti Transformations

Table 3.1 gives an overview of the transformed state equations resulting for the
di�usion structures applied in this work. The linear and exponentially scaled
state dependencies are discussed in [Møl10] and [BTM+11].
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Table 3.1: Di�usion structures, state transformations and transformed state
equations for selected di�usion types
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3.5 The Relation between Lamperti and Data Trans-

formations

Several options for transforming the �ow observations are discussed in [BTM+11]
and [BMMM12]. In [BTM+11] a logarithmic transformation of the observations
is suggested, based on the consideration that measurement uncertainty increases
with the �ow rate. The logarithmic transformation accounts for this behaviour
as it leads to a multiplicative behaviour of the observation error.

We propose a di�erent reasoning here. The parameter estimation procedure
(c.f. Section 3.6.1) and the extended Kalman �lter implemented in CTSM both
assume that the innovations or one-step ahead predictions Ŷk|k−1 are normally
distributed with covariance matrix

∑yy
k|k−1. Assuming that, as a result of the

Lamperti transform, the state prediction Ẑk|k−1 from equation 3.17 is normally
distributed, the form of the observation equation (in our case linear, see equation
3.7) and the backtransformation (table 3.1) de�ne which transformation should
be applied to the observations. The exact same transformation will be applied
also to the observation equation, and we need to obtain approximate normality
for the resulting forecast Ŷk|k−1 (c.f Section 3.6.1).

To illustrate this problem, we perform an experiment by sampling from an
assumed normal distribution for Z. We select a time constant K = 5 1

h and
mean and variance for the (imagined) state Z in such a way, that the �ow
prediction

Q̂ =
1

K
· X̂ =

1

K
· φ−1(Ẑ) (3.25)

resulting from the backtransformed state X has a mean of 800m3/h and a width
of 320m3/h of the 95% prediction interval.

We use a sample size of 106 values for Z. Considering the di�erent variants of φ
resulting from di�erent Lamperti transformations, we assess whether Q̂ and its
log-transformed pendant log(Q̂) can be assumed normally distributed. Figure
3.4 shows the corresponding histograms.

We see from �gures 3.4a and 3.4b that for the linear state dependency and the
exponentially scaled state dependency (we consider γ = 0.8), a log transform of
the observation equation (and thus also the observations) will lead to a predictive
distribution which is closer to normality. This is a shortcoming of papers B and
E where no transformation was applied to the observations. We can, however,
also notice in �gures 3.4a and 3.4b that the distribution for Q̂ is only slightly
skewed, if the standard deviation is not too big. This is also the case in the
articles B and E.
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(c) External Forcing

Figure 3.4: Histograms of �ow predictions Q̂ and log-transformed �ow pre-
dictions log(Q̂) considering di�erent Lamperti transformations for
the normally distributed state Z
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For the new state dependency that was introduced for the consideration of
external forcings (we consider c = 1 and ϕ = 1), we obtain the reverse picture
(Figure 3.4c). The predictive distribution for Q̂ is almost perfectly normal, while
the distribution for log(Q̂) is slightly skewed. Again the deviation is limited,
but no transformation should be applied to the observation equation (and the
observations) in combination with this Lamperti transformation.

We conclude that the choice of transformation for the observations should
be based on considerations concerning the assumptions on normality for the
Kalman �ltering and parameter estimation procedures rather than temporal
variations of the measurement error.

Finally, the choice of data transformation can also be a�ected by the quality
of the observed data. Negative �ow observations (observed in paper E, for
instance) make it impossible to use a logarithmic transformation unless some
smoothing is applied to the data which in turn introduces time lags into the
observations.

3.6 Parameter Estimation in Stochastic Grey-box

Models

3.6.1 Maximum Likelihood Estimation

The parameter estimation method implemented in CTSM is based on the max-
imum likelihood principle ([Mad08, Paw01]). This method is comprehensively
documented in [KM03] and [KMJ04]. For time series data, the likelihood func-
tion is commonly expressed as a product of one step ahead conditional densities.
Most commonly when working with CTSM, we use a frequentist approach where
the only aim is to �nd the best performing parameter set. We do not consider
parameter uncertainty when generating probabilistic forecasts. The underlying
assumption is that commonly su�cient data is available to identify the correct
set of parameters. However, it is also possible to consider prior information in
the parameter estimation procedure (see Section 3.6.2).

The likelihood for a parameter set θ given a set of l-dimensional observations
yi ∈ Rl

Yn = [yn, yn−1, . . . , y1, y0] (3.26)
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can be expressed as

L(θ, Yn) =

(
n∏
k=1

p(yk|Yk−1, θ)

)
p(y0|θ) (3.27)

Assuming that the one-step ahead forecast errors (innovations) εk = yk− ŷk|k−1
are iid and normally distributed with mean 0 and covariance matrix Rk|k−1 =
V (yk|Yk−1, θ), the likelihood function can be rewritten as

L(θ, Yn) =

 n∏
k=1

exp
(
− 1

2ε
T
kR
−1
k|k−1εk

)
√
det(Rk|k−1)(

√
2π)l

 p(y0|θ) (3.28)

Conditioning on y0, equation 3.28 can be solved as an optimization problem.
The one-step ahead forecasts and hence the innovations are obtained through
extended Kalman �ltering. This implies that during parameter estimation every
forecast step is preceded by a state updating to the current observation.

The updating ensures that the model follows the realisation of the stochastic
process described by the observations. We can avoid biased parameter estimates
resulting from an adjustment of the simulation model to a single realisation
of the (stochastic) reality and obtain a better description of the short term
dynamics. We assume a normal distribution of the innovations which is usually
a realistic assumption.

The principle is illustrated in Figure 3.5. The model is updated to the observa-
tions at every time step (each forecast starts closer to the observation than the
previous forecasted value). In simple terms, the model parameters are identi�ed
by minimizing the average of the innovations shown in red.

The downside of this approach is that occasionally the state updating becomes
to be dominant in the parameter estimation. The observation noise is then
estimated excessively small and the model states are perfectly updated to the
�ow observations at every time step while the likelihood values become less
sensitive to the physical model parameters which are then di�cult to identify.

Furthermore, the mean of the one-step ahead predictions is generally obtained
by evaluating only the drift term of the SDE as we assume a locally linear
behaviour. This is not necessarily equal to the behaviour of the actual stochastic
process.

Nevertheless, the Maximum likelihood based estimation has proven to provide
robust results in a multitude of applications (for example [ARM13, BMPN00,
BTM+11, Møl10, BM11]).
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Figure 3.5: Estimation principle for the Maximum Likelihood approach. The
true �ow (with observations at time point T = 1, . . . , 8) is shown
blue, arrows symbolize one step-ahead model forecasts starting
from an updated model state, red lines innovations ε.

3.6.2 Maximum A Posteriori Estimation

In the parameter estimation procedure provided by CTSM prior information
can be considered by using the maximum a posteriori (MAP) estimate. The
likelihood function is in this case extended with a penalty for the deviation of
the parameter from its prior mean. Considering θ ∈ Rp, µθ = E(θ), Σθ = V (θ)
and εθ = θ − µθ, we obtain

L(θ, Yn) =

 N∏
k=1

exp
(
− 1

2ε
T
kR
−1
k|k−1εk

)
√
det(Rk|k−1)(

√
2π)l

 p(y0|θ)
exp

(
− 1

2ε
T
θ Σθεθ

)√
det(Σθ)(

√
2π)p

(3.29)

Again, conditioning on y0, the MAP estimate is obtained as ([KM03, KMJ04])

θ̂ = arg min(−ln(L(θ|Yn, y0))). (3.30)

Prior information can be assigned to selected parameters only by using non-
informative priors with large standard deviations for the other parameters. This
estimation approach can be used to avoid overly small estimates of the observa-
tion noise or if the data do not provide su�cient information to identify all the
parameters.
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3.6.3 Estimation Based on Multi-step Forecast Veri�ca-

tion

The aim to apply the stochastic grey-box models for multi-step ahead forecasts
motivated the search for a robust estimation method that allows us to identify
a model which also captures the long-term dynamics of the system. This is not
always guaranteed with the estimation approach described in Section 3.6.1. A
�rst step in this direction was made in paper A and the estimation procedures
were documented in paper C.

