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Abstract

This report describes methods to eliminate state dependentdiffusion terms
in Stochastic Differential Equations (SDEs). Transformations that leave the
diffusion term of SDEs constant is important for simulation, and estimation.
It is important for simulation because the Euler approximation convergence
rate is faster, and for estimation because the Extended Kalman Filter equa-
tions are easier to implement than higher order filters needed in the case of
state dependent diffusion terms. The general class of transformations which
leaves the diffusion term independent of the state is calledthe Lamperti trans-
form. This note gives an example driven introduction to the Lamperti trans-
form. The general applicability of the Lamperti transform is limited to uni-
variate diffusion processes, but for a restricted class of multivariate diffu-
sion processes Lamperti type transformations are available and the Lamperti
transformation is discussed for both univariate and multivariate diffusion pro-
cesses. Further some special attention is needed for time-inhomogeneous
diffusion processes and these are discussed separately.
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1 Introduction

Stochastic differential equations (SDE’s) are attracting increasing attention, be-
cause physical processes in real life systems experience random forcing, due to
model approximations and stochastic inputs, that cannot be captured by ordinary
differential equations (ODE’s). Such random forcing or internal noise can be cap-
tured by adding random noise in the ODE, and this leads to SDE formulations.

The formulation of SDE’s is done by physical reasoning. This physical rea-
soning includes autocorrelation structures and physical constraints (such as mass
balance considerations) captured by the diffusion term. The formulation and rea-
soning often results in structures where the noise (diffusion) term depends on one
or more state variables. Structures where the diffusion term depend on thestate of
the system are difficult to handle in estimation procedure like the one implemented
in CTSM1 (Kristensen & Madsen , 2003; Kristensen et. al., 2004), since the Ex-
tended Kalman Filter (EKF) requires higher (than 1) order terms in order to make
the filter approximations sufficiently accurate. Therefore transformationsthat can
move (or remove) the state dependence from the diffusion term to the drift term
are needed. Other estimation procedures (Iacus, 2008) also rely on theexistence of
transformations of this sort. Transformations to unit diffusion is often referred to
as Lamperti transform.

Further it is often recommended (Iacus, 2008) to use the Lamperti transforma-
tion before simulations. State dependent diffusion can together with structures in
the drift term impose restrictions on the state space, e.g. processes that exist on
the positive real axis only, like the Black and Scholes model (geometric Brownian
motion). Estimation of such systems is not numerically stable if combined with a
observation equation that use these constraints (like thelog-transform), since es-
timation of the process may be zero (the geometric Brownian motion is strictly
positive). However, after an appropriate transformation this process lives on the
entire real axis and numerical problems on the boundary of the domain is avoided.

The results presented here seems to be well-known in more theoretical litera-
ture on SDE’s (e.g. Luschgy, 2006), it is however hard to find papers, that explicitly
deals with the construction of these kind of transformation in more applied settings.
An exception is Nielsen & Madsen (2001), but comparing the results presented in
that reference and the results presented here shows that the results in Nielsen &
Madsen (2001) need corrections. Aı̈t-Sahalia (2008) present transformations for
a more general class of SDEs (referred to as reducible), these transformations are
however more complicated to apply and we lose the generic formulations obtained
in this report.

1www.imm.dtu.dk/ctsm
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The report starts with a presentation of the general setting in Section 2. Results
on one dimensional diffusion are given in Section 3, which is further divided into
time independent (Section 3.1) and time dependent diffusion (Section 3.2). The
theoretical properties do not differ much between the two cases, but forpractical
applications some notes are needed for the time dependent diffusion. The multi-
variate case is presented in Section 4. This part does not consider a splitinto time
independent and time dependent diffusion, since the remarks on the one dimen-
sional time dependent case applies equally to the multidimensional case. Finally
Section 5 gives a short summary and discussion of the result presented.

2 The general setting

Itô processes (SDE’s) which are partly observed in discrete time are referred to as
the continuous-discrete time stochastic state space models (Jazwinski, 1970), and
a general formulation is

dXt =f(Xt, t,ut,θ)dt+ σ(Xt, t,ut,θ)dwt (1)

Y k =g(Xtk , tk,utk ,θ, ek), (2)

wheret ∈ R0 is time,wt ∈ R
m is the standard Brownian motion,Xt ∈ R

n is
the state variable,ut ∈ R

q is the input,θ ∈ R
p is a parameter vector,f(·) ∈ R

n

is a vector function andσ(·) ∈ R
n×m is the diffusion matrix. In the observation

equation (2)y ∈ R
l is the observations of state variable,g ∈ R

l is the observation
function andek ∈ R

r is the observation error. The estimation problem is: Findθ̂

such that

θ̂ = argmax
θ

(S(θ,YN )), (3)

whereS is some objective function andYN = {Y 1, ...,Y N} is the set of all ob-
servations. The obvious choice forS is to maximise the one-step transitions prob-
abilities, i.e. the product of the probability density functions (pdf ’s) p(Yk|Yk−1).
This product is called the likelihood function (in practice we optimise thelog-
likelihood). The likelihood can in principle be found by solving the Fokker-Planck
equation (Gard, 1988; Klebaner, 2005) and using Bayes rule for updating. It is
however unrealistic to solve the Fokker-Planck equation if the system equation (1)
does not have a very simple form. The general situation is sketched in Figure 1,
to obtain the transition probability we need to integrate the SDE Eq. (1) between
observations, when an observation is available the information provided bythis
observation is used to form the reconstruction of the state, and the transitionprob-
ability to the next observation is again obtained by integration.
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One way to move forward is by approximating the transition probabilities by
Gaussianpdf ’s, and transforming the observation equation such that the observa-
tion noise is (approximately) additive Gaussian. In order to calculate the likelihood
function Extended Kalman Filters (EKFs) are often used, where the filter equations
take complicated forms (higher order moments is needed and numerical solutions
tend to be unstable if the diffusion term is a function of the state). It is therefore
advisable to use transformations of the system equation (1) such that the diffusion
is independent of the state. The transformation (ψ in (Figure 1) should form an
equivalent relation between the inputut and the outputY k and the transformed
system equation should depend on the same parameters (theta). Even if the main
problem is estimation, the application is more general since it is well-known that
simulations has better convergence rates (Iacus, 2008) if the system equation is in-
dependent of the states. The subject of this note is transformations of the system
equations that leaves the diffusion of the transformed system equations indepen-
dent of the state.

