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Abstract

It has been predicted that electric vehicles will play a crucial role in incor-
porating a large renewable component in the energy sector. If electric vehicles
are integrated in a naive way, they may exacerbate issues related to peak de-
mand and transmission capacity limits while not reducing polluting emissions.
Optimizing the charging of electric vehicles is paramount for their successful
integration. This paper presents a model to describe the driving patterns of
electric vehicles, in order to provide primary input information to any math-
ematical programming model for optimal charging. Specifically, an inhomoge-
neous Markov model that captures the diurnal variation in the use of a vehicle
is presented. The model is defined by the time-varying probabilities of starting
and ending a trip and is justified due to the uncertainty associated with the use
of the vehicle. The model is fitted to data collected from the actual utilization of
a vehicle. Inhomogeneous Markov models imply a large number of parameters.
The number of parameters in the proposed model is reduced using B-splines.
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1. Introduction

Electric vehicles (EVs) have no emissions and are a sustainable alternative
to conventional vehicles, provided that the energy used for charging is generated
by renewable sources. Production levels from renewable energy sources, such
as wind, solar and wave energy depend on weather conditions and consequently
there is a high degree of variability in power generation. With the current
absence of large-scale energy storage, today electricity has to be produced and

∗Corresponding author. Tel.: +45 45 25 33 75; Fax: +45 45 88 26 73
Email addresses: jebi@imm.dtu.dk (Emil B. Iversen), jkm@imm.dtu.dk (Jan K. Møller),

jmmgo@imm.dtu.dk (Juan M. Morales), hm@imm.dtu.dk (Henrik Madsen)

Preprint submitted to Elsevier January 23, 2013



consumed at the same time. With electricity coming from renewable sources it is
not possible to produce additional power, if weather conditions do not allow for
it. Moreover, in times of high availability from renewable sources, the demand
for power may be low and the economic potential of renewables is thus wasted.
The battery in an EV is basically a storage device for energy and has the poten-
tial to help overcome some of the issues regarding the large-scale introduction
of renewable energy. This is done by charging the EVs when energy from re-
newable sources is abundant and by supplying power into the electrical grid at
times of high demand. As long as electric vehicles are charged with electricity
from renewable sources, they represent a sustainable zero-emissions alternative
to conventional fossil-fuel-based vehicles. However, if EVs are charged in a naive
way, they may increase the peak electricity demand. As a consequence, the extra
energy needs would be covered by peak-supply units, typically fossil-fuel-based,
which would nullify the decrease in emissions gained by switching from conven-
tional to electric vehicles. Furthermore, an increased peak demand could lead
to a shortage of transmission capacity, which would force an expansion of the
electrical grid to handle the higher peak demand. This is costly and undesirable.
To avoid these problems, EVs should be charged in a smart fashion.

As EVs are primarily used for transportation, and not for energy storage, it
is essential to charge each vehicle such that there is enough energy to cover any
desired trip. Hence a decision-support tool is required to determine whether
it is possible to postpone charging the EV or whether it should be charged
right away. For such a tool to produce optimal charging decisions, a model
capturing the utilization of a specific vehicle is essential. The complexity of
human behavior points to a stochastic model to adequately describe the driving
needs of EV users.

In the technical literature, however, the usual approach is to define a de-
terministic driving scenario based on expected values and averages. Needless
to say, such an approach fails to capture the dynamics and stochasticity in the
use of a specific vehicle. Observed vehicle usage has been considered in several
studies (Pearre and Elango, 2011; Golob, 1998). An issue that has received lit-
tle attention is indeed the stochastic modeling of driving patterns (Green et al.,
2010). Rather, the scientific community has been more focused on both the
analysis of the potential impact of charging EVs and the design of models to
decide when to charge (Rotering and Ilic, 2011). In this vein, the effect of the
large-scale integration of EVs into the power grid has been studied in several pa-
pers, (Gan et al., 2011; Ma et al., 2010; Lojowska et al., 2011; Acha et al., 2010;
Richardson et al., 2012). Issues such as peak load, different charging strategies,
network losses, minimizing costs and market equilibrium strategies have been
considered.