As we intend to use the runo� forecasting models for multi-step forecasts in
a real-time control setting, the idea behind this approach is to estimate the
model parameters based on the quality of multi-step forecasts rather than one-
step ahead forecasts as described in Section 3.6.1. In this setting, multi-step
forecasts are generated by repeated extended Kalman �ltering without updating,
as implemented in CTSM ([KM03]), and assumed normally distributed with
variance Ri+j|i.

The objective function at time step i is found as a weighted average of the scores
SC for �ow prediction horizons i+ j up to the maximal horizon i+ k

SCi =
1∑k

j=1(k − j + 1)
(

k∑
j=1

(k − j + 1) · SCi,j). (3.31)

This is illustrated in Figure 3.6. Shorter horizons receive more weighting in
the parameter estimation procedure, as the objective in practice is to generate
forecasts of runo� volume for the di�erent horizons i + j to i + k. The runo�
volume for a given horizon is an integral over the �ow predictions for this horizon
and all previous horizons. Flow predictions for shorter horizons thus a�ect the
runo� volume forecast for more horizons than the �ow predictions for longer
horizons and should be given higher weighting.

We apply the CRPS (Section 2.2.3) as the score function SC for the �ow pre-
dictions. The approach is documented as "`model D"' in [LMM14]. Advantages
of the approach are a more robust parameter identi�cation and that the model
is estimated according to the forecasting objective, as the model is estimated
based on multi-step forecasts rather than one-step ahead forecasts. A compar-
ison in Section 3.6.5 shows that we obtain lower point forecast errors with this
estimation approach.

However, the approach also has several disadvantages.

• First, although practically appealing, parameter estimation based on a
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Figure 3.6: Estimation principle for the forecast based approach. The true
�ow (with observations at time point T = 1, . . . , 8) is shown blue,
arrows symbolize model forecasts generated at t = 0. In this
example we consider a horizon k = 5. The score value for the �rst
time step SC0 is found by an evaluation of the probabilistic �ow
forecasts for every horizon j = 1, . . . , 5

score function removes the theoretical support of the likelihood principle
and thus provides a less well founded interpretability of prediction bounds,
for example

• Second, the estimation approach described in [LMM14] relies on a nor-
mality assumption for multi-step predictions, which cannot necessarily be
assumed on longer forecast horizons.

• Third, when generating multi-step forecasts using the EKF setup in CTSM,
we do not actually simulate the stochastic process described by the SDE
but only the drift term of the state equations ([KM03]). The expected
value of the multi-step forecast used during parameter estimation and the
expected value from an actual stochastic simulation of the SDE's (see
Section 3.7) are therefore not necessarily the same.

The latter two issues can be avoided if multi-step ahead forecasts during pa-
rameter estimation are generated not by extended Kalman �ltering but by an
ensemble-based approach relying on a stochastic simulation of the SDE's as de-
scribed in Section 3.7. Furthermore, as we observe an underestimation of fore-
cast uncertainties by the models estimated using the forecast based approach
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(papers B, C, E), we can replace the CRPS as a score function in equation 3.31
by another score function, for example, a Gaussian density.

3.6.4 Numerical Optimisation

All of the parameter estimation approaches described above rely on a numeri-
cal minimization of the objective function. We have in the �rst works applied
Genetic algorithms ([Whi94], paper B) and the DDS algorithm ([TS07], papers
B and E) because the methods are insensitive to missing values in the objective
function evaluation. This behaviour was necessary because the previous version
of CTSM would frequently produce errors for "`random"' parameter combina-
tions. We have applied these algorithms repeatedly starting from the optimum
of the previous optimization run to ensure that a parameter set near the true
optimum was identi�ed.

As a result of improvements in CTSM ([JKB+13]) the application of the PORT
algorithm ([Gay90]) became possible in later works (papers D and G). In paper G
we combine this algorithm in series with the DDS algorithm if integer variables
need to be optimized.

3.6.5 Comparing Estimation Approaches for a Sample Catch-

ment

Extending the discussion in paper C, in this section we compare the forecast
quality for three of the catchments considered in paper E (Amager East - EAm,
Colloseum - COL, Kløvermarken - Klo). We consider a cascade of three reser-
voirs with time-invariant parameters as shown in paper E. We consider point
and probabilistic forecast quality for models estimated using the Maximum Like-
lihood approach (ML, Section 3.6.1) and the forecast based approach using the
CRPS (Section 3.6.3). Forecast quality is compared on a 120min or 60 time
step horizon for the four validation events described in paper E.

Figure 3.7 shows the point and probabilistic forecast skill for the di�erent events
and catchments while tables 3.2 and 3.3 depict the reliability Rel and ARIL
(c.f. 2.2.1) values for 90% prediction intervals, respectively. Point forecast are
derived using the median of the probabilistic multi-step forecasts (c.f. 3.8).

We see that the model estimated using the forecast based approach (Section
3.6.3) provides better point (NSE, PI) and probabilistic forecast skill (CRPS)
on the 60 time step horizon than the model estimated using the ML approach.
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This is exactly the intended e�ect of performing parameter estimation based
on forecasts. The forecast based estimation does, however, provide less reli-
able forecasts than the ML approach. The forecast uncertainty (table 3.3) is
estimated smaller leading to smaller reliability values (Table 3.2). Also this
tendency has been observed before (papers B, C, E).

Table 3.2: Reliability (Rel) of 90% prediction intervals on a 120min horizon
for three catchments considered in paper E

Catchment Estimation approach Event 1 Event 2 Event 3 Event 4
EAm ML 59% 76% 65% 49%
EAm CRPS 60% 68% 72% 65%
COL ML 26% 49% 76% 40%
COL CRPS 40% 52% 88% 37%
Klo ML 75% 79% 79% 65%
Klo CRPS 87% 96% 89% 81%

Table 3.3: Average Interval Length (ARIL) of 90% prediction intervals on a
120min horizon for three catchments considered in paper E

Catchment Estimation approach Event 1 Event 2 Event 3 Event 4
EAm ML 72% 73% 78% 57%
EAm CRPS 118% 117% 117% 90%
COL ML 55% 54% 83% 136%
COL CRPS 84% 77% 117% 206%
Klo ML 87% 78% 73% 82%
Klo CRPS 251% 213% 182% 196%
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Figure 3.7: Forecast skill (NSE, Persistence Index PI, normalized CRPS) in
the EAm, Col and Klo catchments for the validation events in
paper E for models estimated using the ML based estimation ap-
proach (left, c.f. Section 3.6.1) and the forecast based estimation
approach (right, c.f. Section 3.6.3)
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3.7 Simulation of Stochastic Di�erential Equa-

tions

Simulations of stochastic di�erential equations distinguish themselves from those
of ODE's in that we need to consider a coupled drift and di�usion term system.
There is no single solution for a SDE but only a set of realisations which as
a whole have statistical properties describing the stochastic process. Simula-
tion methods for SDE's are described by [KP99] and [Iac08]. In this work, we
mainly apply such stochastic simulations for the generation of ensemble-based
probabilistic forecasts (see Section 3.8).

