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Abstract

This report describes methods to eliminate state depedd&rgion terms
in Stochastic Differential Equations (SDESs). Transfoiiora that leave the
diffusion term of SDEs constant is important for simulatiand estimation.
It is important for simulation because the Euler approxioratonvergence
rate is faster, and for estimation because the Extended dfakiiter equa-
tions are easier to implement than higher order filters neéuéhe case of
state dependent diffusion terms. The general class offtnanations which
leaves the diffusion term independent of the state is c#ledlamperti trans-
form. This note gives an example driven introduction to tlaenlperti trans-
form. The general applicability of the Lamperti transforsrimited to uni-
variate diffusion processes, but for a restricted class oftivariate diffu-
sion processes Lamperti type transformations are avaikaid the Lamperti
transformation is discussed for both univariate and maiate diffusion pro-
cesses. Further some special attention is needed for tihmriogeneous
diffusion processes and these are discussed separately.
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1 Introduction

Stochastic differential equations (SDE’s) are attracting increasing atteriie
cause physical processes in real life systems experience randcimgfodue to
model approximations and stochastic inputs, that cannot be capturedibgryr
differential equations (ODE’s). Such random forcing or internal @cn be cap-
tured by adding random noise in the ODE, and this leads to SDE formulations.

The formulation of SDE’s is done by physical reasoning. This physi&al r
soning includes autocorrelation structures and physical constraims é&sumass
balance considerations) captured by the diffusion term. The formulatidmeaa
soning often results in structures where the noise (diffusion) term dspmnone
or more state variables. Structures where the diffusion term depend statbhef
the system are difficult to handle in estimation procedure like the one implemented
in CTSI\/ﬂ (Kristensen & Madsen|, 2003; Kristensen et! |al., 2004), since the Ex-
tended Kalman Filter (EKF) requires higher (than 1) order terms in order ke ma
the filter approximations sufficiently accurate. Therefore transformatiaisan
move (or remove) the state dependence from the diffusion term to the dnift te
are needed. Other estimation procedures (lacus) 2008) also rely existence of
transformations of this sort. Transformations to unit diffusion is ofternrredeto
as Lamperti transform.

Further it is often recommended (lacus, 2008) to use the Lamperti tramsfo
tion before simulations. State dependent diffusion can together with segatur
the drift term impose restrictions on the state space, e.g. processesisainex
the positive real axis only, like the Black and Scholes model (geometric idamw
motion). Estimation of such systems is not numerically stable if combined with a
observation equation that use these constraints (likéoxransform), since es-
timation of the process may be zero (the geometric Brownian motion is strictly
positive). However, after an appropriate transformation this process ¢in the
entire real axis and numerical problems on the boundary of the domainigedvo

The results presented here seems to be well-known in more theoretical litera-
ture on SDE’s (e.g. Luschgy, 2006), itis however hard to find papasexplicitly
deals with the construction of these kind of transformation in more applied setting
An exception is Nielsen & Madsen (2001), but comparing the results ipexsén
that reference and the results presented here shows that the resuiétsenN&
Madsen [(2001) need correctionsit&Sahalia!(2008) present transformations for
a more general class of SDEs (referred to as reducible), theseotmaiagions are
however more complicated to apply and we lose the generic formulations abtaine
in this report.
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The report starts with a presentation of the general setting in Sé¢tion @ltkes
on one dimensional diffusion are given in Secfidn 3, which is further diviesto
time independent (Sectidn_8.1) and time dependent diffusion (Séctibn 312). T
theoretical properties do not differ much between the two cases, bptdotical
applications some notes are needed for the time dependent diffusion. Tite mu
variate case is presented in Secfibn 4. This part does not consideriatstiine
independent and time dependent diffusion, since the remarks on thamee-d
sional time dependent case applies equally to the multidimensional case. Finally
SectiorL b gives a short summary and discussion of the result presented.

2 The general setting

Itd processes (SDE’s) which are partly observed in discrete time arecctte as
the continuous-discrete time stochastic state space maodels (Jazwinski, d8¥0)
a general formulation is

dX =f(X¢,t,ut, 0)dt + o (X, t,ut, 0)dw, 1)
Yk :g(th7tk,utk7076k)v (2)

wheret € Ry is time, w; € R™ is the standard Brownian motiolX'; € R" is
the state variabley, € R? is the input,@ € R? is a parameter vectof,(-) € R"

is a vector function andr(-) € R™*™ is the diffusion matrix. In the observation
equation[(R)y € R! is the observations of state variabjec R' is the observation
function ande;, € R” is the observation error. The estimation problem is: Find
such that