In the following we will restrict the analysis toσ(·) ∈ R
n×n. There are two

remarks about this 1) most derivations (except transformation to unity) generalise
easily to the general case, and 2) in a weak solution sense (equality in distribution)
this is not a restriction, sinceσ(·) is only unique up to the ( definite) “square root”
of σ(·)σT (·). A small example can illustrate the last point.

Example 1 Consider the SDE

dXt = adt+ σ1dw1,t + σ2dw2,t; X0 = 0, (4)

wherea, σ1 andσ2 are real constants. The solution to (4) is

Xt = at+ σ1w1,t + σ2w2,t, (5)

which is a Gaussian distributed random variable with mean and variance equal to
at andσ21 + σ22, respectively, but this is also the (weak) solution to

dXt = adt+
√
σ21 + σ22dwt; X0 = 0, (6)

which illustrates that the uniqueness of the weak solution is only unique up to the
square root ofσσT . �

The implication will be discussed further for multivariate processes in Section
4. The term “weak solution” refer to equality in distribution, and strong solutions
refer to path-wise equality (see Øksendal (2003) for further discussions on weak
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Figure 1: Conceptual diagram of the estimation problem, when an observation Yk
is available the state estimate ofXtk−1

is updated by the provided information and
used for integration of the state to form the prediction of the stateXtk . There is
an infinite number of equivalent relations between the inputut and the outputYk,
the equivalence relationψ gives a description with the same parameter, butσ̃ is
independent ofzt.

and strong solutions). Clearly a strong solution is a weak solution, but a weak solu-
tion is not necessarily a strong solution (just consider Example 1). In this note we
will refer to weak solutions (which might also be strong) as solutions. In likelihood
estimation the only interest is weak solutions, since we optimise the distribution.
In simulation studies tha main interest will often also be weak solution.

2.1 Notation and problem setting

This note is only concerned with the system equation and with the comments above
the class of differential equations is restricted to

dXt =f(Xt, t,ut,θ)dt+ σ(Xt, t,ut,θ)dwt, (7)

whereσ ∈ R
n×n,wt ∈ R

n is the standard Brownian motion, and all other variable
and functions are as explained below Eq. (1). This note deals with the problem;
Find transformationsZt = ψ(Xt, t) or Z̃t = ψ̃(Xt, t) such that

dZt =f̃(Zt, t,ut,θ)dt+ σ̃(t,ut,θ)dwt (8)
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or

dZ̃t =f̃ Z̃(Z̃t, t,ut,θ)dt+ dwt, (9)

whereσ̃(·) is independent ofZt, but the parameters of (8) adn (9) are the same as
in (7).

For notational convenience we will suppress the dependence ofθ andut, i.e.
we will use the notation

f(Xt, t) =f(Xt, t,ut,θ) (10)

σ(Xt, t) =σ(Xt, t,ut,θ). (11)

In real life systemsut is often a set of observations, i.e. not a function that can be
differentiated analytically, and this has to be kept in mind in the following devel-
opment of the transformations.

3 One dimensional diffusion

The fundamental tool for transformations of SDE’s is Itô’s lemma (the version
given below is due to Øksendal (2003))

Theorem 1 (Itô’s lemma): LetXt be an It̂o process given by

dXt = f(Xt, t)dt+ σ(Xt, t)dwt. (12)

Letψ(Xt, t) ∈ C2([0,∞)× R. Then

Zt = ψ(Xt, t) (13)

is again an It̂o process, and

dZt =
∂ψ

∂t
(Xt, t)dt+

∂ψ

∂x
(Xt, t)dXt +

1

2

∂2ψ

∂x2
(Xt, t)(dXt)

2, (14)

where(dXt)
2 is calculated according to the rules

dt · dt = dt · dwt = dwt · dt = 0, dwt · dwt = dt. (15)

The proof of this theorem is out of the scope of this note, and the reader isreferred
to Øksendal (2003).

It is illustrative to express Itô’s formula in terms ofdwt rather thandXt. For
notational reasons we will sometimes writef for f(Xt, t), σ for σ(Xt, t) andψ
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for ψ(Xt, t), partial derivatives will be written asψs =
∂ψ
∂s andψss =

∂2ψ
∂s2

. Rear-
ranging (14) gives

dZt =ψtdt+ ψx · (fdt+ σdwt) +
1

2
ψxx · (fdt+ σdwt)

2 (16)

=(ψt + ψx · f) dt+ ψx · σdwt +
1

2
ψxx · σ2dt (17)

=

(
ψt + ψx · f +

1

2
ψxx · σ2

)
dt+ ψx · σdwt. (18)

With this formulation we are ready for the construction of a transformation for
removal of level dependent noise. The following constructive theoremis often
referred to as the Lamperti transform (Iacus, 2008; Luschgy, 2006).