The simplest simulation method for SDE's is the Euler-Maruyama scheme ([KP99]).
The considered time steps ∆t are discretized into increments of equal length h.
The simulated state for the i-th increment X̂t+h·i|t is then found as

X̂t+h·i|t =X̂t+h·(i−1)|t + f
(
X̂t+h·(i−1)|t, ut+h·i, t+ h · i, θ

)
· h+ (3.32)

σ
(
X̂t+h·(i−1)|t, ut+h·i, t+ h · i, θ

)
·∆Wt+h·(i−1) (3.33)

∆Wt+h·(i−1) is a realisation of an increment of the Wiener process which is
equivalent to a random normal number with mean 0 and variance h. We apply
the Euler-Maruyama scheme for the generation of probabilistic forecasts in pa-
pers E and F. A discretization step of h = ∆t/100 is used for the simulations in
these cases.

The Euler-Maruyama scheme is easily implemented but does have drawbacks
in that very small increments h may be required to properly capture the phys-
ical and stochastic behaviour of the simulated process. We can avoid issues
in modeling time-varying di�usions and make the state variables de�ned over
the whole real domain by applying Lamperti transformations to our model (see
Section 3.4). The resulting transformed state equations, however, are typically
non-linear and sti� in some cases. Improved solution methods that are valid in
such cases are implicit (such as the single step backward Euler method (SSBE,
[HMS02]) - see paper G), account for the Jacobian of the drift term (such as
the weak exponential scheme ([Mor05])) or apply predictor-corrector schemes
([BLP08]).
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3.8 Generating Multi-step Probabilistic Forecasts

from Stochastic Grey-box models

The eventual purpose of the considered stochastic grey-box models is to gener-
ate probabilistic forecasts of runo� volume for real-time control. The relevant
forecast horizon depends on the current state of the system, in particular the
current basin �llings. Flow forecasts must therefore be generated for a multitude
of forecast horizons and runo� volumes must be derived from these.

In a probabilistic sense, we need to account for the correlation between the �ow
forecasts for di�erent horizons. Furthermore, the runo� volume is a sum of the
�ow forecasts for di�erent horizons. The distribution for this sum of random
variables is not necessarily straight forward to derive. In paper C we have used
a sampling approach while subsequently we have moved to an ensemble (or sce-
nario) based approach (papers B, E and G) to derive the predicted distribution
of runo� volume.

We aim to generate a probabilistic k-step ahead forecast of runo� volume V̂t+k|t
starting at time step t. We follow the scheme shown in Figure 3.8:

1. Assuming the last �ow observation Qt being available at t, we start with
the updated model states Zt,t provided by the extended Kalman �lter.
We assume these to be multivariate normal with variance matrix Σt|t (this
assumption is also made in the Kalman �ltering).

2. We generate N multivariate samples from this distribution (using the R-
package ([RCT13]) MASS [VR02]). These serve as a starting point for the
simulations.

3. We use the Euler-Maruyama scheme as described in 3.7 to generate N
simulations of the Lamperti-transformed state equations up to t+ k.

4. We integrate each �ow simulation into a runo� volume and obtain a sample
of N runo� volumes V̂t+k|t.

5. We empirically describe the forecasted distribution using quantiles from
the sample of runo� volumes.

The observation noise in the proposed scheme can be disregarded as it is not
relevant for decision making in real-time control. Correlation between the runo�
forecasts for di�erent horizons does not need to be considered explicitly as it is
provided by the scenario simulations (other than if we would consider di�erent
models for di�erent forecast horizons, for example). Moreover, we simulate the
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Figure 3.8: Ensemble approach for the generation of probabilistic forecasts of
runo� volume V̂t+k|t for di�erent forecast horizons k

stochastic process described by the state equations 3.6 without any distribu-
tional assumptions.

However, the approach also has drawbacks. First, the computational e�ort is
rather high as ensemble simulations need to be performed. Nevertheless, the
approach is feasible and suitable for an on-line application as demonstrated in
paper F. Second, the forecast approach is not consistent with the parameter
estimation approaches described in Section 3.6. These rely on a forecast solely
of the drift term of the model. We may consider this a drawback of the param-
eter estimation rather than the forecasting procedure which suggests further
investigations in this direction.

3.9 Relation to Other Uncertainty Techniques Ap-

plied in Hydrology

A multitude of uncertainty techniques have been proposed in hydrology and
other �elds. These include Bayesian techniques, GLUE and other methods
which are described below.

The grey-box modelling approach discussed in this work distinguishes itself in
its very strong focus on on-line applications. It provides techniques for parame-
ter estimation and data assimilation with very limited computational e�ort and
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the ability to generate probabilistic forecasts and account for model de�cien-
cies during parameter estimation as an inherent feature. Drawbacks include
the assumption of normality in the �ltering and parameter estimation proce-
dures and the limit on model complexity which is imposed by the EKF and the
requirement to solve a multivariate system of SDE's.

Bayesian techniques are very widely applied in hydrology. These mainly
distinguish themselves from the grey-box approach in the explicit consideration
of parameter uncertainty during parameter estimation and simulation, while the
grey-box approach 'lumps' parameter, structural and input uncertainty into the
di�usion term. The use of prior information is common in the Bayesian school
while it is an exception in the grey-box approach. Mostly, Bayesian approaches
have a strong focus on uncertainty analysis in an o�-line setting and structural
model identi�cation. Commonly, they require Monte Carlo simulations during
parameter estimation and simulation which can be seen as their main drawback.

Uncertainty formulations used in conjunction with Bayesian techniques in the
literature show a wide range of complexities. In the most simplistic case, errors
are lumped into a single output error term e which is assumed iid (and typically
normally distributed). The observations Y are then obtained depending on some
model function g as

Yt = g(Xt, ut, t, θ) + e (3.34)

More advanced approaches account for input uncertainty using rainfall multi-
pliers ([KKFT06],[RKK+10], [SBK13]) and structural uncertainty using time
varying parameters ([RKK+10]). A large number of parameters is used in these
approaches which makes them unattractive for on-line modelling purposes. This
drawback is removed by adding a time varying bias term D to equation 3.34
in [RS12]. The bias captures structural model uncertainties and input uncer-
tainties. A comparison with the grey-box approach in paper D indicates good
simulation performances of this approach. The computational e�ort, however,
is challenging even in this case.

The GLUE approach ([Bev93]) is widely used for uncertainty estimation in
urban hydrology ([TBJSJ08, DMK+12, VMDM13]). It is methodologically sim-
ilar to the Bayesian approaches but does not restrict itself to the theoretical
likelihood framework. Due to the similarity to the Bayesian methods, we do not
discuss the method further here.

Other approaches combine Bayesian estimation techniques and data assimila-
tion using ensemble ([VDG+05]) or particle ([MDS12, VTDS13]) �ltering ap-
proaches. The ensemble / particle �ltering makes these approaches more com-
putationally demanding than the grey-box approach. However, they are closer
to an on-line application than the approaches above as the model can recur-
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sively be updated to new observations without considering the whole time se-
ries. In particular the approach presented by [VDG+05] is close to the grey-box
approach in that it o�ers the possibility to use time-varying state noise descrip-
tions and may be considered for the development of more complex conceptual
model structures.