N

6 = argmax(S(6, V), €)

whereS is some objective function arly = {Y'1,..., Y n} is the set of all ob-
servations. The obvious choice f8ris to maximise the one-step transitions prob-
abilities, i.e. the product of the probability density functiopgf(s) p(Yx|Vi—_1).
This product is called the likelihood function (in practice we optimise ltize
likelihood). The likelihood can in principle be found by solving the Fokkkzmriek
equation [(Gard, 1988; Klebaner, 2005) and using Bayes rule faatingd It is
however unrealistic to solve the Fokker-Planck equation if the systentien#)
does not have a very simple form. The general situation is sketched ineEigur
to obtain the transition probability we need to integrate the SDE [Hq. (1) between
observations, when an observation is available the information providedidy
observation is used to form the reconstruction of the state, and the transibion
ability to the next observation is again obtained by integration.
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One way to move forward is by approximating the transition probabilities by
Gaussiarpdf’s, and transforming the observation equation such that the observa-
tion noise is (approximately) additive Gaussian. In order to calculate the likelih
function Extended Kalman Filters (EKFs) are often used, where the filtextiems
take complicated forms (higher order moments is needed and numerical s®lution
tend to be unstable if the diffusion term is a function of the state). It is thexefo
advisable to use transformations of the system equdflon (1) such thatftrssauhif
is independent of the state. The transformationn( (Figure[1) should form an
equivalent relation between the input and the outpuly’;, and the transformed
system equation should depend on the same parameétets). Even if the main
problem is estimation, the application is more general since it is well-known that
simulations has better convergence rates (lacus, 2008) if the systetioadgs in-
dependent of the states. The subject of this note is transformations ofstieens
eqguations that leaves the diffusion of the transformed system equatiaeimd
dent of the state.

In the following we will restrict the analysis ta(-) € R™*™. There are two
remarks about this 1) most derivations (except transformation to unihgrgkse
easily to the general case, and 2) in a weak solution sense (equality inudistrjb
this is not a restriction, since(-) is only unique up to the ( definite) “square root”
of o(-)a™(-). A small example can illustrate the last point.

Example 1 Consider the SDE
dX; = adt + ordwy ¢ + oadwa;  Xog =0, 4)
wherea, o1 ando, are real constants. The solution {d (4) is
Xi = at + oqwi ;s + o2way, (5)

which is a Gaussian distributed random variable with mean and variancalégu
at ando? + o3, respectively, but this is also the (weak) solution to

dXy = adt + /03 + o3dw; X =0, (6)

which illustrates that the uniqueness of the weak solution is only unique up to the
square root ool . O

The implication will be discussed further for multivariate processes in Section
4. The term “weak solution” refer to equality in distribution, and strong sahstio
refer to path-wise equality (see ksendal (2003) for further digmos®n weak
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Figure 1: Conceptual diagram of the estimation problem, when an observatio
is available the state estimate ®f, | is updated by the provided information and
used for integration of the state to form the prediction of the skgte There is
an infinite number of equivalent relations between the ingwnd the output’,
the equivalence relatiort gives a description with the same parameter, big
independent of;.

and strong solutions). Clearly a strong solution is a weak solution, but lasoaa

tion is not necessarily a strong solution (just consider Exafrple 1). In théswe

will refer to weak solutions (which might also be strong) as solutions. In likelh
estimation the only interest is weak solutions, since we optimise the distribution.
In simulation studies tha main interest will often also be weak solution.

2.1 Notation and problem setting

This note is only concerned with the system equation and with the comments above
the class of differential equations is restricted to

dXt :.f(Xhta ut,e)dt+U(Xt,t,Ut,0)th, (7)

whereo € R™*" w; € R" is the standard Brownian motion, and all other variable
and functions are as explained below Eq. (1). This note deals with théeptpb
Find transformations; = (X, t) or Z, = ¢ (X, t) such that

dZt :f(Zt,t,ut,O)dt—I-5‘(t,ut,0)dwt (8)



or

dZ; =f 5(Zy,t,us, 0)dt + duwy, (9)
wherea (-) is independent of;, but the parameters df|(8) add (9) are the same as
" qzIl:)(.)r notational convenience we will suppress the dependen@eantiu;, i.e.

we will use the notation

f(Xtat) :.f(Xt7t7ut70) (lo)
U(Xtat) :U(Xt7t7ut70)' (ll)

In real life systemsy, is often a set of observations, i.e. not a function that can be
differentiated analytically, and this has to be kept in mind in the following devel-
opment of the transformations.

3 One dimensional diffusion

The fundamental tool for transformations of SDE's i§'dtlemma (the version
given below is due to ksendal (2003))

Theorem 1 (Ité’s lemma): Let X; be an Ib process given by
dXt = f(Xt,t)dt —l—a(Xt,t)dwt. (12)

Lety)(Xy,t) € C2([0,00) x R. Then

Zy = (X, 1) (13)
is again an |6 process, and
_ o o 197y 2
Az, = 5 (X, t)dt + e (X, t)dX; + 5 922 (X, t)(dXy)”, (14)

where(dX;)? is calculated according to the rules

The proof of this theorem is out of the scope of this note, and the readsersed
tol@ksendal [(2003).

