
ANEMOS.plus              
Project funded by the European Commission under the 6th Framework 

Program – Priority  6.1 –Sustainable Energy Systems 
“Advanced Tools for the Management of 
Electricity Grids with Large-Scale Wind 

Generation”.  
Specific Targeted Research Project  

Contract N°: 038692 

 
 

 
 
 

 

DELIVERABLE REPORT D-1.10: 
Communication of Wind Power Forecast 

Uncertainty: Towards a Standard 
 

 
 
 
 
 
 
 
 
 

AUTHOR: Pierre Pinson 
AFFILIATION:  Technical University of Denmark 

ADDRESS:  Richard Petersens Plads 305 (212), 2800 Kgs. Lyngby, Denmark 
TEL.: +45 4525 3428 

EMAIL: pp@imm.dtu.dk 
FURTHER AUTHORS: H. Madsen, H.Aa. Nielsen, T.S. Nielsen, G. Giebel, M. Lange 

REVIEWER:  G. Kariniotakis 
APPROVER:  G. Kariniotakis 

Document Information 

DOCUMENT TYPE  Deliverable Report 
DOCUMENT NAME:  anemos.plus.deliverable_D-1.10.pdf 

REVISION:  
REV.DATE:  

CLASSIFICATION: General Public 
STATUS: Approved 

 

mailto:tsn@enfor.dk


 
 
Abstract:  
 
The present document describes the current possibilities for communicating uncertainty in wind power predictions, and 
tends towards the definition of a common standard. Information on forecast uncertainty will then be used as input to 
methods developed in WP3, and which are related to optimal decision-making. 
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Background

Today, most of the existing wind power prediction methods provide end-users with point forecasts.

The parameters of the models involved are commonly obtained with minimum least square estima-

tion. If denoting by pt+k the measured power value at time t + k, pt+k can be seen as a realization

of the random variable Pt+k. In parallel, write p̂t+k|t a point forecast issued at time t for lead time

t + k, based on a model M, its parameters φt, and the information set Ωt gathering the available

information on the process up to time t. Estimating the model parameters with minimum least

squares makes that p̂t+k|t corresponds to the conditional expectation of Pt+k, given M, Ωt and φt:

p̂t+k|t = E[Pt+k|M, φt, Ωt] (1)

Owing to their highly variable level of accuracy, a large part of the recent research works has fo-

cused on associating uncertainty estimates to these point forecasts. They may take the form of risk

indices or probabilistic forecasts [1], or finally of scenarios of short-term wind power production.

The latter ones are the most common and utilized in practice today, even though risk indices are

shown to be a promising alternative (and maybe complementary) approach [2]. In parallel, sce-

narios of wind generation may prove to be essential for some decision-making problems for which

temporal and/or spatial interdependence structure of prediction errors must be accounted for. A

brief description of these 3 alternative ways of communicating forecast uncertainty is given below.

Probabilistic forecasts

Probabilistic predictions can be either derived from meteorological ensembles [3], based on physi-

cal considerations [4], or finally produced from one of the numerous statistical methods that have

appeared in the literature, see [5, 6, 7, 8, 9] among others. If appropriately incorporated in decision-

making methods, they permit to significantly increase the value of wind generation. Recent devel-

opments in that direction concentrate on e.g. dynamic reserve quantification [10], optimal operation

of combined wind-hydro power plants [11] or on the design of optimal trading strategies [12].

Nonparametric probabilistic predictions may take the form of quantile, interval or density fore-

casts. Let ft+k be the probability density function of Pt+k, and let Ft+k be the related cumulative

distribution function. Provided that Ft+k is a strictly increasing function, the quantile q
(α)
t+k

with

proportion α ∈ [0, 1] of the random variable Pt+k is uniquely defined as the value x such that

P(Pt+k < x) = α, or q
(α)
t+k

= F−1
t+k

(α) (2)

A quantile forecast q̂
(α)
t+k|t with nominal proportion α is an estimate of q

(α)
t+k

produced at time t for

lead time t + k, given the information set Ωt at time t.

For most decision-making processes, such as power system operation, a single quantile forecast is

not sufficient for making an optimal decision. Instead, it is necessary to have the whole information

about the random variable Pt+k for horizons ranging from few hours to several days ahead, see e.g.

[12]. If no assumption is made about the shape of the target distributions, a nonparametric forecast

f̂t+k|t of the density function of the variable of interest at lead time t+k can be produced by gathering

a set of m quantile forecasts

f̂t+k|t = {q̂
(αi)
t+k|t | 0 ≤ α1 < . . . < αi < . . . < αm ≤ 1} (3)

that is, with chosen nominal proportions spread on the unit interval. These types of probabilistic

forecasts are hereafter referred to as predictive distributions. F̂t+k|t denotes the cumulative dis-

tribution function related to f̂t+k|t. Note that interval forecasts correspond to the specific case for

which only two quantiles are quoted, and whose nominal proportions are chosen to be symmet-
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ric around the median. Prediction intervals are then symmetric in terms of probabilities, but not

in terms of distance to the median. This is owing to the fact that distributions of potential wind

power production are not symmetric themselves. For a more detailed description of probabilistic

forecasts of wind generation, as well as a discussion on their required and desirable properties,

we refer to [13]. An example of a 43-hour ahead wind power forecasts along with nonparametric

probabilistic forecasts is given in Figure 1.
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FIGURE 1: Example of probabilistic predictions of wind generation in the form of nonparametric predictive

distributions. Point predictions are obtained from wind forecasts and historical measurements of power pro-

duction, with the WPPT method. They are then accompanied with interval forecasts produced with adaptive

quantile regression. The nominal coverage rates of the prediction intervals are set to 10, 20, . . ., and 90%.
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FIGURE 2: Example of wind power point predictions with 50 alternative scenarios produced from the method

described in the paper (for the same period as in Fig. 1). The point prediction series correspond to the most likely

scenario while the others reflect the prediction uncertainty and the interdependence structure of predictions

errors.
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Prediction risk indices

