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Summary

This report concerns probabilistic forecasts for Nysted Offshore. Different approaches for issuing predictive
densities are studied, discussed in details and compared. The results show that the spatial correction of the
first order moments of the predictive densities improves the quality of the corresponding forecasts. The spatial
correction of the higher order moments is shown to be unnecessary as does not bring any additional amelioration.
The best performing of the studied models is based on the adaptive quantile regression using the spatially
corrected point predictions as input. This model is shown to outperform the benchmark approach in termps of
the CRPS score (accuracy measure) by 1.5%-8.29% depending on the considered prediction horizon.

Introduction

Previous studies within DONG Spatio-temporal concern improvements in the forecasts of the expected power
at Nysted Offshore using spatial information. Such predictions are never 100% accurate as they are always
associated with some uncertainty due to incomplete knowledge one has about the future events. The uncertainty
of the point forecasts is highly variable and depends on the considered look-ahead time, the quality of the related
meteorological forecasts and many more factors. As the verity of the point-forecasts is time-varying, they are
not to be trusted in the same way at every step. Providing information on how much those forecasts can actually
be trusted at a certain moment, plays a very important role in many decision making tasks. Such information
is directly related to knowing how much risk is being taken by relying on the prediction. Complementing point
predictions with the estimates of the associated uncertainty is a task of probabilistic forecasting.

The main objective of this work is to extend the point forecasts for Nysted Offshore to probabilistic forecasts.
The aim is to ”dress” the point predictions with the uncertainty estimates in order to obtain full predictive
densities of the generated wind power instead of giving only the expected value (which is the case for the point
forecasts). There are two ways of getting such predictive densities. One way is to assume that the wind power
generation follows a known distribution. Then in order to build a predictive density one needs to estimate the
parameters of the assumed distribution using the past observations. This approach is called a parametric, or
distribution-based method. Another way is to assume that the exact distribution is unknown. In that case one
needs to consider a wind power expectation given by the point prediction and assume that the accuracy of it
will be directly related to the previously observed performance of the corresponding point forecast model. The
quantiles of the past point forecast errors are then estimated. A 0.95 quantile, for example, gives a value which
will not be exceeded by the observation with a probability (nominal proportion) of 0.95. After estimating the
quantiles, the point forecasts are being ”dressed” with a set of prediction intervals of different nominal coverage
rates in order to obtain a full density. This approach is called a non-parametric, or distribution-free approach.

When building probabilistic forecasts for a wind power variable which account for the spatial information,
some knowledge could be taken from the earlier works concerning spatial modelling of a wind speed data with a
consideration of probability forecasts. Gneiting et al. [8] propose regime switching models which account for two
dominant wind directions while predicting wind speed up to two hours ahead. The corresponding probabilistic
forecasts for the wind speed are based on a truncated Normal distribution. The truncation is carried out in
order to ensure that the final forecasts are within the valid range, ı.e. no negative wind speed values occur.
Hering and Genton [11] extend the work of Gneiting by considering a circular wind direction and applying
both truncated Normal distribution and a skew-T distribution for describing the model related uncertainties.
In their work the authors also link the predictive wind speed densities to the corresponding wind power variable
using a power curve model. Lau in [13] looked at the spatio-temporal models for a wind power generation while
considering multi-step ahead forecasts described by the censored Normal distribution with spatial covariance
structures.

In parallel, without considering spatial effects, but rather concentrating on a single site, Pinson [20] compares
several types of parametric predictive densities for describing very short-term wind power generation at Horns
Rev wind farm. A censored Normal, a Beta and a generalized logit-Normal distributions are considered in the
work. The author shows that the generalized logit-Normal distribution is a better candidate for describing the
wind power generation than the censored Normal or Beta distributions.

In addition some research was carried out for proposing non-parametric approaches for probabilistic fore-
casting of the generated wind power. Møller et al. [14] introduced an adaptive estimation scheme for a quantile
regression and used the method for issuing probabilistic wind power forecasts. In parallel, in [17] Pinson and
Kariniotakis proposed another non-parametric approach called adaptive re-sampling. Similarly to the adaptive
quantile regression this approach does not assume any particular distribution for the wind power generation.
Instead it builds prediction intervals of different nominal coverage rates based on the past deviations from the
expected power. Both mentioned non-parametric approaches have been compares on the same test case - hourly
wind power predictions at Klimt wind farm. The results are documented in [19] where it is shown that the two
methods perform similarly.
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To our knowledge, no studies comparing parametric and non-parametric approaches to probabilistic wind
power forecasting exist. As far as the spatial models for the wind power data are concerned, nothing but the
censored Normal distribution has been considered (see [13]). The goal of this study is therefore to apply both
parametric and non-parametric methods for issuing probabilistic forecasts for Nysted Offshore. The comparison
of the forecasts performance will be carried out considering different prediction horizons. The most important
questions which are aimed to be answered are:

• which modelling approach gives better results: parametric or non-parametric one? Is it consistent for all
the considered horizons?

• does accounting for the spatial information improve the performance of the probabilistic forecasts?

The outline of the report is as follows:
A short description of the data used in this work is given in Section 1. It is followed by the methodological

aspects on the parametric probabilistic forecasting (Section 2). The distributions considered in this work are
presented in Sections 2.1 and 2.2. The parameter estimation for the considered densities is discussed in Section
2.3 and 2.4. A non parametric approach for building the predictive densities is presented in Section 3. Section
4 discusses the methods for probabilistic forecast assessment. The results are presented in Section 5. The paper
ends with the concluding remarks in Section 6.

1 Data and previous work

All analysis within Dong Spatio-temporal are primary based on the WPPT power (point) forecasts with a
resolution of 15 min and a horizon of 48 hours available at a number of wind farms listed in Table 1. The
location of the farms are shown in Figure 1. The WPPT forecasts are based on the power measurements with
a resolution of 5 min and meteorological forecasts with a time resolution of 1 hour and a horizon of 48 hours.
The meteorological forecasts include wind direction and wind speed at an altitude of 10 meters. Meteorological
forecasts are provided by the HIRLAM model operated by the Danish Meteorological Institute (DMI). The
WPPT forecasts used in the study are historical runs where the delay of the meteorological forecasts has been
set to 4 hours. This implies that the meteorological forecasts originally issued, for instance, at midnight become
available as an input to the wind power prediction models only at 4 a.m. This means that the wind power
forecasts issued at 4 a.m. and targeting 5 a.m. (one hour ahead predictions) use the meteorological forecast
issued at midnight as input. That implies that the one-hour ahead wind power predictions issued at 4 a.m. are
actually using five-hours ahead meteorological forecasts as input. The data covers the period from the 1st of
May, 2008 to the 1st of February, 2010. All the models considered in the project have been run for the period
from the 1st of May, 2008 to the 31st of December, 2009. The actual evaluation of the models’ performance is
based on the period from the 1st of January, 2009 to the 31st of December, 2009.

Spatio-temporal correction of the WPPT power forecasts at Nysted Offshore was carried out in [3, 2].
Different configurations of the correction models have been tried in [3, 2]. The best performance was observed
when the spatial correction models (Conditional Parametric models) for Nysted Offshore have been run using
a reduced set of explanatory variables proposed in [2] (the corresponding model is denoted as a CP-model) and
additionally to that incorporated data transformations described in [3] (the corresponding model is denoted as
a Logit-CP model). Detailed analysis of those two models is given in [3]. Complementary to the initial WPPT
forecasts in this work the corrected predictions made by the CP and the Logit-CP models are considered.

2 Parametric approaches to probabilistic forecasting

Parametric approach is based on the assumption that a distribution function of the wind power generation is
known. In order to choose a specific type of density, the crucial features of the wind power variable are to
be taken into the account. Firstly, when normalized by the nominal capacity, it is double bounded between
a minimum production of 0 and a maximum one of 1. It is in parallel a non-linear function of the forecasted
wind speed in the shape of a sigmoid, which means that higher variations in the wind power are observed when
the predicted wind speed is in its medium range. For the wind speeds close to the cut-in or cut-off values the
fluctuations in the observed power are lower. This means that a distribution of the observed power changes with
the level of the predicted wind speed and as the latter is directly related to the expected power, one can say that
the density of the observed power depends on the level of the expected power. This is further demonstrated
in Figure 2. Another point clearly seen in Figure 2 is a non-negligible concentration of probability mass at the
bounds. When the expected power is far from the natural generation bounds (see Figure 2(d)), the conditional
histogram resembles that of a Gaussian distribution (a characteristic bell-shape around the expected value can
be seen). The closer to the bounds, the less dispersed distributions become and the higher the probability
concentration at the closest bound can be noted.