Other commonly applied uncertainty techniques focus on a post-processing
of model results. The downside of these methods is that structural and input
uncertainty is not explicitly accounted for during the identi�cation of the actual
model. On the other hand, these methods can perfectly be used in combination
with complex physical models which is not true for the grey-box approach (unless
a grey-box model is used as post-processing method rather than as forecasting
model).

Among others, such approaches use time series models in combination with data
assimilation in the physical model ([MS05]), Bayesian model averaging (BMA)
([HFZ13]) or non-parametric methods ([Pin07, PMN+09]). For the consider-
ation of forecasts over multiple horizons either multivariate distributions (and
suitable transformations of the model residuals) ([PMN+09, HFZ13]) or copulas
([TPM13]) must be considered to correctly capture correlation between di�erent
forecast horizons. As the correlation structure is likely to be time varying, it
might be necessary to estimate it recursively as described in [PMN+09] and pa-
per C. The feature of describing correlation between forecast horizons is inherent
for approaches that generate probabilistic forecasts based on direct simulations
of the model (such as the grey-box and the Bayesian approaches).



Chapter 4

Rainfall Inputs for On-line
Runo� Forecasting

4.1 Requirements to Rainfall Input for On-line

Runo� Forecasting

Runo� forecast models rely on rainfall observations and forecasts as input. This
raises the issue of how good the rainfall input needs to be. Several criteria are
important in this context:

• spatial resolution

• temporal resolution

• reliable measurement of the rainfall process

• reliable operation

• forecast quality

The criteria of spatial and temporal resolution have been intensely discussed
in the literature. We have partly summarized this discussion in paper B. In
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addition, [Sch91] gives guidelines on the resolution rainfall measurements should
have for design and operational applications in urban hydrology.

Reliability of rainfall measurements may be considered the key criterion in terms
of a forecast model based operation of urban drainage systems. We consider
reliability both in terms of operational availability and accuracy of the available
measurements and forecasts. This matter is discussed further in Section 4.2.
Identifying periods with an acceptable quality of rainfall data was the main
issue during the work on paper E.

Finally, it seems obvious that a runo� forecast in an on-line setting pro�ts from
using a rainfall forecast. However, due to the reaction time of a catchment, the
expected future runo� from a catchment up to a certain horizon will be well
determined by the measured rainfall. The extent of this e�ect depends on the
characteristics of the catchment (size, shape, degree of sealing and location of
sealed areas).

In Section 4.3 we describe an experiment comparing runo� forecast quality on
a 2 hour horizon with perfect rainfall forecast and without rainfall forecast and
conclude that in some cases reasonable runo� forecasts can actually be obtained
without rainfall forecast. On the contrary, [TR13] analyse the runo� forecast
quality that can be obtained using radar rainfall forecasts in a 80ha urban catch-
ment and �nd that the runo� forecast skill is very limited for horizons exceeding
60 minutes. We are not aware of systematic investigations into situations in
which rainfall forecasts are bene�cial for short term on-line runo� forecasting
(in terms of catchment characteristics and forecast horizons) and what quality
of rainfall forecasts is required. We consider this an important item of future
research.

4.2 Raingauge vs. Radar Rainfall Input

4.2.1 Advantages and Disadvantages

In this thesis we have applied rainfall inputs from rain gauge an C-band radar
measurements for runo� forecasting up to horizons of 120 minutes. Rainfall
inputs from X-band local area weather radars (LAWR) were applied at the
start of the project but found to not provide useful input for runo� forecasting.
New processing methodologies have been developed recently which are likely to
lead to more reliable rainfall observations with LAWR ([NTR12, NJR13]).
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Below we discuss the advantages and disadvantages of rain gauge and radar
rainfall measurements in terms of the criteria described in Section 4.1.

Spatial Resolution
Depending on the characteristics of the rain event, rainfall can vary strongly in
space. An improved spatial resolution may generally be considered an advantage
of radar rainfall measurements as compared to rain gauges. The former will
provide an average of the rain intensities present within a radar pixel while the
latter provide only a point measurement. Having only a point measurement may
lead to false assumptions about the average rain intensity over a catchment and
time displaced rainfall observations ([BGM13]).

In paper B we demonstrate that radar rainfall measurement as input to the
stochastic runo� forecasting models has the potential to provide improved runo�
forecasts in comparison to rain gauges. It cannot be clearly determined from
the results, whether the improvement results from an improved rainfall forecast
or an improved representation of the areal rainfall by the radar. Considering
the results in Section 4.3 that show that reasonable runo� forecasts on a 120min
horizon can be obtained without rainfall forecast in several cases in the bigger
catchments (750ha) and the fact that the catchments considered in paper B are
even bigger (1300 and 3000ha), we see an indication that spatial resolution may
have an important role.

Figures 4.1 and 4.2 support this assumption. The plots show that the mean areal
catchment rainfall derived from the time-statically adjusted radar data consid-
ered in paper B yields a similar or better correlation to the measured runo�
from the catchment than the mean areal rainfall derived from rain gauges. No-
tably, the highest correlation is identi�ed for lags of approximately 150 minutes
between rainfall and runo� measurements. This is longer than the considered
forecast horizon of 100 minutes. This result remains valid after prewhitening of
the time series ([MS05]), the peak in the cross correlation is then identi�ed for
lags between 100 and 140 minutes.
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Figure 4.1: Cross correlation (CCF) between mean areal rainfall derived from
rain gauges (left) and time-statically adjusted radar rainfall mea-
surements (right) and runo� measurements in the Ballerup catch-
ment (see paper B)
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Figure 4.2: Cross correlation (CCF) between mean areal rainfall derived from
rain gauges (left) and time-statically adjusted radar rainfall mea-
surements (right) and runo� measurements in the Damhusåen
catchment (see paper B)
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Temporal Resolution
A clear advantage for one of the measurement methods cannot be identi�ed in
terms of temporal resolution. The available resolutions depend in both cases
on the applied measurement principles, processing algorithms and the agreed
protocols for on-line data transfer. In this work we were largely bound to a
temporal resolution of 10 minutes for the rainfall measurements, corresponding
to the available resolution of the C-band radar measurements.

In [Sch91] a temporal resolution ∆t for the rainfall data that depends on the
concentration time tc of the catchment as

∆t =
1

3
tc · · ·

1

5
tc (4.1)

is suggested. A coarse estimate for tc in seconds can be found from the to-
tal catchment area A in m2 as tc =

√
A. Applying this to the Ballerup and

Damhusåen catchments considered in papers A, B, C, D and G, we see that
a 10 minute resolution of rainfall measurements is su�cient to model runo�
from these catchments. This is, however, not necessarily true for the smaller
catchments considered in papers E and F.

Reliable Measurement of the Rainfall Process
In a measuring sense, it is intuitive to assume the radar rainfall measurements
less reliable for an on-line operation of drainage systems. There are issues in the
conversion from the quantity measured by the radar (re�ectivity for the C-band
radar, drop counts for the LAWR) to rain intensities and in the attenuation of
the signal (see for example [KVPT12, BK13, NJR13]).

However, as [BGM13] discusses, a time displacement of the rainfall measurement
(which may, for example, result from measuring only at a point location) can
have the same impact on runo�-forecasting models as a strong bias in the rainfall
measurement. This issue needs to be considered when applying rain gauge
observations as input to runo� forecasting models.

Moreover, in paper B we demonstrate that the rainfall input applied for runo�
forecasting with automatically calibrated models does not need to resemble the
observations on the ground. [TR13] evaluate the runo� forecast quality that
can actually be obtained for a small catchment (80ha) using radar rainfall input
and �nd reasonable runo� forecasts up to a horizon of 60 minutes.