It is illustrative to express dts formula in terms oflw, rather thandX;. For
notational reasons we will sometimes writefor f(X:,t), o for o(Xy,t) andy
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for gb_(Xt, t), pa_lrtial derivatives will be written ag; = %—f andygs = %2712”. Rear-
ranging [(14) gives

dZy =dt + 1y - (fdt + odwy) + %wm - (fdt + odw,)? (16)
= (Y1 + e f) i iy 0wy + St - 0% a7
= <¢t+¢x’f+;7/)x:c'02> dt"‘d’x‘adwt- (18)

With this formulation we are ready for the construction of a transformation for
removal of level dependent noise. The following constructive thedseaoften
referred to as the Lamperti transform (lacus, 2008; Luschgy, 2006)

Theorem 2 (Lampertitransform): Let X; be an 16 process as i (12), and define

’ =X+

if 1) is one to one from the state spacef onto R for everyt € [0,00), then
chooseZ; = ¢(Xy,t). Otherwise ifo (X4, t) > 0 V(Xy,t) choose
: (20)

o1
Zt = w(Xht) = / mdu
£ ’ =Xt

where¢ is some point inside the state spaceXgf ThenZ, has unit diffusion and
is governed by the SDE

: (19)

-1
dZ; = (th(?/J_l(Zta t),t) + m_
1

§Jx(w_1(Zt,t), t)) dt + dw;. (21)

A transformation of the state-space clearly has to be one to one, suclvéinat e
point in the state space &f; can be uniquely identified by the inverse transforma-
tion of Z;. If ({9) is not one to one, then choosing the transformafioh (20) (due to
Luschgy (2006)) will ensure that the transformation is one to one, girisghen
a strictly increasing function ak;. We will prove Eq. [(IP) and leave Ed._(20) to
the reader.

ProOF (Of TheoreniR) From[(18) it is easy to realize that level dependent
diffusion can be removed by choosing the transformatics

= (X, t) = (22)

=X, J(Xtvt)



Differentiation w.r.t.z and time gives

_ Um(Xt7t)
¢xx(Xt>t) - O'(Xt7t)2 (23)
0 1
(Xt =5 [ x‘ (24)
=X+
Inserting in [(18) gives
(0 1 [ los o

Cancelling out denominators and enumerators and inseftiagd X; = ¢ ~1(Z;, t)
gives the desired result. O

Theoreni 2 gives a very useful approach for removal of level gt noise.
The discussion of the theorem in the following, is largely example driverdand
vided in two parts. 1) Time independent diffusion ivg. = 0, and 2) time depen-
dent diffusion.

3.1 Time independent diffusion

We begin this section with a small example, which illustrates the use of the Lam-
perti transformation.

Example 2 (Geometric Brownian motion): Let X, be an 16 process (SDE) given
by

dXt = CLXtdt + O'Xtdwt; XO == ]., (26)

wheres anda are real constants. Chooseas in (19), i.e.

Zi=x) = [ Lar =D, @)
=Xy
and
X =9 N(Z) = 77t (28)



By (21) Z; is an It process given by

aXt 1
7y = — — = 2

dZy <0Xt 2a> dt + dwy (29)

1
_ (“ _ a> dt + duw,. (30)

o 2

In this case the solution df; can be given explicitly as
1
Zt: (a—0'>t+'UJt, (31)
o 2

ie. Zy ~ N ((% — %O’) t,t) = o0y ~ N ((a — %02) t, 0225), sinceX; = e?%,
the solution ofX is given asX; ~ LN ((a — 30?) t,0%t), whereL N is thelog-
normal distribution. O

In the example above the Lamperti transform actually solves the originat equ
tion. This is not the case in general, bu'$tformula can be used to solve SDE'’s,
although the class of equations that are solvable in this fashion is limited. The in-
verse transform of/; was not a part of the SDE governiigj, this is not the case
in general, and SDE’s that are apparently very simple cannot be sqgilieittx as
the next example illustrates.

Example 3 Consider

dX; = (b+ aXy)dt + o Xdwy. (32)
Using [19) we get the same transformation as in Exaimple 2/anslgoverned by
b+ CLXt 1
7y = -
dZz; ( oX, 20) dt + dwy (33)
b 1
= <e_UZt + 2 O’) dt + dwy, (34)
o o 2

this SDE does not have an explicit solution, but parameter estimation is biaila
through e.g. CTSM and numerical solutions (i.e. the distribution) can be found
through simulations.

Eq. (19) is in principle always valid. The practical application of the transfo
mation is, however, limited by our ability of find an explicit solution of the inverse
transformation

Xt = wil(th)' (35)

Such solutions are not always available as illustrated in the following example
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Example 4 Consider the diffusion process
dX: = f(Xy)dt + (00 + o1/ Xt)dwy. (36)

The Lamperti transform becomes

Z, =(X,) = 5 log ((UO + 01\/2)_2) + 21\/2 (37)
01 g
=2 (V- Lo (a0 + o1 v/) ). (38)

In this case the & diffusion ofZ; cannot be written as an explicit function &f,
becauseX; cannot be written as an explicit function &f. O

As illustrated by Examplgl4 explicit solutions for the inverse transformation
does not always exist, however many “real” life examples allow the expbtit s
tion of the inverse transform. For instance explicit solutiongyof is available
wheno(X;) = 01X, for any constant, models of this type important in mathe-
matical finance, whereg express the volatility of the market.

