Closed-Loop and Semi Closed-Loop Strategies for Control of Blood Glucose in People with Type 1 Diabetes

Dimitri Boirouxa, Daniel A. Finana, John B. Jørgensena, Niels K. Poulsena and Henrik Madsena
a DTU Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Abstract

Comparison between 4 insulin administration strategies
- Nonlinear model predictive control (NMPC) without meal announcement.
- NMPC with meal announcement in advance.
- NMPC with meal announcement at mealtimes.
- Feedforward-feedback controller.

Nonlinear Model Predictive Control (NMPC)

Principle of model predictive control and receding horizon

Feedforward-feedback controller

- A time-varying reference signal based on meal announcement reduces the risk of hypoglycemia.
- Feedback from a glucose sensor
- Differentiate between basal insulin and boluses
 - Basal insulin compensates for small mismatches
 - Boluses are given at mealtimes

Numerical simulations of the feedforward-feedback controller

Scenarios

- A decrease by 50\% in insulin sensitivity while fasting
- A 75g CHO meal with sensor noise
 - right meal announcement
 - meal size underestimated by 50\%
 - meal size overestimated by 50\%

Simulations

Numerical simulations of NMPC

Scenario

Meal sizes and times
- Breakfast 62g CHO at 6AM
- Lunch 55g CHO at 12PM
- Dinner 50g CHO at 6PM

Simulations

Insulin administration strategies
- Meals are not announced.
- Meals are announced in advance.
- Meals are announced at mealtimes only.

Conclusion

- NMPC simulations give an upper-bound on the maximal achievable performance for different meal announcement strategies.
- Utilization of the bolus-like nature of the optimal insulin profile to design a feedforward-feedback controller based on linear MPC.
- Demonstration of the robustness of the feedforward-feedback controller wrt. changes in insulin sensitivity and mismatches in meal announcement in the case where an accurate enough model of the patient is available.