Operational Reliability
Operational reliability needs to be ensured for both rain gauge and radar mea-
surements. [ML13] show that a gauge network can be operated reliably for
on-line purposes also over long periods. It may be a bene�t that the main-
tenance of the rain gauges is within the responsibilities of the operator of the
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drainage network. This is quite often not the case for the weather radars. A
careful processing of the radar rainfall measurements is required before using
them as input for runo� forecasting models.

4.2.2 Merging Di�erent Rainfall Inputs

Radar and rain gauges give di�erent perspectives on the rainfall process. While
the radar provides the spatial distribution of the rainfall, there are problems with
obtaining accurate rain intensities due to spatially and temporally varying drop
size distributions and signal attenuation ([BK13]). Rain gauges, on the other
hand, provide very local measurements of the rainfall process, which, depending
on the density of the gauge network, may not be spatially representative.

A multitude of publications is available on how to combine radar and rain gauge
measurements into an improved observation of the 'true' rainfall process. We
refer to the overview provided by [GD09] and the introduction of paper B. Com-
mon merging approaches focus on the adjustment of the radar measurements to
make them more "`similar"' to rain gauge observations.

In paper B we demonstrate that this may not be necessary for on-line runo�
forecasting models that are calibrated using radar rainfall input. On the con-
trary, if the adjustment is performed in an unsuitable way, for example, with
strong time variations in the adjustment factors, the resulting rainfall measure-
ment may yield worse results as input for runo� forecasting than the original
radar measurement (paper B).

We have evaluated the performance of a simple statistical combination method
presented by [GHL02] in paper A. In this approach, a simple autoregressive
state space model

Xt =A ·Xt−1 + et (4.2)

Yt =C ·Xt + st (4.3)

is created for the rainfall process Xt with radar and rain gauge observations
Yt, parameter matrices A and C and assumed normal error vectors et and st
(see [GHL02]). The resulting combined rainfall measurement corresponds to the
rainfall state Xt, which in paper A is gridded with a resolution of 2x2km. The
di�erent rainfall measurements Yt are merged with the rainfall state Xt using an
ordinary Kalman �lter and the model parameters are estimated by maximizing
the likelihood of obtaining the radar and rain gauge measurements Yt.

This approach is very appealing because physical information about the rainfall
process can, in principle, be incorporated in the model A and because any kind
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of measurement providing information about rainfall can be included in the
merging process given a suitable formulation of the observation equation in C.

The approach does, however, in the given form also have disadvantages in that
we assume normality for the rainfall states Xt and observations Yt. This as-
sumption certainly does not hold for the rainfall process which is bounded at
0. Moreover, the Kalman �lter algorithm cannot handle the consideration of
areas corresponding to the full size of a C-band radar image. Such an image
has an extent of 240x240 pixels and the resulting covariance matrix for et would
be of dimension 57600x57600. Processing of the full radar image, however, is
necessary to generate rainfall forecasts from the radar observations. This is
also a disadvantage of the adjustment methodology presented by [Tod01] and
[WOSo+13] which is based on the Kalman �lter.

Finally, as a result of the discussion in paper B, we concluded that radar adjust-
ment in particular, but also any procedure for merging di�erent rainfall mea-
surements in general, should focus on the �nal purpose of the resulting rainfall
information. This may, for example, be the forecasting of runo� in an on-line
setting. To avoid the above problems, we may apply geostatistical merging tech-
niques as described by [BRH13, GD09]. We can then apply simple rainfall runo�
models for one or several considered catchments and identify the parameters of
the rainfall merging algorithm as a part of the overall parameter calibration for
the rainfall runo� model by maximizing the likelihood of the the runo� observa-
tions. Such a setting could also be laid out with time varying parameters for the
rainfall merging algorithm. These can be identi�ed using a simple state space
model layout and an (extended) Kalman �lter (see, for example, [BDLY01]).

4.3 The E�ect of Rainfall Forecasts on Runo�

Forecast Quality - An Example

4.3.1 Problem Description

We have in Section 4.1 questioned whether rainfall forecasts always provide
bene�t for the generation of runo� forecasts for short horizons. This is under-
lined by the observation that runo� forecasts based on rain gauge measurements
show a strong performance in paper B as compared to the forecasts using radar
measurements and forecasts.

In this section we follow up on this discussion by analysing the performance of
the stochastic runo� forecast models for the six subcatchments and 8 rain events
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considered in paper E. We use the same dataset as in paper E and refer the
reader to this article for a description of the catchments. Rainfall information
is available from C-band radar measurements in a 10min resolution, while a
2min time step is considered for the runo� forecast models and �ow data. We
consider forecasts of runo� volume for a forecast horizon of 120min (or 60 time
steps) (c.f. Section 3.8). Rain events 1 to 4 are used for model calibration, while
events 5 to 8 are used for model validation only.

We consider two sets of models:

(a) In the �rst set, future rainfall is assumed known during parameter esti-
mation and forecast generation.

(b) In the second set, future rainfall is assumed unknown during parameter
estimation and forecast generation.

In set (b), future rainfall is generated by extrapolating a local linear model.
The linear model is �tted to the rainfall observations over the last 120min (in a
resolution of 10min) and then extrapolated over the next 120min (in a resolution
of 2min).

4.3.2 Results and Discussion

Figure 4.3 shows the point and probabilistic forecast skill for the di�erent events
and catchments while tables 4.1 and 4.2 depict the reliability Rel and ARIL
(c.f. 2.2.1) values for 90% prediction intervals, respectively. Point forecasts are
derived using the median of the probabilistic multi-step forecasts (c.f. 3.8).

Considering the score values in Figure 4.3, we can see a di�erence in the forecast
skills of the models with known and unknown rainfall input in all catchments
except Str. This catchment is a special case due to time varying dry weather
�ows. These lead to parameter estimates with very large time constants K and,
as a result, to runo� forecasts that are hardly a�ected by the rainfall input. If
we allow for a time-varying dry weather �ow parameter a0 in this model, the
model using a known rainfall input performs clearly better than the one without
(not shown).

In the other catchments we observe a strong loss of forecast skill in the EAm
and WAm catchments when the future rainfall is considered unknown. In the
Klo and Ler catchments (the biggest catchments considered), we observe similar
forecast skill in the cases where rainfall input is known and unknown for some



4.3 The E�ect of Rainfall Forecasts on Runo� Forecast Quality - An

Example 55

events. Evaluating the ARIL values (Table 4.2), we see a clear increase of the
forecast uncertainty in the EAm, COL and WAm catchments when the future
rainfall is unknown, while the ARIL values only slightly increase in the Klo and
Ler catchments. This behaviour �ts with the point forecast performance of the
models for the calibration events 1-4.

4.3.3 Conclusion

We conclude that the quality of rainfall forecasts has an in�uence on the runo�
forecast quality in the considered urban catchments. This e�ect is particularly
pronounced in the smaller EAm, COL and WAm catchments. A similar result is
found for an 80ha catchment in [TR13], where runo� forecast quality diminishes
with the quality of the rainfall forecasts when exceeding a horizon of 60min.

However, in the larger catchments (Klo and Ler) the result is less clear. As
discussed in Section 4.1, a rainfall forecast may consequently not be necessary
for the generation of runo� forecasts for certain combinations of forecast hori-
zon and catchment size. This behaviour can have practical relevance in cases
where short-term on-line rainfall forecasts in catchments are not available due
to failures or missing installations.