For models wherer(X;) are more complex, solutions to—! are in general
not available. Biological models often use proportional or square rep¢mndent
diffusion terms, and in addition additive diffusion might be appropriate if thdeho
contain additive input. As we saw in Example4; ! is not available in this case.
A quite flexible system where—! is available is the Pearson diffusion (Forman
and Sgrensen, 2008), which is considered in the following example.

Example 5 (Pearson diffusion):Consider the diffusion process

dX; = f(Xy)dt + \/0’0 + 01 Xt + oo X dwy. (39)

Actually this is an extension of the Pearson diffusion as the Pearson diffalsion
have f(X;) = (b — aX}). In this context we will, however, only consider the
diffusion term. Use of the Lamperti transforim1(19) gives

01

1
lo
N <2\/U2

Zt :w(Xt) = —i—\/O'iQXt—I— \/(T()—l-UlXt—i-(TQXtQ) (40)

with the inverse

2 1 o1
X, — o7 = o1 00 e~ Vo2 + eVo2Zt _ 21 41
t=v" (%) (803/2 2./09 2./09 209 (41)
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and the 16 process folZ; is given by

iz — ( JW N Z)) B
Voo + o1 H(Zy) + oo - (0 1(Zy))?

o1+ 2021/}71(Zt)
d d 42
4\/00 +o1p~HZy) + o2 - (7/’1(Zt))2> e 0
f=HZ)) — % (‘71 + 2021[)_1(&)) dt + dwy. (43)

Voot o (Z) + o (0 U )P

Clearly the resulting SDE is very complex, it will however provide the cpimity

of testing hypothesis @f; = 0. In the construction of SDE’s of the type discussed
in this example it is important to ensure that the diffusion term exists faXalh

the state space oX; (we would need to examine the drift term at the boundary).
O

Even though the Lamperti transform is limited by our ability of finding the
inverse, it is still possible to use transformations that remove level dependise
for quite general classes of diffusion processes, as illustrated in He&np

3.2 Time dependent diffusion

The SDE[(21) depends on the time derivative/ofind even though this might be a
guite complicated function, itis in principle always possible to find such a salutio
In real life applications the time dependencesolill, however, often be through
an observed input, in this case the differentiation have to be done numeritally
might therefore be advisable to choose a transformation that leaves thsiatiff
term time dependent. This does however limit the the class of transformations
substantially, it is e.g. not possible if one of the diffusion parameters in thes&e
diffusion depends on time.

In general it is possible to succeed in the case where the diffusion is pye

o(Xi,t) = at)B(Xt) (44)

In this case use the Lamperti transform 60X;) and leave the diffusion time-
dependent, i.e. put

: (45)
:L‘:Xt

11



and proceeding like in the time-independent diffusion we get

fw='(2),1)
= (S
If the time dependence is either an explicit functiort @i the differential of
the time dependence is available through observations then Théorem fllican s
be applied, but the functional relationships do however become coabldanore
complex, as the next example illustrates.

- 5 200 ) di+ aldur. @0

Example 6 Consider a process driven by a noisy time varying inf} (birth
process) and with a constant death-rate, the SDE formulation could be

dXt = (b(t) + CLXt)dt + (O’Ob(t) + alXt)dwt, (47)
wherea > 0 andb(t) > 0 Vt. The Lamperti transform becomes
1 log(oob(t) + o1x)
X t)= [ ——— = 48
¥(Xe1) / oob(t) + led:c B o1 (48)
implying
oob/(t)
X, t) = 49
¥i(Xe 1) o1(o0b(t) + 01X4) (49)
017 _
v (i) =2 (50)
o1
Ux(Xt7 t) =01, (51)
and Z; = ¢ (Xy,t) is governed by the process
ool (t) b(t) + a1 (Zy,t) 1 )
dZ; = — =07 | dt+
! (al(crob(t) + o1 (Zi,t) | oob(t) + o (Zit) 27"
T0Y/ () + b(t) + a0k
_ [ 2V 50 i — T (53)
oob(t) + 0107100 2
= [(Uobl(t) + <1 - aUO> b(t) + ae‘”Zt) e 12t _ 101> dt + dw
o1 01 01 2
- { [Uob’(t) + (1 - a"°> b(t)} el L 10—1} dt + dw,.  (54)
01 01 o1 2

In principle this is straight forward, buk(t) will often be a function of some ob-
served process and in this case we will therefore need observationsdifféren-
tial of b(t).
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4 Multivariate Diffusion

The Lamperti transform presented so far is a univariate transformatidnit is
possible to generalise this for a restricted class of multivariate diffusiccepses.
As for the one-dimensional diffusion proces'dstlemma for multi-dimensional

diffusion is the key to understand the multi-dimensional transformation. Again a

good reference is @ksendal (2003).
Theorem 3 (Itd’s lemma):
dX i = f(Xt,t)dt + o(Xy, t, )dwy, (55)

with¢t € R, being time, X ; € R" the state vectorw; € R™ multivariate standard
Brownian motionf(-) € R® ando(-) € R™*™. Then for a given transformation

Zt — dJ(Xtvt) = [wl(Xtvt)v "”,(Z}n(Xt)t)]? (56)

where is a C? function fromR" x [0, c0) into R™, Z, is again an 16 process
given by

O
ot

5 >N o (Xt 1)dX;1d Xy (57)
. _ ) 7

"0
AZpy =— (X t)dt + ) %(xt, t)dX; 4
i=1 t

Wheredwidwj = 0fori 75 7 dw;dw; = dt, anddw;dt = dtdw; = dtdt =0 Vi.