3



500 600 700 800

60
50

61
00

61
50

62
00

62
50

63
00

63
50

64
00

UTM East (z32), [km]

U
T

M
 N

or
th

 (
z3

2)
, [

km
]

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18 19

20

1 AFM
2 BOR
3 EGM
4 FKM
5 HHM
6 KAP
7 KYV
8 MGR
9 NBM
10 NHP
11 NOD
12 OG2
13 SYH
14 TRM
15 VEM
16 VNB
17 WFH
18 WH1
19 WTJ
20 WTU

Figure 1: Map of wind farms included in the analysis. Nysted (target wind farm) is marked by number 10

Name Abbrev. Cap. (MW) Number of turbines UTM E UTM N Hub h.
Askoe Faeland AFM 2.40 4 646777.00 6068525 40.00
Borup (sum) BOR 3.96 6 699583.00 6199488 44.00

Egelev EGM 1.80 4 682256.00 6086204 35.00
Frankerup/Faardrup FKM 2.70 4 649515.50 6131569 40.50

Hagesholm HHM 6.00 3 661093.00 6182659 68.00
Kappel KAP 10.20 24 628911.00 6070409 32.00
Kyndby KYV 3.06 19 682049.00 6188266 30.00

Middelgrunden MGR 20.00 10 730597.30 6178847 64.00
Nyboelle NBM 1.00 2 642797.00 6092329 35.00

Nysted Offshore NHP 165.60 72 672504.00 6050365 68.00
Noejsomheds Odde NOD 21.00 21 633010.00 6089671 50.00

Overgaard 2 OG2 11.50 5 581199.00 6279823 80.00
Syltholm SYH 18.75 25 654876.00 6057536 44.00

Taars TRM 1.00 2 669788.00 6081120 40.00
Vemmelev (sum) VEM 4.65 8 642791.67 6135634 38.33

Vindeby (”offshore”) VNB 4.95 11 635956.00 6094187 38.00
Frederikshavn WFH 10.60 4 593839.00 6368078 80.00
Horns Rev 1 WH1 160.00 80 426487.00 6149224 80.00

Tjaereborg Enge WTJ 2.00 1 473833.00 6144928 57.00
Tunoe Knob WTU 5.00 10 584391.00 6203478 45.00

Table 1: Wind farms included in the analysis. UTM coordinates corresponds to zone 32.
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Figure 2: Distribution of the observed power conditional to different levels of the expected power given by the
WPPT forecasts. Note that the range of frequencies on the y-axis varies from one plot to the next.
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2.1 Censored Normal distribution

For modelling those effects a Censored Normal distribution with varying parameters has been considered in
[20, 13]. The censoring is needed due to the fact that a wind power variable is bounded. A Censored Normal
wind power variable follows an ordinary Gaussian law within the open unit interval. Since the values outside
[0,1] cannot be taken, the corresponding tails of the ordinary Gaussian distribution are cut and deposed to the
bounds of the defined interval (to 0 and 1, respectively).

Formally the Censored Normal predictive density for the wind power generation Xt+k at time t+ k can be
written as:

Xt+k ∼ w0
t+kδ0(x) + f (0,1)(x;µt+k, σ

2
t+k) + w1

t+kδ1(x), x ∈ [0, 1] (1)

where δ0 and δ1 are Dirac delta functions at 0 and 1, respectively, representing the location of the potential
concentration of probability mass:

δj(x) =

{
∞ if x = j

0 otherwise

w0
t+k and w1

t+k are the weights representing the levels of probability mass concentration at the corresponding
bounds of the unit interval.

w0
t+k = F (0;µt+k, σ

2
t+k) (2)

w1
t+k = 1− F (1;µt+k, σ

2
t+k) (3)

with F (x;µ, σ2) being a cumulative Gaussian distribution function with parameters µ and σ2. f (0,1)(x;µ, σ2)
follows a Gaussian density function (with a location parameter µ and a scale parameter σ2) within the open
unit interval (0,1) and equals 0 outside this interval:

f (0,1)(x;µ, σ2) =

{
1√

2πσ2
e−

(x−µ)2

2σ2 if x ∈ (0, 1)

0 otherwise

2.2 Generalized Logit-Normal distribution

The aforementioned characteristics of the wind power variable (bounds, non-constant variance) indicate that
some data transformations could be employed in order to stabilize the variance, reduce the influence of the
bounds and as a result could make the assumption of a Gaussian distribution more appropriate. For that purpose
a generalized logit (GL) transformation (see equation (4)) has been proposed in [20]. In [3] this transformation
has been incorporated into the models for spatially correcting the expected wind power generation at Nysted
Offshore and resulted in the improved model performance.

For an original time series xt the generalized logit transform is given by

yt = γ(xt; v) = ln

(
xv
t

1− xv
t

)
, v > 0, |xt| < 1 (4)

while the inverse transformation is defined as

xt = γ−1(yt; v) =

(
1 +

1

exp(yt)

)−1/v

, v > 0 (5)

A shape parameter v has been set to 0.01 (see [3] for details).
Based on (1), but now considering Yt+k, the GL-transform of the corresponding wind power generation

Xt+k, the form of its predictive density is given by

Yt+k ∼ w0
t+kδ−∞(y) + f (0,1)(y;

∼
µt+k,

∼
σ
2

t+k) + w1
t+kδ∞(y), y ∈ R (6)

In other words instead of assuming that the wind power generation Xt+k follows a censored Normal dis-
tribution, this distribution is assumed for the GL-transform of the original variable. Otherwise stated - the
original wind power generation is assumed to follow a generalized logit Normal distribution.
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2.3 Estimation of the location parameter

A parallel between parameter estimation in the censored Normal and the generalized logit-Normal
densities. Both the censored Normal and the generalized logit-Normal densities are characterized by the loca-
tion and the scale parameters. The methodology for estimating the parameters is analogical for both densities.
The only difference comes from the input used in the estimation routines. Suppose µ (the location parameter
of the censored Normal density) is described as a function f of the available wind power measurements p and
the point predictions p̂, ı.e. µ = f(p, p̂). Then the location parameter of the generalized logit-Normal density
∼
µ can be found from f(γ(p; v), γ( ˆp; v)). The same parity holds for the scale parameters σ2 and

∼
σ2. Thus in the

following we focus in details on the estimation of µ and σ2, keeping in mind that the equivalent techniques with

a corresponding input adjustment can be used for finding
∼
µ and

∼
σ2.

From Normal to censored-Normal distribution: approximation used in the parameter estimation
routines As has been mentioned before, the censored Normal predictive density can be fully characterised by
the location (µ) and the scale (σ2) parameters. In case of an ordinary (non-Censored) Gaussian distribution the
location parameter is described by the mean (expectation) of the distribution and the scale parameter - by its
variance. It is not exactly the case for the Censored Normal distribution. However, as previously demonstrated
in Figure 2 censoring effect is only significant close to the bounds. But even close to them it is assumed that the
location and the scale parameters can be well approximated by the expectation and the variance, respectively.
Such approximation introduces a certain bias (lack of accuracy) as the observed power is close to the generation
bounds, but nevertheless this estimation method is being used in the state-of-the art research works (see [20]
as an example) where it is argued to show a satisfactory performance.

Estimating the location parameter Thus the location parameter of the censored Normal distribution is
approximated by the mean (expected value) of the corresponding density. When modelling wind power, the
expectation is given by the point forecast. Therefore an estimate of the location parameter which describes the
density of the power generation at time t+ k (when predicting k-steps ahead) is given by:

µ̂t+k|t = p̂t+k|t (7)

where µ̂t+k|t denotes the estimate (forecasted value) of the location parameter µt+k|t and p̂t+k|t stands for
the point prediction of the wind power generation issued at time t for time t+ k.

Recall, the location parameter of the generalized logit-Normal density could be then found from:

∼̂
µt+k|t = γ(p̂t+k|t; v) (8)

where
∼̂
µt+k|t denotes an estimate of

∼
µt+k|t and p̂t+k|t stands for the expected wind power generation at time

t+ k forecasted at time t.
In this work several different point predictions (p̂t+k|t) are considered: initial WPPT forecasts and two

spatially corrected forecasts which showed the best improvements over the WPPT in the previous studies ([3]).
More precisely, the following power expectations are considered:

1. WPPT forecasts

2. CP forecasts. Conditional parametric models are used for the spatial correction of the WPPT forecasts.
The correction model is run using a reduced set of explanatory variables proposed by ENFOR in [2]. The
model itself and the resulting predictions are analysed in details in [3].

3. Logit-CP forecasts. WPPT forecast correction is performed using the conditional parametric model which
is run on the reduced set of explanatory variables and incorporates the GL data transformation (4). A
detailed description of the model is given in [1].

2.4 Estimation of the scale parameter

The scale parameter in case of the Censored Normal density is approximated by the variance of the wind power
distribution. Variance is estimated by modelling squared residuals (ǫ2) made by the point forecasting model:
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ǫ2t+k =
(
pt+k − p̂t+k|t

)2
(9)

where pt+k denotes wind power observation at time t+ k and p̂t+k|t is the corresponding wind power point
forecast issued for time t+ k at time t (k-step ahead point prediction).