Table 4.1: Reliability (Rel) of 90% prediction intervals on a 120min horizon
for the catchments considered in paper E

Catch- Rain Rain Event Mean
ment input 1 2 3 4 5 6 7 8
EAm Known 80% 72% 82% 73% 59% 76% 65% 49% 70%
EAm Unknown 74% 77% 84% 81% 65% 72% 71% 65% 74%
COL Known 78% 78% 68% 64% 26% 49% 76% 40% 60%
COL Unknown 82% 82% 70% 59% 43% 50% 78% 51% 65%
Klo Known 77% 72% 65% 81% 75% 79% 79% 65% 74%
Klo Unknown 75% 74% 65% 74% 74% 68% 80% 62% 71%
Ler Known 67% 46% 21% 73% 66% 77% 78% 55% 60%
Ler Unknown 69% 46% 21% 81% 81% 86% 78% 68% 66%
Str Known 62% 76% 53% 72% 63% 78% 67% 62% 66%
Str Unknown 89% 64% 45% 71% 73% 70% 12% 52% 60%
WAm Known 51% 76% 79% 61% 81% 98% 78% 72% 74%
WAm Unknown 63% 67% 72% 74% 72% 81% 78% 63% 71%
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Figure 4.3: Forecast skill (NSE, Persistence Index PI, normalized CRPS) in
the catchments considered in paper E. Events 1-4 were used for
calibration, events 5-8 for validation only. We consider perfectly
known future rain inputs (columns 1 and 3) and unknown future
rain inputs (columns 2 and 4)
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Table 4.2: Average interval length (ARIL) of 90% prediction intervals on a
120min horizon for the catchments considered in paper E

Catch- Rain Rain Event Mean
ment input 1 2 3 4 5 6 7 8
EAm Known 75% 87% 79% 70% 72% 73% 78% 57% 74%
EAm Unknown 109% 124% 114% 97% 105% 105% 115% 89% 107%
COL Known 82% 103% 108% 128% 55% 54% 83% 136% 94%
COL Unknown 107% 137% 150% 170% 75% 79% 113% 174% 125%
Klo Known 84% 307% 110% 74% 87% 78% 73% 82% 112%
Klo Unknown 88% 310% 115% 77% 89% 80% 75% 87% 115%
Ler Known 269% 427% 235% 237% 139% 167% 200% 540% 277%
Ler Unknown 279% 425% 283% 256% 146% 167% 222% 518% 287%
Str Known 44% 51% 51% 47% 49% 47% 57% 49% 50%
Str Unknown 46% 57% 59% 53% 50% 52% 74% 53% 55%
WAm Known 47% 55% 54% 47% 52% 56% 64% 73% 56%
WAm Unknown 64% 72% 71% 64% 69% 72% 86% 93% 74%
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Chapter 5

Probabilistic Runo�
Forecasts in Practice

5.1 Real-Time Control under Uncertainty - the

DORA algorithm

The �nal purpose of generating probabilistic rainfall runo� forecasts is to im-
prove decision making in real-time control. In this work we have considered
the DORA (dynamic over�ow risk assessment) algorithm ([VG14]) for decision
making under uncertainty as it was created by the project partners in the SWI
(Storm and Wastewater Informatics) project and allowed for the direct applica-
tion of the probabilistic forecast models in a real world setup.

The DORA algorithm tries to reduce the impact of combined sewer over�ows
(CSO). It adjusts out�ows from control points as the free variables in an op-
timization setting. Its objective function is to minimize the CSO cost in the
whole catchment over the considered forecast horizon T . CSO cost CF for a
single structure is determined as a function of the forecasted runo� volume VF
to the control point

CF =

∫ ∞
0

C(VF ) · p(VF )dVF , (5.1)
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Figure 3
Click here to download high resolution image

Figure 5.1: Sub�gure a: Probabilistic runo� volume forecast for a horizon T
at structure i with critical volume Vcr (marks the runo� volume
where the basin is �lled and CSO starts), sub�gure b: over�ow cost
ci = C(VF,i) as a function of predicted volume VF,i and resulting
over�ow volume VOV,i (from [VG14])

where p(VF ) corresponds to the forecasted probability that a certain runo�
volume will occur and C(VF ) to the over�ow cost associated with this volume.

The cost function C(VF ) must be de�ned by the stakeholders. In this work it
is a piecewise linear function of VF which is equal to 0 if VF does not induce
over�ow (Figure 5.1). The slope of the cost function determines how much
weight an over�ow structure receives in the control setup.

DORA is attractive as a control algorithm, because it allows to account for fore-
cast uncertainty without exploding dimensionality in the optimization setting.
It can account for any distributional shapes of the probabilistic forecasts by eval-
uating the integral in equation 5.1 either parametrically or non-parametrically.
In paper F we have implemented an empirical evaluation of equation 5.1 us-
ing quantiles of the scenario based probabilistic forecasts described in Section
3.8 in a 2% resolution. Other criteria such as pollutant loads, surface �ood-
ing or energy consumption as a result of pumping or water treatment can be
implemented in the same framework.

A major drawback of the current implementation of the DORA algorithm is
that only a single forecast horizon T is considered in the decision making. Con-
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sequently we need to de�ne this horizon at every control time step and the
resulting out�ows will correspond to an average setting over this horizon rather
than the series of decisions which will be implemented in reality.

5.2 Current Practical Implementation for Prob-

abilistic Runo� Forecasting

The current practical implementation of DORA in Copenhagen uses runo� fore-
casts generated by conceptual models that are recalibrated in intervals of 10 min-
utes. This process is described in [LPB+14]. We have included this approach
as a benchmark in papers E and F.

The runo� forecast uncertainty in this approach is described using a Gamma
distribution. The mean of this distribution is found as

E[X] = k · θ, (5.2)

where k is the shape and θ the scale parameter of the distribution. In the
implementation, the mean of the distribution is assumed equal to the predicted
runo� volume VF for the considered horizon and we thus have θ = VF /k. The
shape parameter is �xed to k = 3.

In paper C we demonstrate that this assumption of a �xed shape parameter
leads to a strong overestimation of forecast uncertainty for a reasonably well
performing forecast model.

5.3 Control Results Using Probabilistic Forecasts

An experiment in paper C shows that a strong overestimation of forecast uncer-
tainties for runo� volume will also lead to a strong overestimation of over�ow
risk in accordance with equation 5.1.

Neglecting forecast uncertainty in the computation of over�ow risk, on the other
hand, hardly a�ects the computed over�ow risk as compared to an evaluation
with a proper quanti�cation of forecast uncertainty. The reason for this be-
haviour is the simplistic layout considered in the experiment. During the evalu-
ation of predicted over�ow risk over the time series, we mainly stay in the linear
range of the cost functions while only very few data points are located at the
break point from zero cost to non-zero cost (c.f. Figure 5.1).
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Figure 5.2: Control points in the Lynetten catchment with available storage
volume (from paper F)

A di�erent behaviour can be expected for non-linear cost functions and when us-
ing probabilistic forecasts in an actual optimization setting for real time control.
Due to the variety of di�erent basin out�ows considered during the optimization,
the critical runo� volume Vcr that leads to CSO will move around on the x-axis
at every time step and a proper quanti�cation of runo� forecast uncertainty will
a�ect decision making.

This was tested for the Lynetten catchment in Copenhagen in paper F. We
implemented grey-box based runo� forecast models for the subcatchments EAm,
Col, Klo, Ler, Str and WAm (Figure 5.2). A forecast model is in this case applied
only for the speci�c subcatchment of a control point, while in�ow from upstream
control points is considered as a model input as it is determined by the control
algorithm.