Theorem 2 (Lamperti transform): LetXt be an It̂o process as in (12), and define

ψ(Xt, t) =

∫
1

σ(x, t)
dx

∣∣∣∣∣
x=Xt

, (19)

if ψ is one to one from the state space ofXt ontoR for everyt ∈ [0,∞), then
chooseZt = ψ(Xt, t). Otherwise ifσ(Xt, t) > 0 ∀(Xt, t) choose

Zt = ψ(Xt, t) =

∫ x

ξ

1

σ(u, t)
du

∣∣∣∣∣
x=Xt

, (20)

whereξ is some point inside the state space ofXt. ThenZt has unit diffusion and
is governed by the SDE

dZt =

(
ψt(ψ

−1(Zt, t), t) +
f(ψ−1(Zt, t), t)

σ(ψ−1(Zt, t), t)
−

1

2
σx(ψ

−1(Zt, t), t)

)
dt+ dwt. (21)

A transformation of the state-space clearly has to be one to one, such that every
point in the state space ofXt can be uniquely identified by the inverse transforma-
tion of Zt. If (19) is not one to one, then choosing the transformation (20) (due to
Luschgy (2006)) will ensure that the transformation is one to one, sinceψ is then
a strictly increasing function ofXt. We will prove Eq. (19) and leave Eq. (20) to
the reader.

PROOF. (Of Theorem 2) From (18) it is easy to realize that level dependent
diffusion can be removed by choosing the transformationψ as

ψ(Xt, t) =

∫
1

σ(x, t)
dx

∣∣∣∣∣
x=Xt

=⇒ ψx(Xt, t) =
1

σ(Xt, t)
. (22)
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Differentiation w.r.t.x and time gives

ψxx(Xt, t) =− σx(Xt, t)

σ(Xt, t)2
(23)

ψt(Xt, t) =
∂

∂t

∫
1

σ(x, t)
dx

∣∣∣∣∣
x=Xt

. (24)

Inserting in (18) gives

dZt =

(
∂

∂t

∫
1

σ(x, t)
dx

∣∣∣∣∣
x=Xt

+
f

σ
− 1

2

σx

σ2
σ2

)
dt+ dwt. (25)

Cancelling out denominators and enumerators and insertingψt andXt = ψ−1(Zt, t)
gives the desired result. �

Theorem 2 gives a very useful approach for removal of level dependent noise.
The discussion of the theorem in the following, is largely example driven anddi-
vided in two parts. 1) Time independent diffusion i.e.ψt = 0, and 2) time depen-
dent diffusion.

3.1 Time independent diffusion

We begin this section with a small example, which illustrates the use of the Lam-
perti transformation.

Example 2 (Geometric Brownian motion):LetXt be an It̂o process (SDE) given
by

dXt = aXtdt+ σXtdwt; X0 = 1, (26)

whereσ anda are real constants. Chooseψ as in (19), i.e.

Zt = ψ(Xt) =

∫
1

σx
dx

∣∣∣∣∣
x=Xt

=
log(Xt)

σ
, (27)

and

Xt = ψ−1(Zt) = eσZt . (28)
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By (21)Zt is an Itô process given by

dZt =

(
aXt

σXt
− 1

2
σ

)
dt+ dwt (29)

=

(
a

σ
− 1

2
σ

)
dt+ dwt. (30)

In this case the solution ofZt can be given explicitly as

Zt =

(
a

σ
− 1

2
σ

)
t+ wt, (31)

i.e. Zt ∼ N
((

a
σ − 1

2σ
)
t, t
)
⇒ σZt ∼ N

((
a− 1

2σ
2
)
t, σ2t

)
, sinceXt = eσZt ,

the solution ofXt is given asXt ∼ LN
((
a− 1

2σ
2
)
t, σ2t

)
, whereLN is thelog-

normal distribution. �

In the example above the Lamperti transform actually solves the original equa-
tion. This is not the case in general, but Itô’s formula can be used to solve SDE’s,
although the class of equations that are solvable in this fashion is limited. The in-
verse transform ofZt was not a part of the SDE governingZt, this is not the case
in general, and SDE’s that are apparently very simple cannot be solve explicitly, as
the next example illustrates.

Example 3 Consider

dXt = (b+ aXt)dt+ σXtdwt. (32)

Using (19) we get the same transformation as in Example 2, andZt is governed by

dZt =

(
b+ aXt

σXt
− 1

2
σ

)
dt+ dwt (33)

=

(
b

σ
e−σZt +

a

σ
− 1

2
σ

)
dt+ dwt, (34)

this SDE does not have an explicit solution, but parameter estimation is available
through e.g. CTSM and numerical solutions (i.e. the distribution) can be found
through simulations.

Eq. (19) is in principle always valid. The practical application of the transfor-
mation is, however, limited by our ability of find an explicit solution of the inverse
transformation

Xt = ψ−1(Zt, t). (35)

Such solutions are not always available as illustrated in the following example
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Example 4 Consider the diffusion process

dXt = f(Xt)dt+ (σ0 + σ1
√
Xt)dwt. (36)

The Lamperti transform becomes

Zt =ψ(Xt) =
σ0

σ21
log
(
(σ0 + σ1

√
Xt)

−2
)
+

2

σ1

√
Xt (37)

=
2

σ1

(√
Xt −

σ0

σ1
log
(
σ0 + σ1

√
Xt

))
. (38)

In this case the It̂o diffusion ofZt cannot be written as an explicit function ofZt,
becauseXt cannot be written as an explicit function ofZt. �

As illustrated by Example 4 explicit solutions for the inverse transformation
does not always exist, however many “real” life examples allow the explicit solu-
tion of the inverse transform. For instance explicit solutions ofψ−1 is available
whenσ(Xt) = σ1X

γ
t for any constantγ, models of this type important in mathe-

matical finance, whereγ express the volatility of the market.
For models whereσ(Xt) are more complex, solutions toψ−1 are in general

not available. Biological models often use proportional or square root dependent
diffusion terms, and in addition additive diffusion might be appropriate if the model
contain additive input. As we saw in Example 4,ψ−1 is not available in this case.
A quite flexible system whereψ−1 is available is the Pearson diffusion (Forman
and Sørensen , 2008), which is considered in the following example.