An estimate (σ̂2) of the scale parameter σ2 is given by the expectation (prediction) of the future squared
deviation, ı.e.:

σ̂2
t+k|t = ǫ̂2t+k|t (10)

where ǫ̂2t+k|t denotes forecasted value of the squared deviation issued at time t for time t+ k.
As discussed before, the scale parameter of the generalized logit-Normal density is then found from
∼̂
σ
2

can be obtained by modelling the squared deviations (
∼
ǫ2t ) of the transformed wind power variable ı.e. :

∼̂
σ2

t+k|t =
∼̂
ǫ2t+k|t (11)

where

∼
ǫ
2

t+k =
(
γ(pt+k; v)− γ(p̂t+k|t; v)

)2
(12)

The same techniques are used for modelling
∼
ǫ
2

t+k as for ǫ2t+k:

1. Exponential smoothing

2. GARCH / GARCHX model

3. Conditional Parametric ARCH model without/ with eXogenous input (CP-ARCH/ CP-ARCHX)

4. Markov switching models

2.4.1 Exponential smoothing

One of the easiest to implement techniques for the adaptive estimation of the scale parameter σ2 can be
performed using an exponential smoothing scheme. This method can be viewed as a simple weighted average
between the previous smoothed statistic and the information given by the recently available observation. The
smoothing scheme writes as:

σ̂2
t+k|t = (1− α)σ̂2

t+k−1|t−1 + α
(
pt − p̂t|t−k

)2
(13)

where α is a smoothing parameter. It is arbitrary set to 0.9997 in this work. The chosen value assumes a
locally constant value of the variance, allowing for the long-term variations only.

2.4.2 GARCH and GARCHX models

In order to suggest a more advanced model for the squared deviations, the crucial features of the ǫ2t series have
to be revealed. Figure 3 depicts squared residuals of the 15-min ahead WPPT point forecasts for the period of
time spanning the 20th of March, 2009 to the 20th of June, 2009. Volatility of the prediction errors exhibits
clustering in time: large errors tend to be followed by large errors and similarly small errors tend to be followed
by the small ones.

The autocorrelation function (ACF) and the partial ACF of the squared errors made by the WPPT 15-min
ahead forecasts (see Figures 4) indicate that the conditional variance should be modelled as a weighted sum of
approximately the last 18 squared errors (suggesting a high order AutoRegressive Conditional Heteroscedasticity
(ARCH) model).

However, for the sake of parsimony, an ARCH model of a high order can be substituted by a Generalized
ARCH (GARCH) specification [6].

Following [6] a noise process ǫt is called a GARCH process of order (p, q) if it satisfies:

ǫt = σtvt, vt
i.i.d.∼ D(0, 1)

σ2
t = α0 +

∑q
j=1 αjǫ

2
t−j +

∑p
k=1 βkσ

2
t−k

(14)

Where D(0, 1) denotes a distribution with a zero mean and a unit variance. For the specific case of the wind
power variable analysed in this work (considering various prediction horizons k), the model (15) is applied to
data as:
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Figure 3: Squared residuals of the WPPT forecasts (prediction horizon is 15 min) in the period of the 20th of
March, 2009 to the 20th of June, 2009

ǫt|t−k = σt|t−kvt, vt
i.i.d.∼ D(0, 1)

σ2
t|t−k = α0 +

∑k
j=k αjǫ

2
t−j|t−j−k +

∑k
l=k βlσ

2
t−l|t−l−k

(15)

where ǫt|t−k stands for the errors made by a wind power (point) forecasting model (see (9)), σ2
t|t−k denotes a

conditional variance of the point forecast residuals ǫt|t−k. In other words, when building a GARCH model with
targeting a k steps prediction horizon, GARCH(k,k) model is applied on data with some parameters fixed to
zero: αj = 0 and βj = 0, where j = 1, ..., k − 1. For the sake of simplicity further on in the report we will skip
the notation of the k steps ahead prediction horizon and stay with the simpler notation of the models given by
ǫt rather than ǫt|t− k

It is known that if ǫt follows a GARCH(p,q) process, then ǫ2t follows an ARMA(r,q) process where r=max(p,q)
[6]. Adaptive estimation of the model parameters can be carried out using a recursive least squares algorithm
[15].

Based on the previous research works documented in [3, 2], the WPPT forecasts for Nysted Offshore can
be improved if considering a spatial information in the prediction scheme. As previously highlighted, a point
forecast corresponds to the mean (the first order moment) of the wind power variable. When moving to
probabilistic framework an important question is whether spatial information can be further used for improving
higher order moments, not only the mean.

Censored Gaussian distribution is fully characterised by the location and the scale parameters. They are
approximated by the the mean and the variance of the predictive density, respectively. Therefore, the question
boils down to wondering whether the spatial information can be incorporated into the models for describing the
variance.

Figure 5 shows an empirical cross correlation function between the pre-whitened series of squared deviations
at Kappel wind farm and the filtered series of the squared prediction errors observed at Nysted Offshore. The
considered wind farms are numbered as 6 and 10 on the map, respectively (see Figure 1 ). The plot reveals
that the strongest correlation is between the squared deviations at time t at Nysted Offshore and the squared
WPPT forecast errors at Kappel observed one hour prior. In other words, the situation at Nysted Offshore
”now” depends on the situation at Kappel ”one hour ago”. Such preliminary diagnostics suggests that the
GARCH model (15) can be further extended by including an eXogenous input given by the squared errors
observed at the distant location. The corresponding model is denoted by GARCHX and is defined as:
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Figure 4: Autocorrelation and partial autocorrelation of the squared errors made by the WPPT 15-min ahead
forecasts. Estimated on the data spanning the 1st of January, 2009 to the 31st of December, 2009

ǫt = σtvt, vt
i.i.d.∼ D(0, 1)

σ2
t = α0 +

∑q
j=1 αjǫ

2
t−j +

∑p
k=1 βkσ

2
t−k +

∑l
j=1 γjξ

2
t−j

(16)

where additionally to the notations of the GARCH model ξ2t denotes squared errors made by WPPT at the
remote location. For the prediction horizons up to 1 hour squared residuals at Kappel wind farm are considered.
For the larger horizons ξ2t is given by the squared errors at Horns Rev I (farm number 18). The choice is based
on the analysis of the cross-correlation functions. The results are in line with the geographical layout of the
farms (see Figure 1) and the considered temporal resolution.

If ǫt follows a GARCHX(p,q,l) process, then ǫ2t follows and ARMAX(r,q,l) process where r=max(p,q). Adaptive
estimation of the model parameters can be carried out using a recursive least squares algorithm [15].

2.4.3 CP-ARCH and CP-ARCHX models

Recall the results demonstrated in Figure 2: conditional densities of the observed power change with the level
of the predicted power. This effect can be accounted for if letting the coefficients of the model be dependent on
the level of the predicted power. This calls for considering Conditional Parametric ARCH (CP-ARCH) models
for estimating σ2

t .
Analogically to ARCH, but with non-constant parameter values, one can define a CP-ARCH process of order

(q) as a noise process ǫt satisfying:

ǫt = σtvt, vt
i.i.d.∼ D(0, 1)

σ2
t = α0(p̂t) +

∑q
j=1 αj(p̂t)ǫ

2
t−j

(17)
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Figure 5: The empirical cross correlation function between the pre-whitened input series (x) of the squared
errors made by the WPPT forecast at Kappel wind farm and the filtered output series (y) of the squared errors
made by the CP model for Nysted Offshore. Lags are given in hours. 1-hour ahead predictions are considered.

Where D(0, 1) denotes a distribution with a zero mean and a unit variance. For the specific case of the
wind power variable analysed in this work, ǫt stands for the errors made by a wind power (point) forecasting
model, σ2

t denotes a conditional variance of the residuals ǫt. The main difference between the ARCH and the
CP-ARCH models comes from the nature of the model parameters. The parameters of the CP-ARCH model αj ,
j = 0, ..., q instead of considered constant (as in case of the ARCH model) are assumed to be smooth functions
of p̂t. In this particular case p̂t stands for the wind power (point) prediction at Nysted Offshore issued for time
t.

A spatial information (an eXogenous signal) can be included into the CP-ARCH model resulting in the
CP-ARCHX specification:

ǫt = σtvt, vt
i.i.d.∼ D(0, 1)

σ2
t = α0(p̂t) +

∑q
j=1 αj(p̂t)ǫ

2
t−j +

∑l
j=1 γj(p̂t)ξ

2
t−j

(18)

where additionally to the notations of the CP-ARCH model ξ2t denotes squared errors of the WPPT forecast
at the remote location. For the prediction horizons up to 1 hour squared deviations at Kappel wind farm are
considered. For the larger horizons ξ2t is given by the squared errors at Horns Rev I (farm number 18).

The CP-ARCH process for ǫt can be written as a Conditional Parametric AutoRegressive (CP-AR) model for
the ǫ2. Similarly CP-ARCHX translates to a Conditional Parametric AutoRegressive model with an eXogenous
input (CP-ARX) for the squared residuals. The parameters can then be estimated using an adaptive recursive
algorithm used for the parameter estimation in the conditional parametric models. For the estimation details

11



see [1].