In the version of b's lemma given above) € R™. In the general version of

Itd’s lemma this not a requirement, but we have restricted the attention to equal

dimensions ofX; and Z;. The derivations below do however easily generalise.
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It is again illustrative to writelZ;, ; in terms ofdw; ; rather thanl.X; ;,

3?/% 3%
A2y, == (Xt dt+z ~(X e, )d Xt
n n a
722 Uk (x, 1 )dX;1dX; s (58)
P O0x;0x;

= ((ﬂlk)t Z(% z; z) dt + Z Vk)a (Z Uz‘hdwh,t> +
h=1

=1

5 Z Z Vi) sz (Z ojndwp, t) (Z Ujldwl,t> (59)
=1

11]1

= ((wk)t + Z(wk)xlfz ZZ 1/% T, % (Z Ujhglh>) dt+

=1 21]1

Z (E(W)zio’ih) dwp, ¢, (60)

h=1 \=1

where subscripfh, i, j, k} refer to elements of vectors and matrices, subscripts
andt refer to partial differentiation (except ifi; ; andw; ; wheret refer to time).
From the last expression in Eq. {60) it is seen that the removal of lepelndient
noise requires the solution of the following system of PDEs

n

> (Wn)woi(@,t,) = () (61)
=1

Y (Un)woiz(@,t) = ea(t) (62)
=1

Z(wk)xiain(m’ t) = Cn(t)7 (63)
i=1

wherec; is an arbitrary function of. Such a system can not be solved in general,
since for givero, this results im equations with one unknow()y, ).
Nielsen & Madsen [ (2001) claim that under the assumptionrs;1¥ 0 and 2)

O'Z'j(Xt,t):O'ij(X:(i),t), izl,...,n,j:l,...,n, (64)
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it is possible to find a transformation. The application @f lkmma is however
wrong, we will not go through the proof of this, but applyingl(61)}(88) lead to
v(i) = i.

The difficulties of removing state dependent diffusion can be illustrated by a
simple example.

Example 7 Consider the diffusion process
X1t Xoy O dw 4
d T = ’ T, 65
[ X2,t ] [ 0 Xl,t } [ dw2,t ] (65)
let Z1, = 1(X¢) and Zy; = 1h2(X¢). Using I©’s lemma we get

0 0
dZyy =—Yn (X, Xog) Xopdwr g + —U1 (X1, Xo) X1 pdwo i+
0xq O

1 0?2 92
5 X140, Xo) X3, + ——b1 (X140, Xo0) X2
9 (axlﬁxl P1( X1, Xog) Xg, + D901 Y1( X1t Xogt) 17,5) dt, (66)

the first term requires the solution of

1 = gt (o1,22) (67)
implying
Py (wq,m2) = C% + 1 (2). (68)

wherezﬁl(xg) is an arbitrary function ofry. The second term therefore require the
solution of

. 0 I ~
1= (a2 4 o)) (©9)
X1 d -~
S S 7
Clx% + dmﬂ)l(l‘z)a (70)

aszﬁl(xg) is not a function of; this differential equation does not admit a solution.
O

Even if a general multivariate version of Theorem 2 is not available, it$s po
sible to state the less general result
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Theorem 4 (Multivariate Lamperti transform): Let X, be an 10 diffusion given
by

whereR(t) € R™*"™ is any matrix function of, ando (X, t) € R™*" is a diago-
nal matrix with diagonal elements ;( X, t) given by

Um’(Xt, If) = Ui(Xi,t7 t). (72)
Then the transformation
Xt = [ 73)
zt— 7 i, - J,’(l‘,t) €T )
=X
will result in an 11 process with the i'th element given by
(N Z ),
dZm:( Gl )], yr g+ f<w71< t1),t)
oy (Zigs 1), 1)
10 . =
5%01(% (tha dt + grm dw]ta (74)
wherer;;(t) are elements aR?(¢) and
X, =1 YZ,t). (75)
PROOF. Apply Theoreni? to eacl; ; O

The remarks about time dependent diffusion made in Selction 3.2 also apply to
the multidimensional case. A simple example illustrates the use of Thédrem 4.