Example 5 (Pearson diffusion):Consider the diffusion process

dXt = f(Xt)dt+
√
σ0 + σ1Xt + σ2X

2
t dwt. (39)

Actually this is an extension of the Pearson diffusion as the Pearson diffusionalso
havef(Xt) = (b − aXt). In this context we will, however, only consider the
diffusion term. Use of the Lamperti transform (19) gives

Zt = ψ(Xt) =
1√
σ2

log

(
σ1

2
√
σ2

+
√
σ2Xt +

√
σ0 + σ1Xt + σ2X

2
t

)
(40)

with the inverse

Xt = ψ−1(Zt) =

(
σ21

8σ
3/2
2

− σ0

2
√
σ2

)
e−

√
σ2Zt +

1

2
√
σ2
e
√
σ2Zt − σ1

2σ2
(41)
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and the It̂o process forZt is given by

dZt =

(
f(ψ−1(Zt))√

σ0 + σ1ψ−1(Zt) + σ2 · (ψ−1(Zt))2
−

σ1 + 2σ2ψ
−1(Zt)

4
√
σ0 + σ1ψ−1(Zt) + σ2 · (ψ−1(Zt))2

)
dt+ dwt (42)

=
f(ψ−1(Zt))− 1

4

(
σ1 + 2σ2ψ

−1(Zt)
)

√
σ0 + σ1ψ−1(Zt) + σ2 · (ψ−1(Zt))2

dt+ dwt. (43)

Clearly the resulting SDE is very complex, it will however provide the opportunity
of testing hypothesis ofσi = 0. In the construction of SDE’s of the type discussed
in this example it is important to ensure that the diffusion term exists for allXt in
the state space ofXt (we would need to examine the drift term at the boundary).
�

Even though the Lamperti transform is limited by our ability of finding the
inverse, it is still possible to use transformations that remove level dependent noise
for quite general classes of diffusion processes, as illustrated in Example 5.

3.2 Time dependent diffusion

The SDE (21) depends on the time derivative ofψ, and even though this might be a
quite complicated function, it is in principle always possible to find such a solution.
In real life applications the time dependence ofσ will, however, often be through
an observed input, in this case the differentiation have to be done numerically. It
might therefore be advisable to choose a transformation that leaves the diffusion
term time dependent. This does however limit the the class of transformations
substantially, it is e.g. not possible if one of the diffusion parameters in the Pearson
diffusion depends on time.

In general it is possible to succeed in the case where the diffusion is given by

σ(Xt, t) = α(t)β(Xt) (44)

In this case use the Lamperti transform onβ(Xt) and leave the diffusion time-
dependent, i.e. put

Zt = ψ(Xt) =

∫
1

β(x)
dx

∣∣∣∣∣
x=Xt

, (45)
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and proceeding like in the time-independent diffusion we get

dZt =

(
f(ψ−1(Zt), t)

β(ψ−1(Zt))
− 1

2
βx(ψ

−1(Zt))α
2(t)

)
dt+ α(t)dwt. (46)

If the time dependence is either an explicit function oft or the differential of
the time dependence is available through observations then Theorem 2 can still
be applied, but the functional relationships do however become considerable more
complex, as the next example illustrates.

Example 6 Consider a process driven by a noisy time varying inputb(t) (birth
process) and with a constant death-rate, the SDE formulation could be

dXt = (b(t) + aXt)dt+ (σ0b(t) + σ1Xt)dwt, (47)

wherea > 0 andb(t) > 0 ∀t. The Lamperti transform becomes

ψ(Xt, t) =

∫
1

σ0b(t) + σ1x
dx

∣∣∣∣∣
x=Xt

=
log(σ0b(t) + σ1x)

σ1
(48)

implying

ψt(Xt, t) =
σ0b

′(t)

σ1(σ0b(t) + σ1Xt)
(49)

ψ−1(Zt, t) =
eσ1Zt − σ0b(t)

σ1
(50)

σx(Xt, t) =σ1, (51)

andZt = ψ(Xt, t) is governed by the process

dZt =

(
σ0b

′(t)

σ1(σ0b(t) + σ1ψ−1(Zt, t))
+

b(t) + aψ−1(Zt, t)

σ0b(t) + σ1ψ−1(Zt, t)
− 1

2
σ1

)
dt+

dwt (52)

=




σ0
σ1
b′(t) + b(t) + a

eσ1Zt−σ0b(t)
σ1

σ0b(t) + σ1
eσ1Zt−σ0b(t)

σ1

− 1

2
σ1


 dt+ dwt (53)

=

[(
σ0

σ1
b′(t) +

(
1− a

σ0

σ1

)
b(t) +

a

σ1
eσ1Zt

)
e−σ1Zt − 1

2
σ1

)
dt+ dwt

=

{[
σ0

σ1
b′(t) +

(
1− a

σ0

σ1

)
b(t)

]
e−σ1Zt +

a

σ1
− 1

2
σ1

}
dt+ dwt. (54)

In principle this is straight forward, butb(t) will often be a function of some ob-
served process and in this case we will therefore need observations of thedifferen-
tial of b(t).
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4 Multivariate Diffusion

The Lamperti transform presented so far is a univariate transformation,but it is
possible to generalise this for a restricted class of multivariate diffusion processes.
As for the one-dimensional diffusion process, Itô’s lemma for multi-dimensional
diffusion is the key to understand the multi-dimensional transformation. Again a
good reference is Øksendal (2003).