In this paper we propose a stochastic model for the use of a vehicle. The
model can be easily exploited, for example, by decision-making tools for charging
an EV. Furthermore, our model provides advances in modeling driving patterns
and does not rely on the typical, average or stylized use of a vehicle. The
model is fitted to a specific vehicle based on observed data from the utilization
of that vehicle. An inhomogeneous Markov model is applied to capture the
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diurnal variation of the driving pattern. A major disadvantage of these types
of models is the high number of parameters to be estimated. B-splines are
then applied to substantially reduce this number. An algorithm is proposed
to place knots and to find the appropriate number of knots needed for the B-
splines. The proposed model does not rely on any assumptions regarding the
use of the vehicle, and consequently a versatile model is obtained. Applying
the model within a stochastic programming framework will allow for capturing
issues related to charging, availability, and costs of using an EV. The proposed
approach can be easily extended to a mixed-effects model in order to capture
the dynamics of a population of vehicles. A somewhat similar approach was
applied in Madsen and Thyregod (1986) to the problem of modeling diurnal
variation in cloud cover.

The paper is organized as follows: Section 2 gives a brief introduction to
inhomogeneous Markov chains. In Section 3 the number of parameters in the
model is reduced by applying B-splines to a generalized linear model. Section 4
provides a numerical example of the model, where the parameters are fitted to
observed data from a single vehicle. Section 5 concludes and provides directions
for future research within this topic.

2. An Inhomogeneous Markov Chain

A state-space approach is proposed to describe the use of a vehicle. This
approach models the vehicle as being in one of several distinct states. In its
simplest form the model has two states, which capture whether the vehicle is
either driving or not driving. A more extensive model may include information
about where the vehicle is parked, where it is driving, or what type of trip the
vehicle is on. In this section we start from a general state-space approach and
finish with a detailed description of the two-state model.

2.1. Discrete Time

Let Xt, where t ∈ {0, 1, 2, . . .}, be a sequence of random variables which take
on values in the countable set S, called the state space. Denote this sequence
X. Without loss of generality, we assume that the state space includes N states.
A Markov chain is a random process where future states, conditioned on the
present state, do not depend on the past states (Grimmett and Stirzaker, 2001).
In discrete time, {X}, is a Markov chain if

P (Xt+1 = k|X0 = x0, . . . , Xt = xt) = P (Xt+1 = k|Xt = xt) (1)

for all t ≥ 0 and all {k, x0, . . . , xt} ∈ S.
A Markov chain is uniquely characterized by the transition probabilities, i.e.

pjk(t) = P (Xt+1 = k|Xt = j) . (2)

If the transition probabilities do not depend on t, the process is called a homo-
geneous Markov chain. If the transition probabilities depend on t, the process
is known as an inhomogeneous Markov chain.
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Considering the use of a vehicle, it is reasonable to expect that the proba-
bility of a transition from state j to state k at any specific weekday is the same.
Thus the transition probabilities on Tuesday in one week are assumed to be the
same as on Tuesdays in other weeks. Furthermore, it is natural to assume that
the transition probabilities are the same on all weekdays, that is, from Mondays
to Fridays. If the sampling time is in minutes, and as there are 1440 minutes in
a day, this leads to the assumption:

pjk(t) = pjk(t+ 1440). (3)

This implies that the transition probabilities, defined by (2) are constrained to
be a function of the time s in the diurnal cycle. The matrix containing the
transition probabilities is given by

P(s) =


p11(s) p12(s) . . . p1N (s)
p21(s) p22(s) . . . p2N (s)

...
...

. . .
...

pN1(s) pN2(s) . . . pNN (s)

 , (4)

where pjj(s) = 1−
∑N

i=1,i6=j pji.
If the model is formulated with time resolution in minutes, s ∈ {1, 2, . . . , 1440}.

