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Abstract

In this paper a method is formulated in an estimating function setting for pa-

rameter estimation, which allows the use of prior information. The main idea is to

use prior knowledge of the parameters, either specified as moments restrictions or

as a distribution, and use it in the construction of an estimating function. It may

be useful when the full Bayesian analysis is difficult to carry out for computational

reasons. This is almost always the case for diffusions, which is the focus of this

paper, though the method applies in other settings.

Keywords: Small sample size, Estimating Functions, Diffusion Process, Cox In-

gersoll & Ross (CIR) Process, Ornstein-Uhlenbeck Process.

1 Introduction

Diffusion processes are widely used within engineering, physics, biology and finance since

they in many cases are able to give a good description of data using a limited number

of parameters. Most importantly the continuous time formulation enables a direct use of

any prior physical knowledge in the model formulation, and a direct interpretation of the

estimated parameters. Data is in general observed discretely, hence classical time series

analysis might be the initial idea for modelling, however irregular sampled data is difficult

or impossible to handle using classical time series analysis.
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Working with diffusions one is confronted with this problem of determining pa-

rameters contained in the coefficients of the stochastic differential equation. Applying

maximum likelihood estimation (MLE) the transition density is required. However the

transition density is only tractable in a very few special cases in practice. Different nu-

merical approximations have been suggested to deal with the problem of the untractable

transition density when doing inference. In [Pedersen, 1995] by applying the approxi-

mating Euler scheme, in [Jensen and Poulsen, 2002] by approximating the solution to

the Fokker-Planck equation, or by a truncated Hermite type expansion, see [Aı̈t-Sahalia,

2002]. Yet another idea avoiding the often untractable transition density is suggested by

estimating functions. Estimating functions turn out to provide an alternative to (MLE)

which yields a consistent and asymptotically normal estimator. General theory for esti-

mating functions can be found in [Heyde, 1997]. Introduction to parameter estimation

for discretely observed diffusions applying estimating functions is available in by [Bibby

and Sørensen, 1995], and [Kessler and Sørensen, 1999].

In the case of few measurements any prior knowledge about the parameters is useful

in order to obtain an acceptable precision of the estimates. This calls for Bayesian methods

for solving the parameter estimation problem. However in the Bayesian framework we are

still left with the problem of determining the often untractable likelihood. In [Johannes

and Polson, 2004] and [Cano et al., 2003] approximations to posterior density for diffusions

are investigated applying Bayesian inference.

To suggest a method not applying the likelihood and still using a prior, Zellner

investigated the Bayesian Method Of Moments (BMOM) [Zellner, 1996]. The main idea

is to specify some moment restrictions when the likelihood can not be determined prop-

erly, and thereby determining a posterior distribution applying maximum entropy as the

optimal information processing rule.

Here we will introduce yet an other alternative, where the aim is not to determine a

posterior distribution as suggested by Zellner. Instead the idea is inspired by estimating

function theory, we will compensate the possibly poor estimators given few observations

by getting as close as possible to the posterior score. This idea yields estimators not being

unbiased in the classical sense but having a more reasonable precision.
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1.1 Framework and notation

In this paper we consider one-dimensional diffusions characterized by

dXt = a(Xt; θ)dWt + b(Xt; θ)dt,X0 = x0

where Wt is the one-dimensional standard Brownian motion. The state space of X is

denoted Ω, Ω ⊆ R, θ is a p dimensional vector from the parameter space Θ ⊆ R
p, the

true value of θ is denoted θ0, the functions, a : Ω×Θ 7→ R and b : Ω×Θ 7→ R are known

apart from the parameter θ.

X0 = x0 indicates that the process is known at t0.

We consider data of the form (X1, . . . , Xn) = X1:n, the density of X1:n is f(x1:n; θ),

f : Ωn × Θ 7→ R, the prior density of θ is denoted π(θ), π : Θ 7→ R
p, the distribution of

Xt, given Xs = x, t > s is denoted p(t − s, x, y; θ), p : R × Ω2 × Θ 7→ R.

The diffusion process is a Markov process hence

f(x1:n; θ) =
n

∏

i=1

p(∆i, xi, xi−1; θ)

where ∆i = ti − ti−1.

Differentiating a function we implicitly assume that the function is differentiable,

and when looking for a minimum we assume it exists uniquely. It is also assumed whenever

integration and differentiation are interchanged that it is allowed to do so.

The following notation is used for the mean operator

E[θ,.][.] =

∫

(.)f(x1:n; θ)dx1:n

E[.,x][.] =

∫

(.)π(θ)dθ

E[.,.][.] =

∫

(.)d(f(x1:n; θ)π(θ)),

or equivalently the notation for ‖.‖2
L2

‖.‖2
L2(f(x1:n;θ)dx1:n) = < ., . >L2(f(x1:n;θ)dx1:n)=

∫

|.|2f(x1:n; θ)dx1:n

‖.‖2
L2(π(θ)dθ) =

∫

|.|2π(θ)dθ

‖.‖2
L2(f(x1:n;θ)π(θ)dx1:ndθ) =

∫

|.|2d(f(x1:n; θ)π(θ)),
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The F-Optimal estimating function from a fixed sample size we denote, G∗(X1:n; θ) ∈ G,

same notation as in [Heyde, 1997], also the standardized estimating function notation

from the same book is used G(s)(.) = −E[θ,.][∂θG(.)]T E[θ,.][G(.)G(.)T ]G, where T indicate

the transposed and ∂θG(.) indicate that G(.) is differentiated with respect to θ

∂θf = (
∂f

∂θ1

, . . . ,
∂f

∂θp

)T .