The results in the article con�rm our hypothesis. Runo� forecasts based on grey-
box models that account for uncertainty lead to a clear reduction of CSO volume
compared to both the baseline and the grey-box based runo� forecasts where
forecast uncertainty is neglected in the decision making. Similar to the results
in paper C, an overestimation of runo� forecast uncertainty with the approach
based on the Gamma distribution leads to a signi�cantly worse performance in
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decision making and increased CSO volumes.
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Chapter 6

Conclusions

This thesis focuses on the development of methods for the generation of prob-
abilistic runo� forecasts using stochastic grey-box models. We have made the
step from considering this type of models for simulation studies towards an
implementation that can actually be applied on-line. Forecast horizons of up
to 120 minutes are considered in this work and the forecasts are applied in a
real-time control context.

Using the questions posed in Section 1.3 as an outline, here we present the main
conclusions from this work.

1. What rainfall inputs should be used for short-term runo� forecasting and,
in particular, do we bene�t from using quantitative precipitation estimates
(QPE) from weather radar?

The results from paper B suggest that we can obtain better runo� forecasts
when using radar rainfall measurements rather than rain gauge observa-
tions. It is not clear whether the improvement results from a better mea-
surement of the rainfall process or an improved rainfall forecast provided
by the radar. However, catchments with reduced areas of 1300 and 3000ha
were considered. For such large catchment sizes, the in�uence of the rain-
fall forecasts on the runo� forecasts may be small on a forecast horizon
of 2 hours. In addition, a correlation analysis in Section 4.2.1 indicates a
better description of the mean areal rainfall by the radar measurements.
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The operational reliability of radar rainfall measurements is problematic.
Rain gauges, on the other hand, provide a mature method for measuring
rainfall. Operators of urban drainage networks, weather services and au-
thorities are therefore experienced in the operation of hardware and data
analysis ([JRMM98]). Rain gauges can thus be considered a "`robust"'
means of measuring rainfall. Our experience from practical implementa-
tion in papers E and F suggests that this is not necessarily the case for
radar rainfall measurements in Denmark.

2. Do quantitative precipitation forecasts (QPF) provide bene�t for short
term runo� forecasts?

As discussed in Sections 4.1 and 4.3, the extent to which runo� forecasts
can bene�t from rainfall forecasts depends on the catchment characteris-
tics and the considered forecast horizon. [TR13] demonstrate in an 80ha
catchment that the bene�ts from radar rainfall forecasts on runo� fore-
casts diminish when exceeding horizons of 60 minutes. On the other hand,
we show in Section 4.3 that in some cases we can obtain reasonable runo�
forecasts without (or with very simple) rainfall forecasts.

We are not aware of systematic investigations that evaluate which forecast
horizons and catchment characteristics require rainfall forecasts to gener-
ate good on-line runo� forecasts and consider this an interesting item of
future work.

3. Do short term runo� forecasts bene�t from a combined rainfall input mak-
ing use of both rain gauge and radar rainfall measurements?

As discussed in paper B, numerous authors in the literature suggest that
radar rainfall measurements should be adjusted to rain gauges before be-
ing used in (urban) hydrological applications. The validation of the ad-
justment methodology is, however, performed by comparing the adjusted
radar data to rain gauge measurements or by using them as input for
models that were calibrated using rain gauge measurements. The results
in paper B indicate that if the adjustment is performed in an unsuitable
way, the resulting rainfall measurement will yield worse results than using
the non-adjusted radar rainfall data, even though the adjusted radar data
have smaller bias when compared to the rain gauge observations.

Nevertheless, it seems somewhat natural that the consideration of addi-
tional rainfall information from di�erent sources should result in an im-
proved information about the rainfall process. We emphasize that the
adjustment (or merging) of radar and rain gauge measurements should
focus on the runo� forecasting purpose. This means that the adjustment
methodologies should be calibrated using an objective function that is
based on the runo� forecast skill that can be obtained with the adjusted
rainfall input.
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The investigation presented in paper A does not yet account for the above
considerations. Nevertheless, it demonstrates that a merging of radar and
rain gauge measurements yields an improved runo� forecasting skill. In
this context, it is important to mention the aspect of operational reliability,
as the merging of two di�erent types of rainfall information will introduce
redundancy in the forecast system and thus increase operational reliability.

4. How can forecast models and parameters be identi�ed in the context of
noisy data and provide forecasts over a multitude of horizons?

The probabilistic runo� forecasts generated by the stochastic grey-box
models are required over a multitude of forecast horizons in the consid-
ered real time control applications. We suggest that the forecast models
are estimated with this purpose in mind, minimizing the (weighted, prob-
abilistic) forecast error of the multi-step predictions, rather than apply-
ing the (theoretically more sound) estimation method based on likelihood
maximization which is implemented in the software framework CTSM.

We develop an estimation methodology based on minimisation of the con-
tinuous ranked probability score (CRPS) for multi-step ahead forecasts
of runo� volume in paper C. The methodology currently has drawbacks
as we assume normal distribution for the multi-step ahead forecasts and
the resulting models underestimate forecast uncertainty. Nevertheless, we
demonstrate in Section 3.6.5 that the new estimation method improves
runo� forecast skill on a 2 hour (60 step) horizon.

An important conclusion from these considerations is that the model
should ideally be estimated considering the intended application in mind.
The state-of-the-art maximum likelihood approach that is usually applied
for stochastic grey-box models will commonly identify models that per-
form well on short horizons. If we want to apply the models for multi-step
predictions over longer horizons, di�erent estimation approaches should
be considered.

5. How can dynamically changing forecast uncertainties be correctly captured
in a probabilistic model structure?

The results in paper G suggest that it is suitable to model runo� forecast
uncertainty as a combination of a constant dry weather uncertainty and
a dynamic uncertainty for rain periods which is scaled by a smoothed
version of the rainfall input.

This type of model structure yields better results than the linear depen-
dence of forecast uncertainty on the predicted model states which was
suggested by [BTM+11]. In particular, we can avoid the mix up of dry
and wet weather uncertainty which, for the linear state dependence, leads
to very large forecast uncertainties in some of the catchments in paper
G. We are furthermore able to render forecast uncertainty independently
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from the forecasted runo� and can thus better capture forecast uncertain-
ties occuring, for example, in the start of a rain event.

Nevertheless, the new approach cannot compensate for cases where the
physical model structure is clearly insu�cient for the data and we will
still obtain unreliable forecasts in such cases.

6. How can probabilistic forecasts be generated for decision making in real-
time control?

The thesis builds on the assumption that simple models that can be tuned
to minimize the forecast error need to be used for forecasting in an on-line
context and that we need to account for forecast uncertainty in decision
making. Following this line of thought, we use stochastic grey-box models
to generate probabilistic on-line forecasts.

We propose a scenario-based approach for the generation of multi-step
probabilistic runo� forecasts. This approach is not bound to distributional
assumptions. Moreover, it spares us the task of explicitly modelling the
correlation between probabilistic runo� forecasts for di�erent horizons, as
it is inherent in the scenarios. Scenario simulations can be created from
SDE's using the methods described in Section 3.7.

Scenario (or ensemble) forecasts also provide �exibility for the use of the
probabilistic information in the real-time control algorithm. We have im-
plemented a real-time control scheme which makes use of the quantiles of
the probabilistic forecasts (see Section 5.1 and paper F).