The assumed periodicity from (3) implies that all the observations from different
days are lumped together and a transition is only denoted by its time of day. It
follows that the conditional likelihood function, for the model with N states, is
given by (Pawitan, 2001):

L (P(1),P(2), . . . ,P(1440)) =

1440∏
s=1

N∏
j=1

N∏
k=1

pjk(s)
njk(s), (5)

where njk(s) is the number of observed transitions from state j at time s to
state k at time s+ 1, where s is the time in minutes of the diurnal cycle.

From the conditional likelihood function the maximum-likelihood estimate
of pjk(s) can be found as:

p̂jk(s) =
njk(s)∑N
k=1 njk(s)

. (6)

A discrete time Markov model can be formulated based on the estimates
of P(1),P(2), . . . ,P(1440). One apparent disadvantage of such a discrete time
model is the huge number of parameters, namely N · (N − 1) · 1440, where
N · (N − 1) parameters have to be estimated for each time step. Needless to
say, the number of parameters to be estimated increases as the number of states
increases. Another problem is linked to the number of observations, i.e. if∑N

k=1 njk(s′) = 0 for some s′, then p̂jk(s) is undefined.
A reduction in parameters may be obtained if the diurnal variation is negli-

gible for some transitions, i.e. pjk(s) does not depend on s for some pair {j, k}.
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One way to reduce the parameters is to increase the time between samples.
If the sampling time is every 10 minutes, the number of parameters would
decrease to N · (N − 1) · 144. This approach is a bit coarse and the number
of parameters is still large. Besides, if another parameter reduction technique
is subsequently applied to the data, information is lost compared to directly
applying the technique to the data with a sampling time in minutes.

In the model with only two states, namely driving and not driving, the one-
minute transition probability matrix becomes:

P(s) =

(
p11(s) p12(s)
p21(s) p22(s)

)
=

(
1− p12(s) p12(s)
p21(s) 1− p21(s)

)
. (7)

The number of parameters is 2 · 1440. Assuming that the duration of the
trip does not depend on the time of the day, i.e. p21(s) = p21, (with 2 being
”driving” and 1 ”not driving”) the number of parameters is reduced to 1440+1.
Note that, as a result of this reduction, the duration of a trip is captured by a
single parameter.

It follows that the conditional likelihood function, for the model with two
states, is given by:

L (P(1),P(2), . . . ,P(1440)) =

1440∏
s=1

2∏
j=1

2∏
k=1

pjk(s)
njk(s), (8)

and the maximum-likelihood estimate p̂jk(s) is computed from (6).

2.2. Continuous Time

The continuous time analog to the discrete time inhomogeneous Markov
chain is presented below. The continuous time version provides a parameter
reduction over the discrete time version, if certain structures are present and
can be identified. Specifically, if the number of states is larger than two and it is
impossible to switch directly between certain pairs of states, the continuous time
variant will lead to a parameter reduction. Hence, if such structures are present,
the continuous time variant is preferred over the discrete time model. To intro-
duce the continuous time inhomogeneous Markov chain, we define (Grimmett
and Stirzaker, 2001):

pjk(t, u) = P(X(u) = k|X(t) = j), (9)

where t < u. The model is based on the following assumptions when ∆u→ 0:

pjj(u, u+ ∆u) = 1− qjj(u)∆u+ o(∆u) (10)

pjk(u, u+ ∆u) = qjk(u)∆u+ o(∆u) ∀ j 6= k, (11)

also 0 ≤ qjj(u) <∞ and 0 ≤ qjk(u) <∞. The qjk(u)’s are known as the tran-
sition intensities. These assumptions lead to Kolmogorov’s forward differential
equation for inhomogeneous Markov processes, expressed in matrix notation as:

∂P(t, u)

∂u
= P(t, u)Q(u) (12)
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where P(t, u) = {pjk(t, u)}, i.e. P(t, u) is the matrix containing the pjk(t, u)’s.
The matrix of transition intensities then becomes:

Q(u) =


−q11(u) q12(u) . . . q1N (u)
q21(u) −q22(u) . . . q2N (u)

...
...