Example 8 (Two-dimensional Geometric Brownian motion):Consider the pro-
cess

X1t ap 0 Xlt:| |:X1t 0 }[7’11 7“12}
d T = oldt+ ’ LTy
{ Xoy } [ 0 as } { Xoy 0 Xoy o1 122 Wi
(76)

with initial condition Xy = 1, chooseZ;; = ¢(X:) = log(X1,) and Zy; =
w(Xt) = 10g(X27t), then

A% al—l(rf1+7"%2)} [7‘11 7“12]
d T = dt+| & | duwy, 78
[ Zat ] [ az — 2(7"%1 +739) o1 T29 t (78)
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with initial condition Z, = 0 and the solution of(Z8) is

AR a1 — 2(r} + 1) ] [ i1 T ]
= t+ ’ |l w 79
[ Zat } [ az — %(7’%1 +73) o1 T22 t (79)
=(a — diag(RR"))t + Rw;, (80)

wherea = diag(A)is a vector with elements equal to the diagonal element.of
Inthis caseZ, follows a Gaussian distributio#; ~ N ((a—3diag(RR"))t, RR"?).
X is therefore distributed according to a multivariateg-normal distribution,
with the same parameters. O

The transformation presented in Theorem 4 is not a true Lamperti tramsfor
since it does not transform to unit diffusion. This can be solved by thewimg
theorem

Theorem 5 (Tranformation to unit diffusion): Let X; be an 19 diffusion given
by

whereR(t) € R™*" is any invertible matrix function af then the transformation
Ziy=%(X,t) = R(t) X, (82)

will result in an 1t process given by

iz, = | (RO ) ROZ + RO FROZ00)| e dw (63

dt

(84)

with (£ R(t)~!) the elements-wise derivative Bf(t)~* and
X, = R(t)Z;. (85)

PROOF. Consider the'th coordinate ofd X ;
dXiy =fi( Xy, t)dt+ Y (R(t))sdwj, (86)
j=1
and the:'th coordinate ofZ;
Ziy = i( Xy, t) = Z(R(t)fl)injJ (87)
j=1
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by Itd’'s lemma we get (noting thagmwl(a: t)y=0Vie{l,.,n}, andj €
{1,...,n})

Ziy = z/JZ(Xt, dt—i—z o) Vi( X1, 1)dX 4 (88)
52 ZJ Jtdt+z 'Lj f] Xt, )dt—l—
R(t)jhdwh] (89)
h=1
= |: 1 %R(t);lej,t + Z; R(t);jlfj(Xt, t):| dt+
Jj= j=
Z R(t);;' Z R(t)ndwp, (90)
Jj=1 h=1
- { < d R(t ) ZR T Zng+ (RO F(X4, 1)), | di+
j=1
> R(t)ile(t)jh) dwp, (91)
h=1 \ j=1

1

_ in: <<;R(t ) R(t))ih Za + (R()™ f(Xt,t))Z.] dt

)—1
> (R(t)'R(t)),, dw (92)

_ [((iR(t)—l) R(t)Zt>i + (R(t)_lf(Xt,t))i] dt +dwi,  (93)

writing the matrix formulation of the above gives the desired result. O

—

Combining Theorernl4 and 5 gives a multivariate version of the Lamperti-trans
form. This is illustrated by applying Theorédrh 5 to Exanigdle 8.

Example 9 Consider the transformed process of Exaniple 8, then

_ 1 T92 —T12
R = 94
det(R) [ —ro1 711 } 7 54)
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and the process

Zy=v(Zy) = R 'Z, (95)
is given by
d |: Z~1’t :| N 1 |: 7“2’2 —7“1’2 :| { al — %(T%l +T%2) dt
> = _ _ 1.2 2
Zay det(R) T2l Tl az — 5(ry +13)
dwy ¢
+ [ dws ] (96)

andZ; ~ N(R™'(a — 1diag(RR"))t, It) and the inverse of is

-1

X =y (Z) =o' (¥ (Z;) = '(RZ;)) = exp(RZ,)

el Z1,t+r12 ZQ,t
= (97)

er21 217t+T2222,t

O

Theorenib states that a process with state independent diffusion caittba w
as a weighted version of the original process, which has unit diffu3ibe weight
is the inverse of diffusion matrix, it is tempting to interpret the diffusion matrix
(R(t)) as a local standard deviation, such an interpretation is however nighstra
forward, since the local variance is different fraR(¢)2. The density of an SDE
is determined by the Fokker-Planck equation (sometimes referred to as the Ko
mogorov forward equation), which in the multidimensional case is given bydG
1988)

plat) == 3 5 (e ol 0) +

2
P S e o () (98)
i L

k

-y ai (file, p(, 1) +

1 0? T
5 >3 e (00" (@,1)),; p(x,1). (99)
(2]

l‘iax]‘

The density 4(-)) does not depend anitself, but only onoa”, meaning thap is
only uniquely determined up to what can loosely be refereed to as the (rieune)
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“square root” ofoo”. However for a positive definite symmetric matrix, sdy
there exist a unique positive definite symmetric maffixsuch tha™> = A, and
by constructionoo” is a positive definite symmetric matrix & has full rank.
Again the best way to understand this is by considering a small example.