2.4.4 Markov switching models

Figure 3 indicates that the variance of the wind power forecast errors is not stationary. The succession of periods
with volatility of higher and lower magnitudes suggests a regime switching approach. Factors conditioning the
changes in the volatility dynamics are not known to the full extent. Motivated by the results shown in Figure 2,
the CP-ARCH and CP-ARCHX models assume that the changes in the wind power densities depend on the level
of the predicted power. However, this assumption is just a simplification of the underlying complex process. As
an alternative Markov Switching models allow a sequence of the regimes to be governed by a hidden, unknown
signal, instead of being directly explained by some observable process. The estimation of the transitions between
the regimes is carried out in a probabilistic way. Such types of models have been successfully implemented for
describing the volatile behaviour of the offshore wind power generation in [22, 18].

Following [24] this can be written as following . Let ǫ2t , t = 1, ..., n be the time series of the squared devi-
ations from a wind power point forecast. In parallel, consider ct a regime sequence taking a finite number of
discrete values, ct ∈ {1, ...,m}, ∀t. In this work m = 2. It is assumed that ǫ2t is an AutoRegressive process (The
corresponding Markov Switching model is then denoted by MS-ARCH) governed by the regime sequence in the
following way:

ǫ2t = α
(ct)
0 +

∑p
j=1 α

(ct)
j ǫ2t−j + e

(ct)
t (19)

or an AutoRegressive process with an eXogenous input (The corresponding Markov Switching model is then
denoted by MS-ARCHX) described by:

ǫ2t = α
(ct)
0 +

∑p
j=1 α

(ct)
j ǫ2t−j +

∑l
j=1 γ

(ct)
j ξ2t−j + e

(ct)
t (20)

where analogically to model (16), ξ2t denotes squared errors of the WPPT forecast at the remote location. For
the prediction horizons up to 1 hour squared deviations at Kappel wind farm are considered. For the larger

horizons ξ2t is given by the squared errors at Horns Rev I (farm number 18). e
(c)
t is a Gaussian white noise

process in regime c, ı.e. a sequence of independent random variables with the density function η:

η(c) (e) =
1

σ
(c)
t

√
2π

exp


−1

2

(
e

σ
(c)
t

)2

 (21)

In addition it is assumed that the regime sequence ct follows a first order Markov chain on the finite space
1, ...,m:

pij = P (ct = j|ct−1 = i, ct−2, ..., c0) = P (ct = j|ct−1 = i) (22)

The probabilities governing the switches between the regimes are gathered is the transition probability
matrix Γ:

Γ =




p11 p12 . . . p1m
p21 p22 . . . p2m
...

...
. . .

...
pm1 pm2 . . . pmm


 (23)

where pij >= 0, ∀i, j and
∑m

j=1 pij = 1, ∀i.
A likelihood L of the Markov Switching model (19) is then given by:

LT = δP (e1)ΓP (e2) . . .ΓP (eT )1
′ (24)

where P (ej) =




η(1) (ej) 0
. . .

0 η(m) (ej)




and δ is an initial distribution which is assumed to correspond to the stationary process distribution found
from:

δ (Im − Γ+U) = 1 (25)

where 1 is a row vector of ones, Im is an identity matrix of order m and U is an m×m matrix of ones.
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The set of coefficients allowing to fully characterize the Markov switching model (19) is given by Θ =[
Γ, α

(1)
0 , . . . , α

(1)
p , . . . , α

(m)
0 , . . . , α

(m)
p , σ(1), . . . , σ(m)

]
. Estimation of the model parameters is performed by nu-

merically maximizing the likelihood function with respect to Θ. In order to avoid dealing with the constraints
in the optimization routine, a re-parametrization of Γ and σ(1), . . . , σ(m) is carried out as proposed in [24].

In this work the parameters of the MS-AR model are estimated in a non-adaptive way. We have tried to
employ an adaptive estimation scheme (using a sliding window of 5000 observations) and the results were
shown not to improve. It was therefore decided to stick to the non-adaptive estimation procedure for the sake
of simplicity.

3 Non-parametric approach to probabilistic forecasting

A non-parametric approach for estimating the predictive densities of the wind power generation does not as-
sume a specific, known distribution for the data. Instead, it suggests estimating quantiles of the data directly
from the previous observations. Adaptive quantile regression offers a way of estimating quantiles in the slowly
varying non-stationary systems using linear regression techniques.

Quantile regression as presented in [12] is based on a linear model:

y = Xβ + r (26)

where y denotes a vector of realizations of the random variable Y , X is a design matrix, ı.e. a matrix
containing explanatory variables, r denotes a vector of the error terms and β is a parameter vector to be
estimated from the data. Commonly, in case of an ordinary linear regression, a quadratic loss function is
applied for obtaining the parameter estimate β̂. The resulting estimate ŷt = xtβ̂ corresponds to the conditional
mean, ı.e. the expected value of the random variable Y . Instead of being quadratic, a loss function Qτ (r) for
the quantile regression is based on a weighting of the absolute values of the residuals:

Qτ (r) =

{
τr if r >= 0
(τ − 1)r if r < 0

Given N observations,the best estimate of β is:

β̂(τ) = argmin
β

N∑

t=1

Qτ (rt) (27)

The resulting estimate of yt given by ŷt = xtβ̂(τ) is then equal to the conditional τ th quantile of the random
variable Y, ı.e. the value which is not exceeded by an observation with a nominal proportion (probability) of
τ . Solutions for (27) are obtained using linear programming techniques.

A time-adaptive parameter estimation method allows to update the estimate of the parameters as the
new observations become available. The method is introduced and described in details in [14]. The main idea
behind it is to update the design matrix X by leaving out the oldest observations as a new data becomes
available. The parameters are then re-estimated based on the updated version of the design matrix and using
the previously estimated parameter value for initialization of the new optimization procedure (27). In this
work we follow the routine as described in [14], but skip the idea of using the old parameter value as an initial
step in the updating procedure (ı.e. we rather follow the exact approach of [23]). This is done for the sake of
implementation simplicity and due to the fact that the quality of the results is not affected by omitting the
aforementioned step.

Application to the case study The quantile models studied here are given by

ǫt = g(p̂t, τ) + rt = β0,t(τ) + ft(p̂t, τ) + rt = β0,t(τ) +
K−1∑

j=1

bj(p̂t)βj,t + rt (28)

where ǫt is an error made by the point forecast, p̂t is the forecasted power, τ is the required quantile, rt is
a noise term. The bj are natural cubic B-spline basis functions, K is the number of knots used for the spline
construction. In other words, the model assumes that the τ th quantile of the forecast error ǫt is a non-linear
function g of the predicted power. Function g is viewed as a piecewise cubic function of p̂t and can therefore

13



be expressed as a linear combination of the known basis functions bj. This representation permits to use the
estimation techniques valid for the linear model given by (26).

Some technical details: the model examined in this work has the knots for the spline basis functions placed
in steps of 25% quantiles of the forecasted wind power. The design matrix contains 2100 recent observa-
tion. It is updated and the model parameters are re-estimated daily at 00:00. Considered quantiles τ ∈ T =
{0.05, 0.10, ..., 0.95}

The intuitive explanation of model (28) is the following. Preliminary data analysis given in Figure 2
showed that the density of the wind power generation depends on the level of the predicted power. Model (28)
permits to estimate in an optimal way the set of quantiles T of the point forecast prediction error as a non-linear
function of the expected wind power. Knowing the quantiles, it is possible to ”dress” the point forecasts of the
wind power with a set of prediction intervals of different nominal coverage rates and obtain a full predictive
density. For instance, knowing 0.05 and 0.95 quantiles of the ǫt (denoted as ǫ0.05,t and ǫ0.95,t, respectively) it is
possible to say that an actually observed power generation at time t will with 90% certainty be covered by the
interval [p̂t + ǫ0.05,t, p̂t + ǫ0.95,t].

4 Methods for probabilistic forecasts assessment

Forecast quality relates to the degree of correspondence between forecasts and observations. When evaluating
such similarity there are many aspects to be considered. The most common approach is to compute a measure
of the overall correspondence between predictions and outcomes. For instance, the accuracy of the forecasts is
given by a measure of the average correspondence between individual pairs of forecasts and observations. In this
work the accuracy is evaluated using a Conditional Ranked Probability Score (it is defined and discussed below).
Computation of measures of such overall correspondence is very helpful and useful when several probabilistic
forecasts are to be compared. However, the drawback is that it shuffles different aspects of forecast quality,
weights each of them in a certain way and provides a corresponding summarizing value. In order to truly
understand how the forecast operates in different situations and how consistent are the issued predictive densities
with the observed proportions the overall score has to be decomposed and different aspects have to be assessed
separately. In this work additionally to the overall accuracy and skill of the forecasts we will focus on such
aspects as calibration, sharpness and conditional evaluation of the predictive densities.