. . .
...

qN1(u) qN2(u) . . . −qNN (u)

 . (13)

Since
∑N

k=1 pjk(u, u+ ∆u) = 1, it follows from (10)-(11) that
∑N

k=1 qjk(u) = 0,

i.e. qjj(u) =
∑N

k=1,k 6=j qjk(u).
A simple Kolmogorov’s differential equation is obtained if Q(t) is constant

in the period [t, t+ T ]:

P(t, t+ T ) = eQ(t)TP(t, t) = eQ(t)T . (14)

Suppose that T = 1. Then the one minute transition probabilities are given by:

P(t, t+ 1) = P(t) = eQ(t). (15)

If the model has two states, the matrix of transition intensities becomes:

Q(u) =

(
−q11(u) q12(u)
q21(u) −q22(u)

)
=

(
−q12(u) q12(u)
q21(u) −q21(u)

)
(16)

As mentioned previously, a continuous time Markov chain will allow for a
parameter reduction if certain structures are present. Furthermore, identifying
such structures will make the model more theoretically tractable.

As a simple illustration of such a model, consider the case where there are
four states, i.e. N = 4. State 1 corresponds to the vehicle being parked at
home. State 2 corresponds to the vehicle being on a trip that started from
home. State 3 corresponds to the vehicle being parked somewhere else. State
4 corresponds to the vehicle starting a trip from somewhere else than at home.
The parameter reduction is thus obtained if it is assumed that the vehicle cannot
switch directly from being parked at home to being parked somewhere else, that
is from states 1 to 3. Also it would be reasonable to assume that the vehicle does
not drive from home to return to home, without an intermediate stop. Under
these assumptions, the matrix of transition intensities becomes:

Q(u) =


−q12(u) q12(u) 0 0

0 −q23(u) q23(u) 0
0 0 −q34(u) q34(u)

q41(u) 0 q43(u) −(q43(u) + q41(u))

 . (17)

The discrete time transition probability matrix can then be found by (15). In
this case the number of parameters to be estimated for each time step is reduced
from N · (N − 1) = 12 to 5, by formulating the model in continuous time as
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opposed to discrete time. The idea behind this specific model is that it can
capture whether the vehicle is parked for different lengths of time, depending
on the location. Also it can capture whether the vehicle is usually parked at
home at night. As the number of states in the model increases, and supposing
that certain structures can be identified, the parameter reduction gained by
formulating the model in continuous time is increased.

3. Parameter Reduction via B-Splines

As the number of parameters to be estimated is huge, techniques to reduce
this number are needed. One such a technique is applying B-splines to approx-
imate the diurnal variation. Other techniques include smoothing splines and
kernels, and these could also be applied. The choice is not straightforward. B-
splines are preferred here as it is simple to work with basis functions, while the
B-spline still provides a spline of the desired order. For a thorough introduction
to B-splines as well as smoothing splines and kernels, see Hastie et al. (2008).

3.1. B-Splines

To construct a B-spline, first define the knot sequence τ such that

τ1 ≤ τ2 ≤ · · · ≤ τM . (18)

Let this sequence of knots be defined on the interval where we wish to evaluate
our spline. In this particular case the knots should be placed somewhere in the
interval [0, 1440], that is over the day.

Denote by Bi,m(x) the ith B-spline basis function of order m for the knot
sequence τ , where m < M . The basis functions are defined recursively as
follows:

Bi,1(x) =

{
1 if τi ≤ x < τi+1

0 otherwise
(19)

Bi,m(x) =
x− τi

τi+m−1 − τi
Bi,m−1(x) +

τi − x
τi+m − τi+1

Bi,m−1(x) (20)

for i = 1, . . . ,M − m. These basis functions are polynomials of order m − 1
taking values on the interval [τ1, τM ].

A B-spline curve of degree m is a piecewise polynomial curve defined as
follows:

Sm(x) =

M−m∑
i=1

CiBi,m(x), (21)

where Ci, i = {1, . . . ,M −m}, form the control polygon. The Bi,m(x) are the
B-spline basis functions of order m defined over the knot vector.