It appears that low quality forecasts of wind generation are partly due to the power prediction

model, and partly to the Numerical Weather Prediction (NWP) systems. Indeed, during some pe-

riods weather dynamics can be relatively more predictable, while at some other point in time they

may prove to be unpredictable, and this regardless of the forecasting method employed. Since power

predictions are derived from nonlinear transformations of wind forecasts, the level of uncertainty in

meteorological predictions may be amplified or dampened through this transformation. Providing

forecast users with an a priori warning on expected level of prediction uncertainty may allow them

to develop alternative (and more or less risk averse) strategies. In an operational context, a skill

forecast associated to a given point prediction may be more easily understood than probabilistic

forecasts. Also, skill forecasts are not directly related to a given prediction method since they relate

to an assessment of the inherent predictability of weather dynamics.

For deriving skill forecasts, ensemble forecasts are commonly used as input. An alternative to

their use relate to the works of Lange and Focken [4] towards the definition of weather dynam-

ics indicators. More precisely, they utilize methods from synoptic climatology to classify the local

weather conditions based on measurements of wind speed and direction, as well as pressure, and

consequently relate them to different levels of forecast uncertainty. Ensemble forecasts consist of

a set of alternative forecast scenarios for the coming period, obtained by stochastic perturbation

of the initial conditions of NWP models and possibly stochastic parameterization of these models

[14]. Different types of meteorological ensemble predictions may be considered, provided either

by the European Centre for Medium-range Weather Forecasts (ECMWF), by the National Centre

for Environmental Prediction (NCEP), or alternatively by Météo-France. In a general manner, a

skill forecast consists of a single numerical value that informs on the confidence one may have in

the provided point predictions. To each index value can be associated information on the poten-

tial magnitude of prediction errors, possibly with quantiles of such distributions. For a thorough

discussion on various aspects of skill forecasting for the wind power application, see [2].

Scenarios of short-term wind power production

Probabilistic forecasts are generated on a per look-ahead time basis. They do not inform on the

development of the prediction errors through prediction series, since they neglect their interdepen-

dence structure. However, this information is of particular importance for many time-dependent

and multi-stage decision-making processes e.g. the economic operation of conventional generation

in combination to wind power output. In order to satisfy this additional requirement, it is proposed

here to generate scenarios of short-term wind power production. These scenarios should respect

the (nonparametric) predictive densities for the coming period, and additionally reflect the interde-

pendence structure (at the temporal and/or spatial levels) of the prediction errors. The importance

of such tools has been highlighted on the definition of recent complete power system management

methodologies, either for optimal integration of wind power into energy systems [15] or for opti-

mal planning in presence of distributed storage devices [16]. Such scenarios of short-term wind

power production can be generated with appropriate statistical methods [17] or by recalibration of

ensemble forecasts of wind power, see e.g. [18]. Each of them represent has the same probability

of occuring. For the same period as in Figure 1, Figure 2 gives associated scenarios of short-term

wind power production, which, in addition to respecting the nonparametric probabilistic forecasts

for the coming period, also rely on the a model of the interdependence structure of predictions errors

among the set of look-ahead times.
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Communication format and operational aspects

Probabilistic forecasts

In practice, as formulated in (3), predictive densities for each look-ahead time would be given by a

set of quantiles with different nominal proportions spanning the [0, 1] interval. Typically, the chosen

incremental step in nominal proportion is 0.05, thus leading to a set of 21 quantiles. Information

on a given predictive densities for each look-ahead time could then be summarized as it is done in

Table 1, when given along with classical point forecasts of wind power.

TABLE 1: Summarizing predictive densities with a set of quantile forecasts with various nominal proportions.

hor. [h] point preds. [% Pn] quant. 0 quant. 0.05 . . . quant. 0.90 quant. 0.95 quant. 1

0 45 0 4 . . . 61 82 100

1 32 0 2 . . . 58 67 100

2 33 0 8 . . . 54 19 100
...

...
...

...
...

...
...

...

47 46 0 7 . . . 72 79 100

48 27 0 3 . . . 78 81 100

Prediction risk indices

For the case of skill forecasts one can imagine that the value of the risk index is given along with

the corresponding point prediction, as illustrated in Table 2. Note that in the case for which skill

forecasts are derived from ensemble predictions, these ensemble predictions may also be communi-

cated in complement to the risk index value, following the format detailed in the next Paragraph

below.

TABLE 2: Communicating prediction risk indices along with point forecasts of wind generation. Here the

confidence one should have in the provided point forecasts is ranked on a {1,2,. . .,5} ladder (1 corresponding to

the highest confidence level).

hor. [h] point preds. [% Pn] risk index

0 45 1

1 32 1

2 33 2
...

...
...

47 46 4

48 27 4

Scenarios of short-term wind power production

Communicating scenarios of short-term wind power production is quite straightforward, as each

generated scenario resembles the traditionally provided point forecasts of wind power. Therefore,

one may imagine that scenarios would be provided in parallel with such point forecasts, as shown

in Table 3.
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TABLE 3: Traditionally point forecast series, and related N scenarios of short-term wind power production.

hor. [h] point preds. [% Pn] scen. 1 [% Pn] . . . scen. N [% Pn]
0 41 38 . . . 43

1 2 1 . . . 6

2 3 14 . . . 12
...

...
...

...
...

47 46 57 . . . 72

48 42 61 . . . 59
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