Reliability (calibration) refers to the statistical consistency between the distributional forecasts and the
observations: it reflects how close the nominal and the empirical proportions are. Over an evaluation set of
a significant size, the observed and the predicted coverage rates should be as close as possible. Calibration is
viewed as a very important quality for the probabilistic forecasts. However, alone it does not make for a useful
forecast [10]. For example a climatology forecast (forecast based on the overall histogram of the historical data,
not based upon the dynamic implications of the current state of the system) constitutes a reliable forecast. This
forecast though is constant, not flexible enough and simply unable to satisfactory represent possible outcomes
in the current situation. Due to that, besides the wish for the forecasts to be calibrated, they are also desired to
provide forecast users with a situation-dependent informative predictions. This is closely related to the quality
of sharpness.

Sharpness refers to the degree of concentration of the distribution of the probabilistic forecast. If the density
forecast takes the form of a delta function, this would correspond to a maximum possible sharpness and would
equate with the idealized concept of the perfect point forecast. In contrast, the climatology forecast is generally
not sharp as there is a probability that the future observation can take on any value that has been observed in
the past.

Conditional evaluation concerns assessment of the conditional distributions. As has been previously dis-
cussed the predictive densities of the wind power generation are not constant, - they change with the level
of expected power. Thus is it interesting to check how well the issued probabilistic forecasts perform in the
moments when the power generation is high, low or medium.

All three aforementioned characteristics (reliability, sharpness and quality of the conditional densities) are
very important for making a good probabilistic forecast and it is a combination of them which plays the most
important role. One forecast might be reliable, but lacking sharpness. Another one might be sharp, but lacking
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calibration. Which one is better? The answer is commonly given by some proper scoring rules.

Scoring rules assess the quality of the predictive density by assigning a numerical score based on the forecast
and on the event or value which materializes. They assess different quality aspects simultaneously providing a
single numerical value summarizing the quality of the forecast performance. Following [7] let S(F, x) denote a
score assigned when a forecaster issues the predictive density F and x is the value which actually materializes.
We consider scores as penalties which the forecaster wishes to minimize on average. A scoring rule is proper
if the expected value of the penalty S(F, x) for an observation x drawn from G is minimized if F = G, ı.e. if
the forecast is perfect. In other words, the smaller the obtained score is, the better the issued forecast is (the
closer it is to the perfect forecast). The score is called strictly proper if the minimum is unique. In estimation
problems proper scoring rules encourage a forecaster to do careful assessments and to be honest. Every attempt
to speculate on, for instance, sharpness with the price of losing in calibration (or vice versa) is being penalized
and is correspondingly reflected in the value of the obtained score.

Conditional Ranked Probability Score (crps) has gained popularity as a means of evaluating wind power
probabilistic forecasts. It is defined as:

crps(F, x) = −
∫ ∞

−∞
(F (y)− 1{y >= x})2 dy (29)

where F (y) is a predictive cumulative distribution function, x is a value which materialized (an actual
observation), 1{y >= x} denotes a function that gives the value 1 if y >= x and 0 otherwise.

For assessing a probabilistic forecast over a data set containing T observations the average of the crps values
for each forecast/verification pair is calculated.

CRPS =
1

T

T∑

t=1

crps(Ft, xt) (30)

The choice of using CRPS is motivated by the facts, that firstly, it is a proper scoring rule [9]. Secondly, it
is a distance sensitive rule, meaning that a credit is given for assigning high probabilities to values near, but
not identical to the one materializing. Another useful property of the CRPS score arises from the fact that
for point forecasts it reduces to the absolute error. Thus CRPS provides a direct way to compare point and
probabilistic forecasts.

Skill score For comparing forecast models it is convenient to introduce a measure of the relative improve-
ment in CRPS with respect to the considered reference forecast model. Such improvements are given by the
corresponding skill score δ which is defines as:

δ =
CRPSref − CRPSm

CRPSref
100% (31)

where CRPSm corresponds to the CRPS score of the considered forecast model and CRPSref is the CRPS
score of the reference model.

5 Results

5.1 Notation

Before discussing the results the following notation is introduces: all the considered models are noted as ”Ex-
pectation Model/Volatility Model” where in front of ”/” stands a type of the point predictions used as input
and after the ”/” the used uncertainty estimation method is introduced. Following that:

Non-parametric models (”/QR”):

• ”Model”/QR stands for the non-parametric predictive densities based on the adaptive quantile regression.
”Model” specifies the type of point predictions used as input. (WPPT/QR, CP/QR, Logit-CP/QR).
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Parametric models under the assumption of the censored Normal distribution (”CN:”) :

• CN:WPPT/Exp.smooth - A parametric model under the assumption of the censored Normal distribution.
The WPPT point predictions are used as input. The scale parameter of the suggested distribution is
estimated using the exponential smoothing technique (13).

• CN:CP/Exp.smooth - A parametric model under the assumption of the censored Normal distribution. The
CP point predictions are used as input. The scale parameter of the suggested distribution is estimated
using the exponential smoothing technique (13).

• CN:CP/GARCH - A parametric model under the assumption of the censored Normal distribution. The CP
point predictions are used as input. The scale parameter of the suggested error distribution is estimated
using the GARCH approach (15).

• CN:CP/GARCHX - A parametric model under the assumption of the censored Normal distribution. The
CP point predictions are used as input.The scale parameter of the suggested error distribution is estimated
using the GARCH approach (16).

• CN:CP/CP-ARCHX - A parametric model under the assumption of the censored Normal distribution.
The CP point predictions are used as input. The scale parameter of the suggested error distribution is
estimated using the CP-ARCHX approach (18).

• CN:CP/CP-ARCH - A parametric model under the assumption of the censored Normal distribution.
The CP point predictions are used as input. The scale parameter of the suggested error distribution is
estimated using the CP-ARCH approach (17).

• CN:Logit-CP/CP-ARCH - A parametric model under the assumption of the censored Normal distribution.
The Logit-CP point predictions are used as input. The scale parameter of the suggested error distribution
is estimated using the CP-ARCH approach (17).

• CN:CP/MS-AR - A parametric model under the assumption of the censored Normal distribution. The CP
point predictions are used as input. The scale parameter of the suggested error distribution is estimated
using the MS-AR approach (19).

• CN:CP/MS-ARX - A parametric model under the assumption of the censored Normal distribution. The
CP point predictions are used as input. The scale parameter of the suggested error distribution is estimated
using the MS-ARX approach (20).

Parametric models under the assumption of the generalized logit-Normal distribution (”GLN:”)
:

• GLN:Logit-CP/Exp.smooth - A parametric model under the assumption of the generalized logit-Normal
distribution. The Logit-CP point predictions are used as input. The scale parameter of the suggested
error distribution is estimated using the exponential smoothing technique (13).

• GLN:Logit-CP/GARCHX - A parametric model under the assumption of the generalized logit-Normal
distribution. The Logit-CP point predictions are used as input. The scale parameter of the suggested
error distribution is estimated using the GARCHX approach (15).

• GLN:Logit-CP/CP-ARCHX - A parametric model under the assumption of the generalized logit-Normal
distribution. The Logit-CP point predictions are used as input. The scale parameter of the suggested
error distribution is estimated using the CP-ARCHX approach (18).

• GLN:Logit-CP/MS-AR - A parametric model under the assumption of the generalized logit-Normal dis-
tribution. The Logit-CP point predictions are used as input. The scale parameter of the suggested error
distribution is estimated using the MS-AR approach (19).

• GLN:Logit-CP/MS-ARX - A parametric model under the assumption of the generalized logit-Normal
distribution. The Logit-CP point predictions are used as input. The scale parameter of the suggested
error distribution is estimated using the MS-ARX approach (20).
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5.2 Accuracy and skill assessment

Different parametric and non-parametric models have been used for issuing probabilistic forecasts for Nysted
Offshore. The CRPS scores for all the models have been evaluated over a period from the 1st of January, 2009
to the 31st of December, 2009. Only the data points where none of the considered models have a missing value
were used in the evaluation set. This resulted in approximately 25 000 ( ≈ 8.5 months) active data points
for every of the considered prediction horizons. The CRPS results for all the considered models run with the
different prediction horizons are presented in Table 2.