Theorem 3 (Itô’s lemma):

dXt = f(Xt, t)dt+ σ(Xt, t, )dwt, (55)

with t ∈ R+ being time,Xt ∈ R
n the state vector,wt ∈ R

n multivariate standard
Brownian motion,f(·) ∈ R

n andσ(·) ∈ R
n×n. Then for a given transformation

Zt = ψ(Xt, t) = [ψ1(Xt, t), ..., ψn(Xt, t)], (56)

whereψ is aC2 function fromR
n × [0,∞) into R

n, Zt is again an It̂o process
given by

dZk,t =
∂ψk

∂t
(Xt, t)dt+

n∑

i=1

∂ψk

∂xi
(Xt, t)dXi,t+

1

2

n∑

i=1

n∑

j=1

∂2ψk

∂xi∂xj
(Xt, t)dXj,tdXi,t. (57)

Wheredwidwj = 0 for i 6= j, dwidwi = dt, anddwidt = dtdwi = dtdt = 0 ∀i.

In the version of It̂o’s lemma given aboveψ ∈ R
n. In the general version of

Itô’s lemma this not a requirement, but we have restricted the attention to equal
dimensions ofXt andZt. The derivations below do however easily generalise.
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It is again illustrative to writedZk,t in terms ofdwi,t rather thandXi,t,

dZk,t =
∂ψk

∂t
(Xt, t)dt+

n∑

i=1

∂ψk

∂xi
(Xt, t)dXi,t+

1

2

n∑

i=1

n∑

j=1

∂2ψk

∂xi∂xj
(Xt, t)dXj,tdXi,t (58)

=

(
(ψk)t +

n∑

i=1

(ψk)xifi

)
dt+

n∑

i=1

(ψk)xi

(
n∑

h=1

σihdwh,t

)
+

1

2

n∑

i=1

n∑

j=1

(ψk)xi,xj

(
n∑

h=1

σjhdwh,t

)(
m∑

l=1

σjldwl,t

)
(59)

=


(ψk)t +

n∑

i=1

(ψk)xifi +
1

2

n∑

i=1

n∑

j=1

(ψk)xi,xj

(
m∑

h=1

σjhσih

)
 dt+

m∑

h=1

(
n∑

i=1

(ψk)xiσih

)
dwh,t, (60)

where subscript{h, i, j, k} refer to elements of vectors and matrices, subscriptsxi
andt refer to partial differentiation (except inZi,t andwi,t wheret refer to time).
From the last expression in Eq. (60) it is seen that the removal of level dependent
noise requires the solution of the following system of PDEs

n∑

i=1

(ψk)xiσi1(x, t, ) = c1(t) (61)

n∑

i=1

(ψk)xiσi2(x, t) = c2(t) (62)

...
n∑

i=1

(ψk)xiσin(x, t) = cn(t), (63)

whereci is an arbitrary function oft. Such a system can not be solved in general,
since for givenσ, this results inn equations with one unknown(ψk).

Nielsen & Madsen (2001) claim that under the assumptions 1)σij 6= 0 and 2)

σij(Xt, t) = σij(X
ν(i)
t , t), i = 1, ..., n, j = 1, ..., n, (64)
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it is possible to find a transformation. The application of Itô lemma is however
wrong, we will not go through the proof of this, but applying (61)-(63)will lead to
ν(i) = i.

The difficulties of removing state dependent diffusion can be illustrated by a
simple example.

Example 7 Consider the diffusion process

d

[
X1,t

X2,t

]
=

[
X2,t 0
0 X1,t

] [
dw1,t

dw2,t

]
, (65)

letZ1,t = ψ1(Xt) andZ2,t = ψ2(Xt). Using It̂o’s lemma we get

dZ1,t =
∂

∂x1
ψ1(X1,t, X2,t)X2,tdw1,t +

∂

∂x2
ψ1(X1,t, X2,t)X1,tdw2,t+

1

2

(
∂2

∂x1∂x1
ψ1(X1,t, X2,t)X

2
2,t +

∂2

∂x2∂x2
ψ1(X1,t, X2,t)X

2
1,t

)
dt, (66)

the first term requires the solution of

c1 = x2
∂

∂x1
ψ1(x1, x2) (67)

implying

ψ1(x1, x2) = c
x1

x2
+ ψ̃1(x2). (68)

whereψ̃1(x2) is an arbitrary function ofx2. The second term therefore require the
solution of

c2 =
∂

∂x2

(
c1
x1

x2
+ ψ̃1(x2)

)
(69)

=− c1
x1

x22
+

d

dx2
ψ̃1(x2), (70)

asψ̃1(x2) is not a function ofx1 this differential equation does not admit a solution.
�

Even if a general multivariate version of Theorem 2 is not available, it is pos-
sible to state the less general result
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Theorem 4 (Multivariate Lamperti transform): LetXt be an It̂o diffusion given
by

dXt = f(Xt, t)dt+ σ(Xt, t)R(t)dwt, (71)

whereR(t) ∈ R
n×n is any matrix function oft, andσ(Xt, t) ∈ R

n×n is a diago-
nal matrix with diagonal elementsσi,i(Xt, t) given by

σi,i(Xt, t) = σi(Xi,t, t). (72)

Then the transformation

Zi,t = ψi(Xi,t, t) =

∫
1

σi(x, t)
dx

∣∣∣∣∣
x=Xi,t

, (73)

will result in an Itô process with the i’th element given by

dZi,t =

(
∂

∂t
ψi(x, t)

∣∣
x=ψ−1(Zi,t,t)

+
fi(ψ

−1(Zt, t), t)

σi(ψ
−1
i (Zi,t, t), t)

−

1

2

∂

∂x
σi(ψ

−1
i (Zi,t, t), t)

)
dt+

n∑

j=1

rij(t)dwj,t, (74)

whererij(t) are elements ofR(t) and

Xt = ψ
−1(Zt, t). (75)

PROOF. Apply Theorem 2 to eachXi,t �

The remarks about time dependent diffusion made in Section 3.2 also apply to
the multidimensional case. A simple example illustrates the use of Theorem 4.