As we aim at modeling the diurnal variation in the driving pattern, it is rea-
sonable that the basis splines are periodic. This can be achieved by introducing
2m new knots to the existing knots. The new knots are defined as follows:

τ1−h = τM−h − (τM − τ1) for h ∈ {1, . . . ,m} (22)

τM+h = τh + (τM − τ1) for h ∈ {1, . . . ,m} . (23)
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More specifically, let the vector containing the new knots be represented by
τ ′ = {τ1−m, . . . , τM+m}. For each B-spline basis function m + 1 knots are
required, though they may be overlapping. The B-spline basis functions are
uniquely defined by the position of the knots. In particular, if the knots are
shifted by some constant α, the basis functions will be the same as the original,
except that they are shifted by α. If the new knot vector is defined as τ ′, the
basis function defined by the knots {τM , . . . , τM+m} will be the same as that
defined for the knots {τ1−m, . . . , τ1}, except that it is shifted by the interval
length τM − τ1. In this way we can define a basis function that is harmonic in
the sense that it is recurrent over different days.

All piecewise polynomial splines of order m defined over the knot vector τ
can be constructed from the basis functions defined in (19)-(20). Hence using B-
splines does not limit the choice of polynomial splines in any way. Nonetheless an
advantage of using B-splines is that the desired spline can be written as a linear
combination of predefined basis functions. This proves useful as a generalized
linear model is applied to estimate the transition probabilities. Traditionally
cubic B-splines are used, i.e. m = 4, which is also the case here. A motivation
for using cubic B-splines is that the spline produced will be of order 4 and
furthermore, if τi 6= τj for all i 6= j, it will be C2 everywhere. A function which
is C2 is indistinguishable from a C∞ to the human eye. For a further discussion
on why to choose cubic splines, see Hastie et al. (2008).

3.2. A Generalized Linear Model

To reduce the number of parameters in the model, a B-spline can be fitted
to the time-varying transition probabilities pjk(s). There are, however, some
issues with this approach. Firstly, there is no guarantee that the fitted B-
spline is always in the interval [0, 1], which is a problem as we are modeling

probabilities. Secondly, if
∑N

k=1 njk(s) = 0 for some s, the estimate for pjk(s)
given by (6) is undefined. A more refined approach is to use a generalized linear
model instead. In the following, such an approach is outlined.

Each day, at a specific minute, a transition from state j to state k either
occurs or does not occur. Thus for every s on the diurnal cycle we can con-
sider the number of transitions to be binomially distributed, i.e. njk(s) ∼
B(zj(s), pjk(s)), where the number of Bernoulli trials at s, given by zj(s) =∑N

k=1 njk(s), are known and the probabilities of success, pjk(s), are unknown.
The data can now be analyzed using a logistic regression, which is a generalized
linear model. The explanatory variables in this model are taken to be the basis
functions for the B-spline. The logit transformation of the odds of the unknown
binomial probabilities are modeled as linear functions of the basis functions
Bi,m(s). We model Yjk(s) = njk(s)/zj(s) and in particular we are interested in
E [Yjk(s)] = pjk(s).

Next we elaborate on how the logistic regression works in this particular case.
For a general treatment of this problem see (Madsen and Thyregod, 2010).

We shall use a linear model for a function of p, the link function. The
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canonical link for the binomial distribution is the logit transformation,

logit(p) = log

(
p

1− p

)
, (24)

which is used as the link function. The resulting transformed means are given by
ηjk(s), which is modeled using a linear model with the B-spline basis functions
as explanatory variables:

ηjk(s) = log

(
pjk(s)

1− pjk(s)

)
= Cjk,1 ·B1,4(s) + . . .+ Cjk,M ·BM,4(s). (25)

The linear prediction of ηjk(s) is therefore given by

η̂jk(s) = Ĉjk,1 ·B1,4(s) + . . .+ Ĉjk,M ·BM,4(s), (26)

where the estimates, Ĉjk,1, . . . , Ĉjk,M , are found by the iteratively reweighted
least squares method. The inverse transformation of the link function in (25),
which provides the probabilities of a transition from state j to state k at time
s, is the logistic function

pjk(s) =
exp(ηjk(s))

1 + exp(ηjk(s))
. (27)

The estimates of the transition probabilities are thus given by

p̂jk(s) =
exp (η̂jk(s))

1 + exp (η̂jk(s))
(28)

The procedure of applying a generalized linear model is implemented in the
statistical software package R as the function glm(·).