Example 10 Consider the SDE

2
-5

3
4

dX, = [ B ]dwt; Xo=0 (100)

it is well known thatX; follow a Gaussian distribution with meah the variance
for this process is given by

V(X;) =oo’t (101)
2 -3 2 -5
:[_5 _4“_3 _Jt (102)
13 2
:[ 5 41 } t. (103)

Consider now the proces

dth{g:g gzi}dwt; X, =0, (104)
the variance ofX, is
V(X)) =66"t (105)
(55 0] 109
B 2 2
[ 0364 450 o sos | (1o7)
_ o2 ]t. (108)

Which shows thakX ; is a weak solution to the SDE{100).

Analytic solutions for the unique “square root” efo” are not easy to find.
This is however not important if we are interested in estimation, since the likelihoo
is generated by the weak solution to the SDE. The important conclussion vgghat
can only indetify the number of parameters corresponding to a symetriowvers
the “square root” oo’
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In the one dimensional case we can thiRkas standard deviation is the fol-
lowing sense, let; be a continuous time random walk

dx; = rdwy, (209)

then the discrete time stochastic process (Wwith < t)

Ly, — Tty
E= —F0—;
=t

is a sequence of iid. standard Gaussian random variables. The multidimansio
equivalent to[(109) is

k=1,2,... | (110)

Now if the matrix R € R™*" is symmetric and positive definite thé®¥ = RR”,
and the discrete time stochastic process (again#yith < t;)

1
y =
g Vit — tik—1

is a sequence of-dimensional iid. standard Gaussian random variables, and in this
sense we can think dR as the standard deviation. The generation of correlated
random variable is often done by simulating independent standard ramgotrers
and then multiplying by the covariation matrix (Madsen, 2008). The transforma
tion in Theoreni b can be viewed as the SDE equivalent to such a transifamma

The examples presented so far have been rather simple with the purpose to
explain or clarify the theory, for such purposes it is not illustrative to idelmore
physical reasoning. It might however be motivating to see an example base
real life reasoning, the last example of this note is such an example.

R Yxy —xy ), k=1,2,... , (112)

Example 11 A competition model: Consider a controlled experiment with two
living populationsP; and P; (e.g. bacteria or phytoplankton) eating the same two
nutrients Ny and Ny (e.g. nitrogen and phosphor), but not each other. Let the
experiment be constructed such the the total amount of nutrients aredresthnt.
Biological growth models are often assumed to follow Liebigs law of minimum and
Michaelis-Menten kinetics, i.e.

. i1 N1 i 2No
P, = AN —m; | Pt 113
(mm <ki,1 + N1 ko + N2> i > (113)
=(fi(IN) — m;)Pidt, (114)

wherem; > 0 is the mortality rate andnin(-) express the limiting factor. Further
let a;; be conversion factors that convert populatioto nutrient j, such factors
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are often known or approximately known from literature. As discussdiketre
diffusion term for biological processes is often assumed to be proportioréther
P, of /P, here we assume that the diffusion is proportionalPfo with ; € (%, 1)
and leave it to the estimation procedure to determjne

The SDE for the system described above is

Ny —a11(fi(N) —m1) —ai2(fa(IN) —ma)

d Nog | _ —a21(fi(N) —m1) —ag(f2(IN) —ma) [ 1,t } dit
Py Ji(N) —my 0 Py
Py i 0 f2(IN) —mgo

i —aualPﬂi —algangj
—ag01 P}, —axoa Py} dw 4
lelvé 0 [ dwg,t :| '
0 O_QP;:%

(115)

Seemingly we cannot apply the derived methods to transform this systesto a s
tem with constant diffusion, however the above system have a 2-dimardign
tribution only and transformation is therefore possible. Using Thedrem £,0n
gives

1=
- 1 v P
Pu=uiPo)= o [a7has| = ()
’ Vool oi(1 =)
SCIPZ'Yt
with the inverse function given by
Py=(1 =) Yoy Py) ! = (Fi0:P54) 7", (117)
wherey; = 1 — ~;. Now choose
Nit = ¢i(Nig, Prg, Poy) = Nig + anPry + ainPiy. (118)

Using It©o’s formula we get

dNit =(—an (f1(IN) = m1)Pry — ain(fo(IN) — ma) Pay)dt
— a;101 Py dwry — ainoo P pdwo
+ a1 (fi(IN) —mq) Py gdt + a;101 Py dwy
+ aig(fz(N) — mz)Ptht + CLiQO’QPthU}Q’t (119)
—o. (120)
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Implying thatN; ; = N; ¢ is constant andV; , is given by

Nit =N;i(Py) (121)
=N, — ain Py — apPay (122)
=N; o — ain(7101P1s) ™" — aja(FaoaPay) 72, (123)
The system equation for the transformed system takes the form
d[ Py ] _ [ (01711?1,t)_7~1(f1(1:3) —my) } o
Py (0292 P2t) 72 (f2(P) — ma)
o v L ) 122
with
.(P) =min ( Mz’,1N1(132 7 ,Ui,2N2(152 ) (125)
kii+ Ni(P) kiz+ No(P)

— min 11:1(N1o — a11(3101P1y) ™7 — ara(F209Pay) ~72)
kix+ Nio — a11(7101P1t) ™" — a12(Feo2Poy) ~72

kio + Nog — agi (7101 P1y) ™7t — age(F209Pay) 72

The derivations above strongly depend on the fact that the actual dinmeoisibe
joint distribution at timet is only 2, if there had been a random input of nutrient
to the system, the derivation would not have been possible. It is theretoueial
assumption that the experiment is conducted in a controlled environmigmtnev
random interactions with the surroundings.