Horizon 15 min 1 hour 4 hours 5 hours 6 hours 7 hours 8 hours

Model name C
R
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S
,
%
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C
R
P
S
,
%

δ
,
%

Non-parametric densities

WPPT/QR 2.34 5.17 7.69 7.97 8.19 8.34 8,47
CP/QR 2.31 1.5 4.94 4.6 7.43 3.5 7.73 2.9 8.00 2.3 8.13 2.5 8.29 2.1

Logit-CP/QR 2.31 1.5 4.92 4.9 7.42 3.5 7.74 2.8 8.02 2.1 8.15 2.3 8.31 1.9

Censored Normal predictive densities

CN:WPPT/Exp. smooth. 2.49 5.40 7.89 8.17 8.39 8.54 8.67
CN:CP/Exp. smooth. 2.46 -5.2 5.14 0.6 7.63 0.8 7.94 0.3 8.21 -0.2 8.37 -0.4 8.53 -0.7

CN:CP/GARCH 2.37 -1.4 5.06 2.2 7.60 1.2 7.92 0.6 8.06 1.6 8.36 -0.2 8.52 -0.5
CN:CP/GARCHX 2.35 -0.5 5.03 2.7 7.60 1.3 7.92 0.6 8.20 -0.1 8.35 -0.1 8.52 -0.5
CN:CP/CP-ARCH 2.32 1.0 4.96 4.1 7.46 3.0 7.77 2.4 8.06 1.6 8.23 1.4 8.39 1.0
CN:CP/CP-ARCHX 2.31 1.2 4.95 4.4 7.46 3.0 7.78 2.4 8.07 1.5 8.24 1.3 8.40 0.8

CN:Logit-CP/CP-ARCH 2.31 1.2 4.93 4.7 7.42 3.5 7.75 2.7 8.03 1.9 8.19 1.8 8.36 1.4
CN:CP/MS-AR 2.37 -1.3 5.06 2.2 7.62 0.9 8.31 -4.4 8.21 -0.2 8.41 -0.8 8.57 -1.1
CN:CP/MS-ARX 2.37 -1.1 5.05 2.4 7.61 1.1 7.97 0.0 8.21 -0.3 8.37 -0.4 8.55 -0.9

Generalized logit-Normal predictive densities

GLN:Logit-CP/Exp. smooth 2.43 -3,6 5.09 1,7 7.64 0,7 7.96 0,1 8.23 -0,5 8.38 -0,5 8.55 -0,9
GLN:Logit-CP/GARCH 2.33 0.6 4.95 4.2 7.59 1.4 7.93 0.4 8.21 -0.2 8.36 -0.3 8.54 -0.7
GLN:Logit-CP/CP-ARCH 2.31 1.5 4.94 4.6 7.54 1.9 7.87 1.3 8.15 0.5 8.32 0.3 8.50 -0.3
GLN:Logit-CP/MS-AR 2.35 -0.2 4.98 3.8 7.65 0.5 8.01 -0.5 8.26 -0.8 8.42 -1.0 8.63 -1.8
GLN:Logit-CP/MS-ARX 2.34 -0.2 4.97 3.9 7.63 0.9 7.99 -0.3 8.23 -0.5 8.39 -0.6 8.58 -1.3

Table 2: Evaluation of the density forecasts with a CRPS criterion. An adaptive quantile regression over the
initial WPPT point forecasts is considered a benchmark(given in italic). Other models are compared to the
benchmark model and the corresponding relative improvements are given by δ.

As a benchmark it is chosen to use the adaptive quantile regression using the WPPT forecast as input.
This is a very strong benchmark as both the WPPT and the adaptive quantile regression are the state-of-the-
art approaches. Other models are compared to the benchmark model and the relative improvements δ are
calculated. The results as they are presented in Table 2 may look a bit overwhelming - too many of them
to be able to note all the details. In order to make it easier to spot the main characteristic, in the following
paragraphs several snapshots of the overall results are taken and discussed in more details.

5.2.1 Parametric predictive densities

Estimating the first order moments

Spatial correction of the first order moments One way for describing a random variable in a proba-
bilistic framework is to estimate all order moments (mean, variance, skewness, kurtosis, higher order moments).
In case of the parametric approach, ı.e. when the data is assumed to follow a known distribution, a finite
number of moments will fully characterize the variable. The parametric densities considered in this work can
be fully characterized by the first two order moments: the mean and the variance (see Section 2.1 for details).

This implies that using those two moments as input we can fully recreate the predictive density. The mean
is given by the point predictions of the wind power generation. The results given in Table 3 show that the
quality of the parametric predictive densities is improved if instead of the original WPPT forecasts the spatially
corrected point predictions given by the CP model are considered. This indicates that accounting for the spatio-
temporal effects while estimating the first order moment of the predictive density improves the quality of the
corresponding probabilistic forecasts.
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Censored Normal predictive densities

CN:WPPT/Exp. smooth. 2.49 5.40 7.89 8.17 8.39 8.54 8.67
CN:CP/Exp. smooth. 2.46 -5.2 5.14 0.6 7.63 0.8 7.94 0.3 8.21 -0.2 8.37 -0.4 8.53 -0.7

Table 3: Evaluation of the density forecasts with a CRPS criterion. Comparison of the Censored Normal
predictive densities when using the WPPT and the spatially corrected CP forecasts as input. δ shows the
corresponding relative improvements over the WPPT/QR

Incorporating the generalized logit transformation in to the input correction model In [3] it is
shown that the quality of the point predictions is further improved if the generalized logit data transformation
is incorporated into the spatial correction models (resulting in the Logit-CP point predictions). The results
given in Table 4 show that using the Logit-CP predictions instead of the CP ones as input improves the quality
of the corresponding predictive densities. In other words, considering the data transformation when estimating
the expectation of the Censored Normal distribution brings slight improvements in all the considered horizons.
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Non-parametric densities

WPPT/QR 2.34 5.17 7.69 7.97 8.19 8.34 8,47

Censored Normal predictive densities

CN:CP/CP-ARCH 2.32 1.0 4.96 4.1 7.46 3.0 7.77 2.4 8.06 1.6 8.23 1.4 8.39 1.0
CN:Logit-CP/CP-ARCH 2.31 1.2 4.93 4.7 7.42 3.5 7.75 2.7 8.03 1.9 8.19 1.8 8.36 1.4

Table 4: Evaluation of the density forecasts with a CRPS criterion. Comparison of the Censored Normal
predictive densities using the CP and the Logit-CP forecasts as input. δ shows the corresponding relative
improvements over the WPPT/QR

Estimating the second order moments

Accounting for the dynamics in variance of the wind power generation As has been discussed in
Section 2 the variance of the wind power generation is not constant. Accounting for this improves the results
significantly. This is demonstrated in Table 5 where several different approaches for estimating the variance are
compared.
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Non-parametric densities

WPPT/QR 2.34 5.17 7.69 7.97 8.19 8.34 8,47

Censored Normal predictive densities

CN:CP/Exp. smooth. 2.46 -5.2 5.14 0.6 7.63 0.8 7.94 0.3 8.21 -0.2 8.37 -0.4 8.53 -0.7
CN:CP/GARCH 2.37 -1.4 5.06 2.2 7.60 1.2 7.92 0.6 8.06 1.6 8.36 -0.2 8.52 -0.5
CN:CP/CP-ARCH 2.32 1.0 4.96 4.1 7.46 3.0 7.77 2.4 8.06 1.6 8.23 1.4 8.39 1.0

Table 5: Evaluation of the density forecasts with a CRPS criterion. Comparison of the Censored Normal pre-
dictive densities based on different techniques to model the dynamics of the variance. δ shows the corresponding
relative improvements over the WPPT/QR

Exponential smoothing technique assumes a locally constant variance, allowing for the long-term variations,
only. The GARCH model accounts for the changes in the dynamics of the variance based on the previous (most
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recent) observations. This technique accounts for the changing dynamics. The main drawback of the GARCH
method is that it is based purely on the past observations, meaning that the predictive performance of the
model has a certain delay - ı.e. the model is not capable to predict when exactly the change will occur, but once
the dynamics has actually changed the model is able to notice this and adapt correspondingly. That is why the
model performs best on the data exhibiting the clustering effect. The CP-ARCH model (as discussed in Section
2.4.3) captures the changes in the dynamics driven by variations in the level of the expected power generation.
This approach is motivated by the results depicted in Figure 2 where it is shown that the variance of the
wind power generation depends on the level of the expected power. Differently from the GARCH approach,
the conditional parametric method allows to describe the dynamics based not only on the previously observed
fluctuations, but takes into the consideration the power forecast as well. Therefore this model is better adapted
to foreseeing the changes in the dynamics of the wind power generation. The results given in Table 5 show
that the CP-ARCH model provides the best input for the Censored Normal predictive density. The fact that
the exponential smoothing shows the poorest results, proves that the variance of the wind power generation is
not constant and accounting for the changing dynamics is important. As the GARCH model is outperformed
by the CP-ARCH model, it is possible to conclude that the changes in the dynamics of the variance can be
(partly) explained by the level of the expected power.

Modelling the dynamics of the variance: explicit modelling conditional on the level of the
expected power versus the implicit Markov switching approach As has been previously discussed,
conditioning the density of the wind power generation on any observable input would always be just an approx-
imation of the actual complex meteorological phenomenon. Markov switching models propose an alternative
approach by modelling the dynamics driven by the unknown signal. As can be seen from the results shown
in Table 6 the explicit approach suggesting that the dynamics is driven by the level of the expected power
outperforms the implicit one given by the Markov switching model.
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Non-parametric densities

WPPT/QR 2.34 5.17 7.69 7.97 8.19 8.34 8,47

Censored Normal predictive densities

CN:CP/CP-ARCH 2.32 1.0 4.96 4.1 7.46 3.0 7.77 2.4 8.06 1.6 8.23 1.4 8.39 1.0
CN:CP/MS-AR 2.37 -1.3 5.06 2.2 7.62 0.9 8.31 -4.4 8.21 -0.2 8.41 -0.8 8.57 -1.1

Generalized logit-Normal predictive densities

GLN:Logit-CP/CP-ARCH 2.31 1.5 4.94 4.6 7.54 1.9 7.87 1.3 8.15 0.5 8.32 0.3 8.50 -0.3
GLN:Logit-CP/MS-AR 2.35 -0.2 4.98 3.8 7.65 0.5 8.01 -0.5 8.26 -0.8 8.42 -1.0 8.63 -1.8

Table 6: Evaluation of the density forecasts with the CRPS criterion. Two methods for capturing density
dynamics are compared. The explicit method suggests that it is the level of the power generation which causes
a variability in the density dynamics. The implicit method assumes that the driving force is unknown and
tries to implicitly capture it by the Markov switching approach. An adaptive quantile regression over the
initial WPPT point forecasts is considered as benchmark(given in italic). Other models are compared to the
benchmark model and the corresponding relative improvements are given by δ.