3.3. Choosing the Knots

Choosing the amount and position of the knots in the knot vector τ is impor-
tant to obtain a good fit for the model. A naive method for placing the knots is
to distribute them uniformly over the day. A uniform positioning, however, does
not take into account the peakedness of the estimate of pjk(s). An algorithm
for placing the knots is given in Mao and Zhao (2003). This method requires
optimization; it is computationally intensive, does not guarantee a global op-
timum, and is based on normally distributed errors. Instead an algorithm is
proposed here according to which the knots are placed where there are many
transitions. This method does not require optimization, but does manage to
make the model more sensitive where there are many transitions. As can be
observed from the example in Section 4, this approach works well in practice.

Note that the problem of choosing knots in our B-spline-based approach is
equivalent to that of choosing a (time-varying) smoothing parameter or band-
width in the smoothing spline or kernel approaches.

The proposed algorithm for placing the knots runs as follows:
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1. Decide first on the total number of knots, M .

2. Decide next on an initial number of knots, Minit < M , to be dispersed
uniformly in the interval, with one at each endpoint. Denote these knots
by τinit.

3. Find the two adjacent knots with the highest amount of transitions in the
interval between them. Denote these knots τj , τj+1.

4. Place a new knot, τ?, in the middle of the interval (τj , τj+1).

5. Go to step 3 if the new number of knots M? < M . If M? = M then stop.

Once an algorithm for distributing the knots is in place, the number of knots
to choose, M , has to be decided. If the number of knots is too low, the model can
be improved by placing additional knots. If the amount of knots is too high, the
model is overparameterized. The amount of knots is found by testing whether
placing an additional knot significantly improves the model. This approach is
described in the following.

Consider two different models, with a number of knots, M1 and M2, respec-
tively, and the same number of initial knots Minit. Let M1 < M2, then model
M1 is a sub-model of model M2. In this case, using a log-likelihood ratio test is
appropriate for distinguishing between the models. If we furthermore consider
a host of different models M1, . . . ,MN all with the same Minit and suppose
that Mn−1 = Mn − 1 for n ∈ {2, . . . , N}, then the testing can be performed
recursively. That being so, the test statistic is given by:

Dn = −2 · log

(
L
(
p̂ik,Mn−1(s)

)
L (p̂ik,Mn

(s))

)
, (29)

which is drawn from a χ2-distribution with one degree of freedom.
Let us conclude this section with a side note on recursive testing. Suppose

there are three models with a number of knots M1 < M2 < M3, where the
former are sub-models of the latter. Assume that they have the same initial
knots. Suppose that no significant improvement is found between models M1

and M2. This does not exclude the possibility of a significant improvement
between models M2 and M3. We recommend testing different models recursively
up to some large M , and choosing the number of knots where there does not
seem to be any significant improvement beyond this point.

4. Numerical Example

In this section the model is fitted to a sample of data observed from uti-
lization of a single vehicle. The data only allows for fitting a two-state model,
as the data set solely contains information on whether the vehicle is driving
or not driving. We focus specifically on how the proposed procedure works for
estimating p̂12(s), as the estimation of other entries in P(s) is done similarly.
Also p̂12(s) might be the most interesting parameter, as it is the probability of
starting a trip within the next minute, conditional on the vehicle not driving at
time s.
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4.1. Data

The example is based on data pertaining to a single vehicle in Denmark in
the period spanning the six months from 23-10-2002 to 24-04-2003, with a total
of 183 days. The data is GPS-based and follows specific cars. One car has been
chosen and the model is intended to describe the use of this vehicle accordingly.
The data set only contains information on whether the vehicle was driving or
not driving at any given time. No other information was provided in order to
protect the privacy of the vehicle owner. The data suggest that a model with
two states is appropriate. The data set consists of a total of 749 trips. The time
resolution is in minutes.
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Figure 1: Trips starting at a certain minute of the day, cumulated for 131 weekdays.

