

Closed-Loop and Semi Closed-Loop Strategies for Control of Blood Glucose in People with Type 1 Diabetes

Dimitri Boiroux^a, Daniel A. Finan^a, John B. Jørgensen^a, Niels K. Poulsen^a and Henrik Madsen^a ^a DTU Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Abstract

Comparison between 4 insulin administration strategies Nonlinear model predictive control (NMPC) without meal announcement.

- **NMPC** with meal announcement in advance.
- **NMPC** with meal announcement at mealtime.
- Feedforward-feedback controller.

Nonlinear Model Predicitve Control (NMPC)

Feedforward-feedback controller

- A time-varying reference signal based on meal announcement reduces the risk of hypoglycemia
- Feedback from a glucose sensor
- Differentiate between basal insulin and boluses
 - Basal insulin compensates for small mismatches
 - Boluses are given at mealtimes

Principle of model predictive control and receding horizon

Discrete-time formulation

 $x(t_0) = x_0$ s.t. $\dot{x}(t) = f(x(t), u(t), d(t))$ y(t) = g(x(t)) $u(t) = u_k \qquad t_k \le t < t_{k+1}$

 $u_{\min} \leq u_k \leq u_{\max}$

Numerical simulations of the feedforward-feedback controller

Scenarios

- A decrease by 50% in insulin sensitivity while fasting
- A 75g CHO meal with sensor noise
- right meal announcement
- meal size underestimated by 50%
- meal size overestimated by 50%

Simulations

$\Delta u_{\min} \le \Delta u_k \le \Delta u_{\max}$

Numerical simulations of NMPC

Scenario

Meal sizes and times

Breakfast 62g CHO at 6AM Lunch 55g CHO at 12PM Dinner 50g CHO at 6PM

Simulations

Insulin administration strategies

- Meals are not announced.
- Meals are announced in advance.
- Meals are announced at mealtimes only.

Figure 2: The case without meal announcement.

Insulin sensitivity is de-Figure 5: creased by 50%.

Figure 6: Exact meal size announced.

Contact: jbj@imm.dtu.dk

nouncement in advance of the meal.

Figure 4: The case with meal announcement at mealtimes.

Conclusion

- **NMPC** simulations give an upper-bound on the maximal achievable performance for different meal announcement strategies.
- Utilization of the bolus-like nature of the optimal insulin profile to design a feedforwardfeedback controller based on linear MPC.
- Demonstration of the robustness of the feedforward-feedback controller wrt. changes in insulin sensitivity and mismatches in meal announcement in the case where an accurate enough model of the patient is available.

ATTD-4 conference, February 17-19 2011