We define three classes of estimating functions, that are assumed to be closed under

addition

ClassH = {H : (θ; X1:n) 7→ H(θ; X1:n)

ClassF = {F : θ 7→ F (θ) s.t. F is of a form F (θ) = k(θ)

ClassG = {G : (θ; X1:n) 7→ G(θ; X1:n) s.t.∃H ∈ H, ∃F ∈ F

with G(θ; X1:n) = H(θ; X1:n) + F (θ).

1.2 Overview of the paper

The basic idea behind Estimating Function with Prior Knowledge (EFPK) is introduced

in section 2. In section 3 the optimality criterion is described. In section 4 the parameter

estimation for the Ornstein-Uhlenbeck process using (EFPK) from the linear family is

dealt with and results are compared to those obtained using classical linear estimating

functions and (MAP) estimators. Similar comparisons are found in section 5 for the well

known (CIR) process from finance. Finally section 6 contains concluding remarks.

2 Introducing Estimating Function with Prior Knowl-

edge

This paper describes a method for parameter estimation, refereed to as Estimating Func-

tions with Prior Knowledge (EFPK). The method yields estimates where prior knowledge

is incorporated. The idea behind (EFPK) is inspired by theory from estimation functions

and theory from Bayesian analysis. Estimates are determined without having to fully
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specify the often untractable transition density while the estimating function is as close

as possible to the posterior score (MAP).

Using (EFPK) perhaps little is gained having many observations and limited prior

information, which for example often will be the case in finance, however, when only

a few samples are available, which likely is the case when observations are difficult or

costly to get, the estimates applying ordinary frequentistic analysis, can be very unreliable

compared to methods which takes some prior knowledge into account, and in this case

(EFPK) could be a method worth considering.

Another area where (EFPK) for parameter estimation might be worth considering

is in a population setup. Such as a situation where little data is available about an

individual but data from somehow similar individuals are available. In this case (EFPK’s)

yields estimates which combines knowledge from the population with knowledge from the

individual’s. We will shortly demonstrate how to apply idea behind (EFPK) for a setup

where observations are normal distributed and the prior knowledge of the parameter being

estimated is normal distributed.

In the classical setting estimating functions are created such that H(θ; X1:n) ∈ H

and

E[θ,.][H(θ; X1:n)] = 0, θ = θ0

and the estimator is found by solving the estimating equation

H(θ̂; X1:n) = 0.

Basically what we want to do is to extend the estimating equation

H(θ̂; X1:n) = 0

to

G(θ̂; X1:n) = 0, G(θ; X1:n) ∈ G

such that prior knowledge is incorporated into the estimating equation. For this equation

it is no longer true that E[θ,.][G(θ; X1:n)] = 0 is fulfilled for θ = θ0, instead by construction

E[.,.][G(θ; X1:n)] = 0 is correct.
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To motivate the idea behind (EFPK’s) consider the following mixed effect model

where both the individual parameters and the population parameter are normal dis-

tributed, i.e.

Xi|µ ∼ N(µ, σ2)

µ ∼ N(µ1, σ
2
1).

It is well known that estimates of the individual parameters can benefit from using prior

knowledge about the population. Given the prior density for µ the Best Linear Unbiased

Prediction estimator (BLUP) can be shown to be

µ̂ =

µ1

σ2
1

+
∑n

i=1 Xi

σ2

1
σ2
1

+ n
σ2

(1)

simply by maximizing the posterior score, see [Karunamuni, 2002] for a details.

Using (EFPK) the aim is to construct an estimating function where the weights

A(µ) and B somehow are chosen in an optimal way

G∗
EFPKL(µ) =

n
∑

i=1

A∗(µ)(Xi − µ) + B∗(µ − µ1).

Indeed choosing A∗(µ) = 1
σ2 and B∗ = − 1

σ2
1

and solving the estimating equation G∗
EFPKL(µ̂) =

0, the same estimator for µ̂ is obtained as in (1).

In a similar way estimators for diffusions will be investigated by expanding the

estimating functions such that prior knowledge is taken into account, optimal estimating

equations will be derived both for the The Ornstein-Uhlenbeck process G∗
EFPKL(θ) and

the Cox Ingersoll & Ross (CIR) process G
†∗

EFPKL(θ) by determining the optimal weights

A∗(∆i, Xi−1, θ), B
∗ and A†∗(∆i, Xi−1, θ), B

†∗ in respectively

G∗
EFPKL(θ) = B∗(θ − α) +

n
∑

i=1

A∗(∆i, Xi−1, θ)(Xi − Xi−1e
−θ∆i)

G
†∗

EFPKL(θ) = B†∗(θ − α) +
n

∑

i=1

A†∗(∆i, Xi−1, θ)(Xi − Xi−1e
−θτ − α(1 − e−θτ )).