The data have been divided into two main periods, weekdays and weekends.
The observed number of trips starting every minute for the weekdays is displayed
in Figure 1. A high degree of diurnal variation is found, with a lot of trips
starting around 06:00 and again around 16:00. Also there are no observations of
trips starting between 00:00 and 05:00. Other patterns are found for weekends,
but as the approach is similar, the focus is on trips starting on weekdays. Annual
variations may also be present, however the limited data sample does not allow
for capturing such a variation.

4.2. Estimation

Firstly, naive B-splines have been fitted to the data using the logistic re-
gression and the result is shown in Figure 2. These B-splines are described as
naive in the sense that the knots defining the basis functions for the B-splines
are placed uniformly over the interval. The gray lines are the estimates p̂12(s)
found from (6). As the number of basis-functions increases it is apparent that
the fit improves.

The algorithm for placing the knots is implemented considering an initial
amount of knots Minit = 10. The left plot in Figure 3 shows the recursive tests,
with the test statistic given by (29), between the subsequent models with the
number of knots, Mn.

Referring to Figure 3, left, the model with a total number of knots Mn = 24
is chosen, as no significant improvement is attained beyond this point. In Figure
3, right, the log-likelihood for models with different numbers of knots is shown.
The red dashed line is the log-likelihood of the model with the estimates found
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Figure 2: From top to bottom: Fitting the estimate p̂12(s) where the knots are uniformly dis-
tributed in the interval from 00:00 to 23:59 on a weekday, with number of knots {5, 10, 20, 50}.
For reference, the gray bars are the estimates of p̂12(s) from (6) with no parameter reduction.
The red bars indicate the knot positions.
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Figure 3: Left: Log-likelihood ratio test statistic, given by Dn, from the model with n knots
vs. the model with n− 1 knots. 95% and 99% critical values are shown for a χ2-distribution
with df = 1. Right: The log-likelihood of the models with different knots. The red dashed line
is the likelihood of the model with estimates based on (6).

by (6) and corresponds to a perfect data fit. It is in some sense a limit for the
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fitted models.
The models based on B-splines are sub-models of the model in which a knot is

placed at every minute. In this model, the transition probabilities are estimated
independently for every minute, and in turn the model corresponds to that with
no parameter reduction. The models where the number of parameters is reduced
can be tested against the model with no parameter reduction. This leads to a
test statistic that will be χ2-distributed with 1440 −M degrees of freedom for
each time-varying transition probability. Accordingly the critical value will be
very large (> 1475 for estimating one time-varying transition probability and
with M ≤ 50 with 95% significance) and it is difficult to test anything.

The top plot in Figure 4 illustrates the estimate of p̂12(s) using B-splines
with M = 24, where the knots are placed by the algorithm introduced in section
3.3. For comparison, the model with the naive knots and M = 24 is shown on
the bottom plot in Figure 4. By visual inspection, it is observed that the model
in which the knots are placed according to the algorithm in section 3.3 better
captures the peakedness of p12(s).
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Figure 4: Top: p̂12(s) based on the B-splines with M = 24 and the knots placed using the
algorithm, plotted as the black line over the estimates p̂12(s) with no parameter reduction.
Bottom: p̂12(s) based on the naive B-splines with M = 24, plotted as the black line. The red
bars indicate the knot position.

4.3. Applications

The applications of the proposed stochastic model for driving patterns range
from simulating different driving scenarios to calculating the probability of a
trip starting within a given interval. In addition, the model is prerequisite to
determine the optimal charging scheme for an electric vehicle.

4.3.1. Probabilities and Simulations

Four driving scenarios are simulated and shown in Figure 5. Markov states
are indicated in a binary form depending on whether the vehicle is driving “1”
or not “0”.
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Figure 5: Four distinct realizations of driving patterns using the proposed stochastic model.