This supports the idea that the dynamics of the variance of the wind power generation are indeed strongly
affected by the level of the expected power. Therefore accounting for it directly in the modelling procedure
is more beneficial than trying to capture the underlying complex phenomenon by applying Markov switching
methods. The latter does not seem to capture any additional information than is extracted directly from the
changes in the power expectation.

Accounting for the spatial information As has been discussed, the spatial correction of the first
order moments of the predictive densities improves the performance of the corresponding probabilistic forecast.
As the considered parametric densities are fully described by both the mean and the variance, an interesting
question is whether the spatial correction of the variance can bring additional ameliorations. The answer
is given by the results shown in Table 7. No significant improvements are achieved when considering the
CP/GARCHX (CP/CP-ARCHX) model instead of the CP/GARCH (CP/CP-ARCH). This shows that no
additional improvements in the model performance are achieved when including the spatial information into
the variance estimation.
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Non-parametric densities

WPPT/QR 2.34 5.17 7.69 7.97 8.19 8.34 8,47

Censored Normal predictive densities

CN:CP/GARCH 2.37 -1.4 5.06 2.2 7.60 1.2 7.92 0.6 8.06 1.6 8.36 -0.2 8.52 -0.5
CN:CP/GARCHX 2.35 -0.5 5.03 2.7 7.60 1.3 7.92 0.6 8.20 -0.1 8.35 -0.1 8.52 -0.5
CN:CP/CP-ARCH 2.32 1.0 4.96 4.1 7.46 3.0 7.77 2.4 8.06 1.6 8.23 1.4 8.39 1.0
CN:CP/CP-ARCHX 2.31 1.2 4.95 4.4 7.46 3.0 7.78 2.4 8.07 1.5 8.24 1.3 8.40 0.8

Table 7: Evaluation of the density forecasts with a CRPS criterion. Comparison of the models performance
with and without accounting for the spatial effects when estimating the variance. δ shows the corresponding
relative improvements over the WPPT/QR

Comparing two type of parametric densities: Censored Normal versus the Generalized logit-
Normal Previously it has been discussed that applying the generalized logit transformation on the data
permits to estimate the expectation of the wind power generation in a more accurate way (see [3] for more
details). This suggests that the proposed transformation is suitable for stabilizing the variance of the wind
power generation (making it less dependent on the power expectation) allowing for more robust point predictions.
The following question is whether the transformation also makes the data look more Gaussian, ie whether the
assumption that the transformed data is Normally distributed surpasses the suggestion that the non-transformed
data is Gaussian. This is analogical to wondering which of the studied parametric densities describes the data
better - the Censored Normal distribution or the generalized logit-Normal one. The results given in table
8 indicate that the censored Normal distribution shows better results. This indicates that even though the
generalized logit transformation helps to stabilize the variance, makes it less dependent on the bounds, it does
not make the assumption of Gaussianity more appropriate.
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Censored Normal predictive densities

CN:Logit-CP/CP-ARCH 2.31 1.2 4.93 4.7 7.42 3.5 7.75 2.7 8.03 1.9 8.19 1.8 8.36 1.4

Generalized logit-Normal predictive densities

GLN:Logit-CP/CP-ARCH 2.31 1.5 4.94 4.6 7.54 1.9 7.87 1.3 8.15 0.5 8.32 0.3 8.50 -0.3

Table 8: Evaluation of the density forecasts with a CRPS criterion. Comparison of the Censored Normal and the
generalized logit-Normal distributions. δ shows the corresponding relative improvements over the WPPT/QR

5.2.2 Non-parametric predictive densities

spatial correction of the input Similarly to the parametric predictive densities, the performance of the
non-parametric predictive densities improves if instead of the WPPT forecasts the spatially corrected point
predictions are considered as input. This once again proves that the quality of the probabilistic forecasts can
be improved if the spatial effects are taken into consideration.

Considering data transformation for the input correction One can see that in case of the non-
parametric predictive densities, the implementation of the generalized logit transformation does not help im-
proving the corresponding probabilistic densities.

5.2.3 Parametric versus the non-parametric densities

In order to compare the parametric and the non-parametric approaches, we consider the CN:Logit-CP/CP-
ARCH and the CP/QR which are the best performing parametric and non-parametric models, respectively.
The results given in Table 10 show that the non-parametric densities outperform the parametric ones when
considering larger prediction horizons. For shorter prediction horizons both approaches show similar results.

20



Horizon 15 min 1 hour 4 hours 5 hours 6 hours 7 hours 8 hours

Model name C
R
P
S
,
%

δ
,
%

C
R
P
S
,
%

δ
,
%

C
R
P
S
,
%

δ
,
%

C
R
P
S
,
%

δ
,
%

C
R
P
S
,
%

δ
,
%

C
R
P
S
,
%

δ
,
%

C
R
P
S
,
%

δ
,
%

Non-parametric densities

WPPT/QR 2.34 5.17 7.69 7.97 8.19 8.34 8,47
CP/QR 2.31 1.5 4.94 4.6 7.43 3.5 7.73 2.9 8.00 2.3 8.13 2.5 8.29 2.1

Logit-CP/QR 2.31 1.5 4.92 4.9 7.42 3.5 7.74 2.8 8.02 2.1 8.15 2.3 8.31 1.9

Table 9: Evaluation of the non-parametric densities forecasts with a CRPS criterion.
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Non-parametric densities

WPPT/QR 2.34 5.17 7.69 7.97 8.19 8.34 8,47
CP/QR 2.31 1.5 4.94 4.6 7.43 3.5 7.73 2.9 8.00 2.3 8.13 2.5 8.29 2.1

Censored Normal predictive densities

CN:Logit-CP/CP-ARCH 2.31 1.2 4.93 4.7 7.42 3.5 7.75 2.7 8.03 1.9 8.19 1.8 8.36 1.4

Table 10: Evaluation of the density forecasts with a CRPS criterion. Comparison of parametric and non-
parametric approaches

5.3 Reliability assessment

As has been previously discussed in Section 4 one of the most important qualities for the distributional forecast
is reliability. In the earlier scientific works reliability is even viewed as a requirement rather than a desired
property. The recent development, however, indicates that, as has been argued in Section 4 reliability by itself
does not guarantee a useful forecast and should be only evaluated in relation with the sharpness and resolution
(the joint performance evaluation is given by the score functions). However in this section the focus in on
reliability, due to the particular importance given to it.

In the following analysis it is chosen to focus only on the benchmark model (WPPT/QR), the best performing
non-parametric model (CP/QR) and two best performing parametric models (CN:Logit-CP/CP-ARCH) and
(GLN:Logit-CP/CP-ARCH).

Figure 6 depicts reliability diagrams for the considered models when working on 1 hour, 4 hours and 8
hours ahead predictions. One can see that the non-parametric approach (based on the adaptive quantile
regression) provides calibrated forecasts. On another hand, the models based on the parametric assumptions,
deviate more from the nominal proportions and therefore one can claim that the parametric approaches result
in probabilistically biased forecasts. Why are those forecasts biased? Partly the lack of calibration could be
explained by the fact that parametric approaches imposes certain theoretical shapes for the distribution of the
wind power generation. An important part of the assumption is based on the suggestion that with a non-zero
probability a measured wind power will reach 0 and 100% of the nominal capacity. In fact, in the considered data
set there were no observations reaching 100%. What was actually happening when the measured wind power
was approaching the nominal capacity is shown in Figure 7. There is a clear indication that some human factor
has been involved, ı.e. most probably the power was down-regulated at those periods. Since such regulations
are not of a constant level through the considered data set, it is difficult to replace the theoretical maximum of
the nominal capacity by the adjusted value of the down-regulated power. Such deviations from the theoretical
settings, where the power is allowed to reach the nominal capacity create a certain bias which is also reflected
in the reliability diagrams of the parametric models. This could be corrected if the corresponding information
on the wind farm regulation policy was available.