7. What e�ect does the consideration of forecast uncertainty have on the ef-
�ciency of real-time control schemes?

We have evaluated the e�ect of runo� forecast uncertainty on the ex-
pected combined sewer over�ow risk in paper C and on decision making
in real-time control in paper F. From both applications we can conclude,
that real-time control (in our case with respect to CSO) will bene�t from
a correct quanti�cation of forecast uncertainty if non-linearities exist in
the relation between the runo� forecast and the objective function of the
control scheme.

In this thesis, we apply piecewise linear cost functions (see Section 5.1).
These cost functions are zero if a forecasted runo� volume will not lead
to over�ow and increase linearly with the runo� volume otherwise. When
the uncertainty of the forecasted runo� volume is strongly overestimated,
the forecasted over�ow risk (the objective function) will be a�ected by this
non-linearity and forecasted too big. This was demonstrated in paper C
and leads to suboptimal decision making in paper F.

When neglecting forecast uncertainty during decision making, the case is
less obvious in paper C, because the estimation of over�ow risk is only



69

for very few time steps a�ected by the non-linearity in the cost function
according to Figure 5.1.

However, considering an actual real-time control setting based on an op-
timization of basin out�ows, the position of the non-linearity in the cost
function (Vcr in Figure 5.1) with respect to the forecasted runo� volume
changes depending on the basin out�ows de�ned by the controller. A cor-
rect (or reasonable) quanti�cation of forecast uncertainty then becomes
important. We can see this from the strong performance of the control
scheme when applying stochastic grey-box models in paper F.
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Chapter 7

Outlook

As an outcome of this thesis, we have established a framework of stochastic,
conceptual models that can be applied for probabilistic runo� forecasting in
an on-line context in urban hydrology. We have suggestions for how di�erent
sources of observations of rainfall should be used for runo� forecasting and how
forecast uncertainties can be quanti�ed reliably. Furthermore, we have obtained
results that suggest that an appropriate quanti�cation of forecast uncertainty
has a positive impact on decision making in real-time control, while a large
overestimation of forecast uncertainty will negatively impact real-time control
schemes.

As a result of new developments in the �eld and of remaining de�ciencies in
the applied modelling approach, we suggest further research in the following
directions:

Optimal combination of rainfall input, rainfall forecast and rainfall-
runo� model
For on-line runo� forecasting, rainfall input, rainfall forecast and runo� forecast
model should be considered as a chain. First steps in this direction are taken
by [TR13], for example.

The combination of di�erent rainfall inputs (radar and rain gauge, for example)
has the potential to improve runo� forecasts (see paper A and the introductory
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discussion in paper B). The combination of these inputs, however, should be
performed in such a way that runo� forecast quality is optimized.

This implies setting up a framework where adjustment procedures and runo�
forecast models are tuned in one and the same calibration procedure. We are not
aware of any such framework than can be applied operationally. The approach
presented by [GHL02] and applied in paper A follows this line of thought but
has limitations in the extent of datasets that can be considered.

When do rainfall forecasts improve on-line runo� forecasts
The results in Section 4.3 suggest that we may in some cases be able to gener-
ate runo� forecasts without or with very limited information about the future
rainfall. In the literature, discussions on the in�uence of the uncertainty of
rainfall input on simulation quality are available (see the work by [BGM13],
[LAP+14] and [SF86] for example). A structured discussion considering several
catchments of di�erent characteristics is missing in the literature on in urban
hydrology. Such a discussion should consider these parameters

• forecast horizon,

• catchment size,

• catchment characteristics (in particular reduced area).

For generality, simulation studies based on theoretical catchments can be con-
sidered, similar to the approach in [SF86]. We would expect to �nd that rainfall
forecasts are not required for applications using runo� forecasts on very short
horizons. Similarly, for large catchments we may �nd the forecast uncertainty
related to weather models acceptable in order to, for example, coarsely deter-
mine process settings on the wastewater treatment plant.

Optimal estimation of probabilistic rainfall-runo� models
If the stochastic grey-box models should be applied for generating runo� fore-
casts on longer forecast horizons, they should be calibrated in a way that re�ects
this application. We propose a corresponding estimation approach in paper C.
This approach can be improved in the following ways:

• Parameter calibration is currently performed by generating multi-step pre-
dictions using the extended Kalman �ltering approach implemented in
CTSM and by minimizing the CRPS score averaged over the di�erent
forecast horizons. In several applications (papers B and E) we have ob-
served that this approach leads to reasonable model performance in terms
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of point forecast quality. Runo� forecast uncertainties, however, are some-
what underestimated. We suggest to consider whether this problem can be
solved by considering di�erent score functions (such as likelihood inspired
scores or a combination of interval scores focusing on di�erent quantiles).

• During parameter calibration, forecasts are generated through the ex-
tended Kalman �lter implemented in CTSM. We should investigate if it is
possible to (in a computationally feasible way) base the parameter estima-
tion procedure on direct simulations of the SDE's as described in Section
3.8. Such an approach would not rely on the assumption of normality
of the forecasts and give a better representation of the actual stochastic
processes. Particle �ltering approaches as described by [MDS12] may also
be relevant in this context.

In addition, there is also an issue of what time resolution should be selected
for the runo� forecast models. When considering longer time steps (and thus
shorter forecast horizons in terms of time steps), the forecast error from the
very simple model structures may in some cases be smaller. This issue was not
investigated in this work.

Structural complexity
The stochastic grey-box approach using CTSM has limitations in how com-
plex the considered models can be. Discussions in the literature (for example
[SF86, Bre12]) and the results in paper B suggest that somewhat more complex
structures give bene�t to short-term forecasts. In real-time control we currently
apply a separate stochastic runo� forecast model for each control point. The
forecast is then used as input for the decision making algorithm. It is very likely
that the control schemes could bene�t if we used a single stochastic model for
the whole catchment which is then also used during decision making. Finally,
new applications such as the development of on-line models for the capacity
of the wastewater treatment plant also call for stochastic modelling techniques
that allow for greater model complexity to represent the di�erent processes.

The number of model states that can be considered in the stochastic grey-box
approach is limited because an extended Kalman �lter is applied. In this context
we can consider di�erent updating methods described, for example, by [Bor14]
and [HVLKS11]. In particular, the combined Bayesian uncertainty description
and data assimilation approach described by [VDG+05] is very related to the
grey-box approach and should be tested with respect to the dynamic modelling
of uncertainties and the generation of reliable forecasts on multi-step horizons.

In this context, Maximum a posteriori parameter estimation may be helpful for
identifying parameters for more complex model structures.
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Future applications
From a practical viewpoint, a foreseen item of future research is the development
of libraries of stochastic rainfall-runo� models in combination with automated
routines for residual analysis. Multiple models of di�erent complexity can then
be tested for a given catchment and the best performing model structure can
be selected for on-line applications.

In a qualitative sense, we should investigate model structures that can be used
for on-line forecasting of water quality and treatment capacity of the WWTP.
Such structures will allow for an integrated operation of the urban drainage sys-
tem with respect to pollutant loads and thus the actual stress on natural water
bodies. First steps were taken by [BNMP99], but generally the model structures
in this area are extremely complex and not suitable for on-line purposes.

Furthermore, we expect the integrated operation of urban energy and water
systems (Smart Cities) to become a major driver of the on-line operation of
urban drainage systems. Such a combined operation o�ers strong economic
incentives for the operators of drainage systems and environmental bene�ts for
society. This calls for the development of new control strategies that account
for incentives from the energy market and uncertainties in both forecasts of
electricity prices (for example [JPN+13]) and loads from the drainage system,
as well as model structures that can forecast the energy production and demand
in the urban water cycle.
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