Example 8 (Two-dimensional Geometric Brownian motion):Consider the pro-
cess

d

[
X1,t

X2,t

]
=

[
a1 0
0 a2

] [
X1,t

X2,t

]
dt+

[
X1,t 0
0 X2,t

] [
r1,1 r1,2
r2,1 r2,2

]
dwt

(76)

=AXtdt+ σ(Xt)Rdwt, (77)

with initial conditionX0 = 1, chooseZ1,t = ψ(Xt) = log(X1,t) andZ2,t =
ψ(Xt) = log(X2,t), then

d

[
Z1,t

Z2,t

]
=

[
a1 − 1

2(r
2
11 + r212)

a2 − 1
2(r

2
21 + r222)

]
dt+

[
r1,1 r1,2
r2,1 r2,2

]
dwt, (78)
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with initial conditionZ0 = 0 and the solution of(78) is
[
Z1,t

Z2,t

]
=

[
a1 − 1

2(r
2
11 + r212)

a2 − 1
2(r

2
21 + r222)

]
t+

[
r1,1 r1,2
r2,1 r2,2

]
wt (79)

=(a− diag(RRT ))t+Rwt, (80)

wherea = diag(A)is a vector with elements equal to the diagonal elements ofA.
In this caseZt follows a Gaussian distributionZt ∼ N((a−1

2diag(RR
T ))t,RRT t).

Xt is therefore distributed according to a multivariatelog-normal distribution,
with the same parameters. �

The transformation presented in Theorem 4 is not a true Lamperti transform,
since it does not transform to unit diffusion. This can be solved by the following
theorem

Theorem 5 (Tranformation to unit diffusion): LetXt be an It̂o diffusion given
by

dXt = f(Xt, t)dt+R(t)dwt, (81)

whereR(t) ∈ R
n×n is any invertible matrix function oft, then the transformation

Zi,t = ψ(Xt, t) = R(t)−1Xt (82)

will result in an Itô process given by

dZt =

[(
d

dt
R(t)−1

)
R(t)Zt +R(t)−1f(R(t)Zt, t)

]
dt+ dwt (83)

(84)

with ( ddtR(t)−1) the elements-wise derivative ofR(t)−1 and

Xt = R(t)Zt. (85)

PROOF. Consider thei’th coordinate ofdXt

dXi,t =fi(Xt, t)dt+

n∑

j=1

(R(t))i,jdwj , (86)

and thei’th coordinate ofZt

Zi,t = ψi(Xt, t) =
n∑

j=1

(R(t)−1)ijXj,t (87)
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by Itô’s lemma we get (noting that ∂
2

∂xi∂xj
ψi(x, t) = 0 ∀ i ∈ {1, .., n}, andj ∈

{1, ..., n})

Zi,t =
∂

∂t
ψi(Xt, t)dt+

n∑

j=1

∂

∂xj
ψi(Xt, t)dXj,t (88)

=
∂

∂t

n∑

j=1

(R(t)−1)ijXj,tdt+
n∑

j=1

(R(t)−1)ij [fj(Xt, t)dt+

n∑

h=1

R(t)jhdwh] (89)

=




n∑

j=1

d

dt
R(t)−1

ij Xj,t +
n∑

j=1

R(t)−1
ij fj(Xt, t)


 dt+

n∑

j=1

R(t)−1
ij

n∑

h=1

R(t)jhdwh (90)

=




n∑

j=1

(
d

dt
R(t)−1

ij

) n∑

h=1

R(t)−1
jh Zh,t +

(
R(t)−1f(Xt, t)

)
i


 dt+

n∑

h=1




n∑

j=1

R(t)−1
ij R(t)jh


 dwh (91)

=

[
n∑

h=1

((
d

dt
R(t)−1

)
R(t)

)

ih

Zh,t +
(
R(t)−1f(Xt, t)

)
i

]
dt

n∑

h=1

(
R(t)−1R(t)

)
ih
dwh (92)

=

[((
d

dt
R(t)−1

)
R(t)Zt

)

i

+
(
R(t)−1f(Xt, t)

)
i

]
dt+ dwi, (93)

writing the matrix formulation of the above gives the desired result. �

Combining Theorem 4 and 5 gives a multivariate version of the Lamperti trans-
form. This is illustrated by applying Theorem 5 to Example 8.