5.4 Conditional operation

In this section the focus is on the conditional evaluation of the performance of the WPPT/QR, CP/QR,
CN:logit-CP/CP-ARCH and GLN:Logit-CP/CP-ARCH models. In Section 5.2 it is shown that when evaluated
on all the data available in the validation set, the CP/QR shows the best results in terms of the CRPS score.
The goal of this section is to check whether this conclusion holds for various subsets of the validation set.
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Figure 6: Reliability diagram

5.4.1 Accuracy as a function of time

. Firstly the validation period is divided into 5 equally populated subsets and the CRPS scores of the considered
models are calculated. The results are given in Figure 8.

One can see that the CP/QR model consistently (in all the considered subsets with different prediction hori-
zons) outperforms the benchmark approach (WPPT/QR). The performance of the parametric densities with
respect to the WPPT/QR is less steady. When considering 1 hour ahead forecasts, the parametric predictive
densities, similarly to CP/QR outperform the WPPT/QR in all the subsets of the validation set. However, as
the prediction horizon increases, the parametric models fail to outperform the benchmark approach in major
part of the subsets of the validation set.
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Figure 7: A period of the observed power generation at Nysted Offshore recorded in the period from 19:45 on
the 4th of November, 2008 to 15:45 on the 25th of November, 2008

5.4.2 Sharpness as a function of the level of expected power generation

.
Recall, sharpness corresponds to the ability of probabilistic forecasts to concentrate the probabilistic infor-

mation about future outcomes. In this work, following the approach by Pinson et at. [19] the sharpness is
assessed by the mean widths of the central predictive intervals with a nominal coverage rate of 50%, ı.e. if
writing

βt,h = q̂(0.75)t|t−h − q̂(0.25)t|t−h (32)

the size of the central interval forecast estimated at time t − h for lead time t. Here q̂0.75 and q̂0.25 define
the corresponding quantiles of the predictive densities. Then a measure of sharpness for horizon h is given by
βh, the mean size of the intervals:

βh =
1

N

N∑

t=1

βt,h (33)

The results given in Figure 9 show that with all the considered prediction horizons, the non-parametric
predictive densities provide sharper forecasts than the parametric ones. This holds for all the levels of the
expected power.

5.4.3 Accuracy and skill as functions of the level of expected power generation

.
As has been previously discussed in this work, the densities of the wind power generation depend on the

level of the expected power. It is thus interesting to see how the models perform conditional to the level of
the forecasted power generation. The results in terms of conditional accuracy given by the CRPS scores are
depicted in Figure 10 and the corresponding skill scores are shown in Figure 11.

From Figure 10 one can see that the CRPS scores increase when the expected power is not close to the
generation bounds. This leads to higher uncertainty associated with the corresponding predictive densities. As
the result the increase in the CRPS scores is observed.

The analysis of the conditional skill score depicted in Figure 11 indicates that the parametric models per-
form similarly to the non-parametric ones when the expected power is its medium range. However, close to the
generation bounds the parametric densities perform worse than the non-parametric ones. This can be explained
by the fact that the closer to the bounds, the more significant the censoring effect in the parametric densities
become. This leads to higher bias in parameter estimates. The drop in operation quality of the parametric
predictive densities is especially evident when the level of the expected power is close to the nominal capacity.
This is in line with the discussion given in Section 5.3 on the down-regulation policy.
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Figure 8: CRPS evaluated over 5 equally sized subsets of the validation data set. Pn denotes the nominal
capacity.

5.4.4 Accuracy and skill as functions of the measured power generation

.
Figures 12 and 13 depict the accuracy and skill scores as functions of the observed power generation. From

those figures one can conclude that the parametric densities managed to describe the situations when the
observed power was in its medium range better than the non-parametric ones. In the situations when the power
measurements fell close to the generation bounds, the non-parametric models performed much better than the
parametric densities. This once again indicates that the non-parametric densities outperform the parametric
ones mainly in the situations when the observed power approaches 0 or the nominal capacity. This is the region
where the parametric densities suffer the most from the approximations used in parameter estimation methods
and the power regulation policies.
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Figure 9: Sharpness is given by the width of the prediction intervals with the nominal coverage of 50 %. It
is evaluated as a function of the expected power generation level. Levels of the point predictions represent 20
equally populated classes based on the quantiles of the CP point forecasts. Pn denotes the nominal capacity.
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Figure 10: CRPS evaluated as a function of the expected power generation level. Levels of the point predictions
represent 20 equally populated classes based on the quantiles of the CP point forecasts. Pn denotes the nominal
capacity.
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Figure 11: Relative improvements in CRPS when compared to the benchmark model WPPT/QR. Evaluation
is conditional to the expected power generation level. Levels of the point predictions represent 20 equally
populated classes based on the quantiles of the CP point forecasts. Pn denotes the nominal capacity.
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Figure 12: CRPS evaluated as a function of the power measurements. Levels of the power measurements
represent 20 equally populated classes based on the quantiles of the CP point forecasts. Pn denotes the nominal
capacity.
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Figure 13: Relative improvements in CRPS when compared to the benchmark model WPPT/QR. Evaluation
is conditional to the expected power generation level. Levels of the power measurements represent 20 equally
populated classes based on the quantiles of power observations. Pn denotes the nominal capacity.
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5.5 Demonstration of the operation of the best-performing model
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(c) Horizon=8 hour

Figure 14: Example of the predictive densities for the wind power generation at Nysted Offshore given by the
CP/QR (left) and the WPPT/QR (right) models. Considered period is from 10:15 on the 27th of July, 2009
to 13:45 on the 30th of July, 2009 (corresponding to 300 time steps of 15 min). Graphically the difference in
predictive densities seems subtle and mainly related to the difference in the means of the predictive densities.

Figure 14 gives an example of probabilistic predictions given by the CP/QR and the benchmark approach.
In general one can see that the difference in the distributions seems rather subtle and mainly related to the
expectation (mass center) of the predictive densities. Figure 15 demonstrates an example of how the CP/QR
model could be used in practice- at a given time probabilistic predictions could be issued for up to agreed
amount of hours ahead. In this work we consider the predictions up to 8 hours ahead.
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Figure 15: Example of probabilistic forecasts of wind power generation obtained with the CP/QR model.
Predictive density is given by the prediction intervals of the different nominal coverage rates. Power values are
standardized by the nominal capacity of the wind farm. Predictions for different lead times (from 15 min to 8
hours ahead) are issued at 17:15 on the 24th of November, 2009. A solid line shows the point predictions.

6 Conclusions

Focus has been given to probabilistic forecasts for Nysted Offshore. Both parametric and non-parametric meth-
ods for building the predictive densities have been considered. Following the parametric approach two different
densities have been proposed for modelling the wind power generation: the Censored Normal and the generalized
logit-Normal. The non-parametric approach was based on the time-adaptive quantile regression. The results
show that using the spatially corrected point forecasts instead of the original WPPT predictions as input to
building the predictive densities improves the performance of the models in both parametric and non-parametric
approaches. It translates to saying that the spatial correction of the first order moments improves the quality
of the corresponding predictive densities. The spatial correction of the higher order moments was shown not to
ameliorate the quality of the predictive densities any further.

It has been shown in the work that the densities of the wind power generation are not constant. Two dif-
ferent methods for modelling the dynamics of the predictive densities have been proposed. Firstly, it has been
noted that the distribution of the wind power generation is related to the level of the expected power. Capturing
this effect was shown to improve the performance of the corresponding forecasts. In the second place, it has
been decided to model the changes in the predictive densities implicitly, ı.e. assume that the dynamics of the
system is governed by some unobservable process rather than by any particular explanatory variable. This was
implemented using the Markov-switching models. It has been shown that the direct approach with conditioning
the density dynamics of the level of the expected power outperforms the Markov switching models. This indi-
cates that the dynamics of the predictive densities can be rather well explained by the changes in the expected
level of the power generation. Thus accounting for it directly in the modelling procedure is more beneficial than
trying to capture the underlying complex phenomenon in a probabilistic framework.

In this work the two types of the proposed parametric densities have been compared. It is shown that the
censored Normal distribution describes the data better than the generalized logit-Normal. This holds for all
the considered prediction horizons.

The parametric and the non-parametric probabilistic forecasts have also been compared. It is shown that
both approaches perform similarly (in terms of the average accuracy) in the short prediction horizons (up
to 5-6 hours ahead). In the longer horizons the difference in performance becomes more significant with the
quantile-regression based models taking the leading position. Even in the shorter horizons, even though the
two approaches show similar results in terms of accuracy, the corresponding densities are different. The para-
metric densities are shown to be less sharp than the non-parametric ones. The analysis of the situation-based
performance of the two approaches has been carried out. It is shown that the parametric densities outperform
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the non-parametric ones in the periods when then the power generation is in its medium range. Closer to
the bounds, the operation quality of the parametric models is poor compared to the quantile regression based
approach.

Summarizing, based on the overall operation quality, the best performing model is the CP/QR. This is a
probabilistic forecast based on the adaptive quantile regression using the spatially corrected CP point predictions
as input. The model consistently outperforms the benchmark approach in all the considered horizons. The
relative improvements in overall quality(compared to the benchmark approach WPPT/QR) are ranging from
1.5% to 8.29% depending on the prediction horizon.
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