For the sake of completeness we will give an example of the observatian eq
tion, where we will assume that we are able to observe all the states ofitheabr
system, and that these observations lakgnormally distributed around the true
state, i.e.

Ni,Q(NZO — CL21(:)/10'1ﬁ1,t)_7~1 - a22('7202p2,t)_’y~2) ) (126)

YN k log(N1,4,,) €Nyt
YN, & log(Nayz,) €Nt
k= ) || 127
YPhk; 1Og(P1,tk) 6P1,t ( )
Yp, 1, L log(PZtk) EPyt
[ log(fiﬁ,o — an(’?lfflf:’l,tk)_”:l - G12(’~Y2021?2,tk)_7:2)
_ | log(Nap — a21(101 P )™ — az(Y202Po0)77) |
—71(log(1) +log(o1) + log(Prz,))
i —72(log(F2) + log(o2) + log(Pay, )
€¢, (128)
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wheree;, follow a Gaussian distribution with mean zero variarge O

5 Summary and conclusion

We have shown how a class SDE’s with state dependent diffusion camrse tr
formed into SDE’s with state independent diffusion. For one dimensiosééss

this transformation is rather straight forward and is only limited by the ability to
find a closed form inverse transformation. Such transformations aretampéoth

in estimation and simulations. lacus (2008) notes that the Lamperti transfonmatio
or similar transformations (not necessarily to unity) should always be hsiede
simulation and that many estimation techniques rely on unit or constant diffusion
Luschgy (2006) presents proofs of convergence rates for a simngatiocedure,
which also relies on the existence of the Lamperti transform.

For time dependent diffusion the transformed process will depend on the time
derivative of the transformation, which is equivalent to dependendbetime-
derivative of the diffusion term. While this might be reasonable when the-fun
tional relation between the diffusion and time is given in an explicit form, it is
problematic if the time dependence on the diffusion is through an observed inp
because numerical differentiation will be needed.

For multidimensional diffusion processes the transformation to systems with
state independent diffusion is more delicate, and Luschgy (2006) ndte¢htha
Lamperti transform is essentially a one-dimensional transformation. Thisds a
what has been shown here, however, it is also stressed that even svisthic-
tion given in Theoreml4, there is still a large class of SDE’s that can belén
through transformations. This class includes processes that seeminglyiis n
cluded in Theorernl4, like the mass balance model presented in Example 11.

It is shown that the transformation to unit diffusion can be interpreted as a
weighting with the local standard deviation. This means that the system noise
innovation is equal for all states in the transformed process.

References

Ait-Sahalia Y. (2008) Closed-form likelihood expansions for multivariatéudif
sions.The Annals of Statisti¢c82, (2), 906-937

Forman, J., and Sgrensen, M. (2008) The Pearson Diffusion: A GfaSta-
tistically Tractable Diffusion ProcessesScandinavian Journal of Static85,
438-465

24



Gard T.C. (1988) Introduction to stochastic differential equatidhaccel Dekker,
Inc., New York.

lacus S. M. (2008) Simulation and Inference for Stochastic DiffereBtilations
- With R ExamplesSpringer Series in Statistics

Jazwinski A.H. (1970) Stochastic Processes and Filtering Th&oademic Press
New York.

Klebaner F. C. (2005) Introduction to Stochastic Calculus with Applicatidns.,
perial College Press

Kristensen N.R., and Madsen H. (2003) Continuous time stochastic modeling -
CTSM 2.3 - Mathematics Guid&echnical University of Denmark

Kristensen N.R., Madsen H., and Jgrgensen S.B. (2004) Parameter estimatio
stochastic grey-box modeldwutomatica40, 225-237

Luschgy H. & Pags G. (2006) Functional quantization of a class of Brownian dif-
fusions: A constructive approaclstochastic Processes and their Applications
116 310-336

Madsen, H. (2008Yime Series Analysi€hapman & Hall/CRC

Nielsen J. N. and Madsen H. (2001) Applying the EKF to stochastic diffexe
equations with level effectdutomatica37, 107-112

@ksendal B. (2003) Stochastic Differential Equations - An Introductigh Ap-
plications, Sixth editionSpringer, Berlin

25



	1 Introduction
	2 The general setting
	2.1 Notation and problem setting

	3 One dimensional diffusion
	3.1 Time independent diffusion
	3.2 Time dependent diffusion

	4 Multivariate Diffusion
	5 Summary and conclusion