Example 9 Consider the transformed process of Example 8, then

R−1 =
1

det(R)

[
r22 −r12
−r21 r11

]
, (94)
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and the process

Z̃t = ψ̃(Zt) = R
−1Zt, (95)

is given by

d

[
Z̃1,t

Z̃2,t

]
=

1

det(R)

[
r2,2 −r1,2
−r2,1 r1,1

] [
a1 − 1

2(r
2
11 + r212)

a2 − 1
2(r

2
21 + r222)

]
dt

+

[
dw1,t

dw2,t

]
(96)

andZ̃t ∼ N(R−1(a− 1
2diag(RR

T ))t, It) and the inverse of̃Z is

Xt =ψ
−1(Zt) = ψ

−1(ψ̃
−1

(Z̃t)) = ψ
−1(RZ̃t)) = exp(RZ̃t)

=

[
er11Z̃1,t+r12Z̃2,t

er21Z̃1,t+r22Z̃2,t

]
. (97)

�

Theorem 5 states that a process with state independent diffusion can be written
as a weighted version of the original process, which has unit diffusion.The weight
is the inverse of diffusion matrix, it is tempting to interpret the diffusion matrix
(R(t)) as a local standard deviation, such an interpretation is however not straight
forward, since the local variance is different fromR(t)2. The density of an SDE
is determined by the Fokker-Planck equation (sometimes referred to as the Kol-
mogorov forward equation), which in the multidimensional case is given by (Gard,
1988)

pt(x, t) =−
∑

i

∂

∂xi
(fi(x, t)p(x, t))+

1

2

∑

i

∑

j

∂2

∂xi∂xj

∑

k

(σik(x, t)σjk(x, t)) p(x, t) (98)

=−
∑

i

∂

∂xi
(fi(x, t)p(x, t))+

1

2

∑

i

∑

j

∂2

∂xi∂xj

(
σσT (x, t)

)
ij
p(x, t). (99)

The density (p(·)) does not depend onσ itself, but only onσσT , meaning thatpt is
only uniquely determined up to what can loosely be refereed to as the (non unique)
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“square root” ofσσT . However for a positive definite symmetric matrix, sayA,
there exist a unique positive definite symmetric matrixT , such thatT 2 = A, and
by constructionσσT is a positive definite symmetric matrix ifσ has full rank.
Again the best way to understand this is by considering a small example.

Example 10 Consider the SDE

dXt =

[
2 −3
−5 −4

]
dwt; X0 = 0 (100)

it is well known thatXt follow a Gaussian distribution with mean0, the variance
for this process is given by

V (Xt) =σσ
T t (101)

=

[
2 −3
−5 −4

] [
2 −5
−3 −4

]
t (102)

=

[
13 2
2 41

]
t. (103)

Consider now the proces

dX̃t =

[
3.6 0.2
0.2 6.4

]
dwt; X0 = 0, (104)

the variance ofX̃t is

V (X̃t) =σ̃σ̃
T t (105)

=

[
3.6 0.2
0.2 6.4

]2
t (106)

=

[
3.62 + 0.22 0.2(6.4 + 3.6)

0.2(6.4 + 3.6) 6.42 + 0.22

]
t (107)

=

[
13 2
2 41

]
t. (108)

Which shows that̃Xt is a weak solution to the SDE (100).

Analytic solutions for the unique “square root” ofσσT are not easy to find.
This is however not important if we are interested in estimation, since the likelihood
is generated by the weak solution to the SDE. The important conclussion is thatwe
can only indetify the number of parameters corresponding to a symetric version of
the “square root” ofσσT .

20



In the one dimensional case we can thinkR as standard deviation is the fol-
lowing sense, letxt be a continuous time random walk

dxt = rdwt, (109)

then the discrete time stochastic process (withtk−1 < tk)

yk =
xtk − xtk−1

r
√
tk − tk−1

; k = 1, 2, ... , (110)

is a sequence of iid. standard Gaussian random variables. The multidimensional
equivalent to (109) is

dxt = Rdwt. (111)

Now if the matrixR ∈ R
n×n is symmetric and positive definite thenR2 = RRT ,

and the discrete time stochastic process (again withtk−1 < tk)

yk =
1√

tk − tk−1
R−1(xtk − xtk−1

); k = 1, 2, ... , (112)

is a sequence ofn-dimensional iid. standard Gaussian random variables, and in this
sense we can think ofR as the standard deviation. The generation of correlated
random variable is often done by simulating independent standard randomnumbers
and then multiplying by the covariation matrix (Madsen, 2008). The transforma-
tion in Theorem 5 can be viewed as the SDE equivalent to such a transformation.

The examples presented so far have been rather simple with the purpose to
explain or clarify the theory, for such purposes it is not illustrative to include more
physical reasoning. It might however be motivating to see an example based on
real life reasoning, the last example of this note is such an example.

Example 11 A competition model: Consider a controlled experiment with two
living populationsP1 andP2 (e.g. bacteria or phytoplankton) eating the same two
nutrientsN1 andN2 (e.g. nitrogen and phosphor), but not each other. Let the
experiment be constructed such the the total amount of nutrients are heldconstant.
Biological growth models are often assumed to follow Liebigs law of minimum and
Michaelis-Menten kinetics, i.e.

dPi =

(
min

(
µi,1N1

ki,1 +N1
,
µi,2N2

ki,2 +N2

)
−mi

)
Pidt (113)

=(fi(N)−mi)Pidt, (114)

wheremi > 0 is the mortality rate andmin(·) express the limiting factor. Further
let aij be conversion factors that convert populationi to nutrientj, such factors
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are often known or approximately known from literature. As discussed earlier the
diffusion term for biological processes is often assumed to be proportionalto either
Pi of

√
Pi, here we assume that the diffusion is proportional toP

γi
i withγi ∈ (12 , 1)

and leave it to the estimation procedure to determineγi.
The SDE for the system described above is

d




N1,t

N2,t

P1,t

P2,t


 =




−a11(f1(N)−m1) −a12(f2(N)−m2)
−a21(f1(N)−m1) −a22(f2(N)−m2)

f1(N)−m1 0
0 f2(N)−m2



[
P1,t

P2,t

]
dt+




−a11σ1P γ11,t −a12σ2P γ22,t

−a21σ1P γ11,t −a22σ2P γ22,t

σ1P
γ1
1,t 0

0 σ2P
γ2
2,t



[
dw1,t

dw2,t

]
. (115)