Next we illustrate how to find the probability of a trip starting within a
given interval. Suppose that at time s the vehicle is parked. Denote the waiting
time until the next trip starts by Zs. We have that Zs ∼ exp(q12(s)). The
probability of a trip starting within the time interval [s, s+ τ ] is thus

P(Zs ≤ τ) = 1− e−
∫ τ
0

q12(s+t)dt. (30)

Using this equation, for example, the probability of a trip starting in the

interval from 00:00 to 06:00 is P(Z00:00 ≤ 06:00) = 1− e−
∫ 6·60
0

q12(t)dt = 0.131.
In the top part of Figure 6, the probability of starting a trip within the

next hour, conditional on not driving at the beginning of that hour, is depicted.
The probability of the vehicle being in use at any time of the day is found
using bootstrap (Davison and Hinkley, 1997) and is shown in the bottom part
of Figure 6.

4.3.2. Example of Electric Vehicle Charging

A stylized example of charging an EV is considered below. Suppose that
the owner desires to have the vehicle fully charged for the next time he/she
must use the vehicle. At the same time, he/she wishes to minimize the cost of
doing so. As the use of the vehicle is stochastic, it can only be guaranteed that
the vehicle is fully charged with some probability. Suppose that the vehicle is
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Figure 6: Top: A graph plotting the probability of starting a trip within the next hour, con-
ditional on not driving at the present time, which is found by applying (30). Bottom: The
probability of the vehicle being in use at any time of the day, which is estimated using boot-
strap.

parked at 7:00 am and that the battery is at half capacity. Furthermore, we
assume that the battery has a total capacity of 30 kWh and that it takes 6 hours
to fully charge the battery, if it is completely empty. In addition we assume a
stylized price signal, according to which the electricity price is 60 EUR/MWh
until 10:00 am, and then drops to 30 EUR/MWh. We consider that the driving
behavior is independent of the electricity price. Moreover, it is assumed that
a strategy with early charging is preferred over a strategy which postpones the
charging, if both strategies involve identical costs.

In Figure 7 the different charging strategies are presented for varying levels
of certainty. It can be observed that lowering the desired level of certainty will
delay the charging. As a consequence, the cost of charging is also reduced, which
is seen in Table 1.

Certainty 95% 90% 80% 50%
Cost (EUR) NA∗ 0.83 0.69 0.45

Table 1: The associated costs for different levels of certainty. ∗Having the vehicle fully charged
with 95% certainty is not feasible. The associated cost for the highest level of certainty that
can be achieved (93.9%) is EUR 0.90, which corresponds to the strategy in which the vehicle
is immediately plugged in and starts charging, if not driving.

5. Conclusion and Future Research

This paper proposes a suitable model that captures the diurnal variation in
the use of a vehicle. The number of parameters is significantly reduced by using
B-spline basis functions as explanatory variables in a logistic regression. The
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Figure 7: Top: The electricity price. Bottom four: The charging strategies with decreasing
certainty of the vehicle being fully charged for the next trip. A “1” indicates that the vehicle
is being charged and a “0” indicates that the vehicle is not charging.

model is versatile and can be applied to describe driving data from any single
vehicle, thus providing a reliable model for the use of that vehicle.

A possible extension to the model would be to use hidden inhomogeneous
Markov chains. The hidden states could be used to capture where the vehicle
is parked, e.g. at home or somewhere else, and to distinguish between different
driving environments, e.g. urban and rural. The hidden Markov model does not
rely on having observations from each state. The model could be extended to
cover a population of vehicles by using a mixed-effect model. Another extension
to the model could be to estimate the transition probabilities adaptively in time.
An adaptive approach would capture structural changes in the driving behavior,
such as variation over the year or a change in use that would follow from the
household buying an additional vehicle. Adaptivity will be relevant for applying
the model in practice. An obvious next step is to use the model to implement a
charging strategy that minimizes the costs of driving considering the underlying
uncertainty in the use of the vehicle.
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