Seemingly we cannot apply the derived methods to transform this system to a sys-
tem with constant diffusion, however the above system have a 2-dimensional dis-
tribution only and transformation is therefore possible. Using Theorem 4 onPi
gives

P̃i,t = ψi(Pi,t) =
1

σi

∫
x
−γi
i dx

∣∣∣∣∣
x=Pi,t

=
P

1−γi
i,t

σi(1− γi)
, (116)

with the inverse function given by

Pi,t = (1− γi)
γi−1(σiP̃i,t)

γi−1 = (γ̃iσiP̃i,t)
−γ̃i , (117)

whereγ̃i = 1− γi. Now choose

Ñi,t = φi(Ni,t, P1,t, P2,t) = Ni,t + ai1P1,t + ai2P1,t. (118)

Using Itô’s formula we get

dÑi,t =(−ai1(f1(N)−m1)P1,t − ai2(f2(N)−m2)P2,t)dt

− ai1σ1P1,tdw1,t − ai2σ2P2,tdw2,t

+ ai1(f1(N)−m1)P1,tdt+ ai1σ1P1,tdw1,t

+ ai2(f2(N)−m2)P2,tdt+ ai2σ2P2,tdw2,t (119)

= 0. (120)
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Implying thatÑi,t = Ñi,0 is constant andNi,t is given by

Ni,t =Ni(P t) (121)

=Ñi,t − ai1P1,t − ai2P2,t (122)

=Ñi,0 − ai1(γ̃1σ1P̃1,t)
−γ̃1 − ai2(γ̃2σ2P̃2,t)

−γ̃2 . (123)

The system equation for the transformed system takes the form

d

[
P̃1,t

P̃2,t

]
=

[
(σ1γ̃1P̃1,t)

−γ̃1(f̃1(P̃ )−m1)

(σ2γ̃2P̃2,t)
−γ̃2(f̃2(P̃ )−m2)

]
dt+

[
1 0
0 1

] [
dw1,t

dw2,t

]
, (124)

with

f̃i(P̃ ) =min

(
µi,1N1(P̃ )

ki,1 +N1(P̃ )
,
µi,2N2(P̃ )

ki,2 +N2(P̃ )

)
(125)

=min

(
µi,1(Ñ1,0 − a11(γ̃1σ1P̃1,t)

−γ̃1 − a12(γ̃2σ2P̃2,t)
−γ̃2)

ki,1 + Ñ1,0 − a11(γ̃1σ1P̃1,t)−γ̃1 − a12(γ̃2σ2P̃2,t)−γ̃2
,

µi,2(Ñ2,0 − a21(γ̃1σ1P̃1,t)
−γ̃1 − a22(γ̃2σ2P̃2,t)

−γ̃2)

ki,2 + Ñ2,0 − a21(γ̃1σ1P̃1,t)−γ̃1 − a22(γ̃2σ2P̃2,t)−γ̃2

)
. (126)

The derivations above strongly depend on the fact that the actual dimension of the
joint distribution at timet is only 2, if there had been a random input of nutrient
to the system, the derivation would not have been possible. It is therefore acrucial
assumption that the experiment is conducted in a controlled environment, with no
random interactions with the surroundings.

For the sake of completeness we will give an example of the observation equa-
tion, where we will assume that we are able to observe all the states of the original
system, and that these observations arelog-normally distributed around the true
state, i.e.



YN1,k

YN2,k

YP1,k

YP2,tk


 =




log(N1,tk)
log(N2,tk)
log(P1,tk)
log(P2,tk)


+




ǫN1,t

ǫN2,t

ǫP1,t

ǫP2,t


 (127)

=




log(Ñ1,0 − a11(γ̃1σ1P̃1,tk)
−γ̃1 − a12(γ̃2σ2P̃2,tk)

−γ̃2)

log(Ñ2,0 − a21(γ̃1σ1P̃1,tk)
−γ̃1 − a22(γ̃2σ2P̃2,tk)

−γ̃2)

−γ̃1(log(γ̃1) + log(σ1) + log(P̃1,tk))

−γ̃2(log(γ̃2) + log(σ2) + log(P̃2,tk))


+

ǫt, (128)
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whereǫtk follow a Gaussian distribution with mean zero varianceS. �

5 Summary and conclusion

We have shown how a class SDE’s with state dependent diffusion can be trans-
formed into SDE’s with state independent diffusion. For one dimensional systems
this transformation is rather straight forward and is only limited by the ability to
find a closed form inverse transformation. Such transformations are important both
in estimation and simulations. Iacus (2008) notes that the Lamperti transformation
or similar transformations (not necessarily to unity) should always be usedbefore
simulation and that many estimation techniques rely on unit or constant diffusion.
Luschgy (2006) presents proofs of convergence rates for a simulations procedure,
which also relies on the existence of the Lamperti transform.

For time dependent diffusion the transformed process will depend on the time
derivative of the transformation, which is equivalent to dependence onthe time-
derivative of the diffusion term. While this might be reasonable when the func-
tional relation between the diffusion and time is given in an explicit form, it is
problematic if the time dependence on the diffusion is through an observed input,
because numerical differentiation will be needed.

For multidimensional diffusion processes the transformation to systems with
state independent diffusion is more delicate, and Luschgy (2006) note that the
Lamperti transform is essentially a one-dimensional transformation. This is also
what has been shown here, however, it is also stressed that even with the restric-
tion given in Theorem 4, there is still a large class of SDE’s that can be handled
through transformations. This class includes processes that seemingly is not in-
cluded in Theorem 4, like the mass balance model presented in Example 11.

It is shown that the transformation to unit diffusion can be interpreted as a
weighting with the local standard deviation. This means that the system noise
innovation is equal for all states in the transformed process.
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