A simulation study of the Ornstein-Uhlenbeck process and the Cox Ingersoll & Ross (CIR)

process is carried out to justify the claim that (EFPK) outperforms ordinary frequentistic

inference in certain cases as described above.
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3 Optimality Criterion

This section will describe the optimality criterion used for (EFPK) and derive an expres-

sion for the optimal (EFPK). The main idea is to minimize the L2(f(x1:n; θ)π(θ)dx1:ndθ)

distance to the posterior score instead of as traditionally to minimize the L2(f(x1:n; θ)dx1:n)

distance to the score function. In subsection 3.1 the basic idea behind optimal estimating

functions in the classical sense is briefly sketched.

3.1 Optimality Criterion, in the classical setting, a brief review

In the classical setting, estimating functions are constructed such that

E[θ,.][G(θ; X1:n)] = 0,

for θ = θ0, estimating functions with this property are called unbiased.

Definition 3.1. G∗(θ; X1:n),∈ H is F-Optimal in H if

E[θ,.][G(θ; X1:n)2]

(E[θ,.][∂θG(θ; X1:n)])2
≥

E[θ,.][G
∗(θ; X1:n)2]

(E[θ,.][∂θG∗(θ; X1:n)])2

for all θ ∈ Θ and for all G(θ; X1:n) ∈ H.

It can be shown that the G∗∗(θ; X1:n),∈ H with the shortest L2(f(x1:n; θ)dx1:n)

distance to the score function, i.e.

‖G∗∗(θ; X1:n)−U(θ; X1:n)‖2
L2(f(x1:n;θ)dx1:n) ≤ ‖G(θ; X1:n)−U(θ; X1:n)‖2

L2(f(x1:n;θ)dx1:n), (2)

∀G(θ; X1:n) ∈ H,∀θ ∈ Θ is F-Optimal hence G∗∗(θ; X1:n) = G∗(θ; X1:n) see [Godambe

and Heyde, 1987].

For Markov processes we will chose H =
∑N

j=1 βjhj(∆, x, y; θ) with the normal

conditions fulfilled s.t.

H∗(θ; X1:n) =
n

∑

i=1

g∗(∆i, Xi, Xi−1; θ),

where g∗ = (g∗
1, . . . , g

∗
p) and g∗

i is the orthogonal projection w.r.t. < ., . > of y 7→

∂θlogp(∆, x, y; θ) onto H. H∗(θ; X1:n) is F-Optimal see [Kessler, 1995]. With the simplest
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possible choice of
∑N

j=1 βjhj(∆i, x, y; θ) = α(∆i, Xi−1; θ)h(∆i, Xi, Xi−1; θ)

g∗(∆i, Xi, Xi−1; θ) = g∗
1(∆i, Xi, Xi−1; θ) = α∗(∆i, Xi−1; θ)h(∆i, Xi, Xi−1; θ),

with

α∗(∆i, Xi−1; θ) = −
E[.,θ][∂θh(∆i, Xi, Xi−1; θ)

T ]

E[.,θ][h(∆i, Xi, Xi−1; θ)h(∆i, Xi, Xi−1; θ)]
. (3)

3.2 Optimal Estimating Functions with Prior Knowledge

For (EFPK) the optimal one is found by minimizing the L2(f(x1:n; θ)π(θ)dx1:ndθ) distance

to the posterior score, i.e.

Definition 3.2. The optimal (EFPK) G∗(θ; X1:n) ∈ G is the one which satisfies

‖G∗(θ; X1:n)−U(θ; X1:n)‖2
L2(f(x1:n;θ)π(θ)dx1:ndθ) ≤ ‖G(θ; X1:n)−U(θ; X1:n)‖2

L2(f(x1:n;θ)π(θ)dx1:ndθ)

(4)

∀G(θ; X1:n) ∈ G,∀θ ∈ Θ.

Proposition 3.1. The optimal Estimating Function with Prior Knowledge is

G∗(θ; X1:n) = H∗(θ; X1:n) + F ∗(θ)

where H∗(θ; X1:n) minimizes (5)

‖H(θ; X1:n) −
∂θl(θ; X1:n)

l(θ; X1:n)
‖2

L2(f(x1:n;θ)dx1:n) (5)

∀θ ∈ Θ, ∀H(θ; X1:n) ∈ H, and F ∗(θ) minimizes (6)

‖F (θ) −
∂θπ(θ)

π(θ)
‖2

L2(π(θ)dθ) (6)

∀θ ∈ Θ, ∀F (θ) ∈ F .

Note Explicit expression of H∗(θ; X1:n) and F ∗(θ) are well known to be H∗(θ; X1:n) =
∑n

i=1 −
E[θ,.][∂θh(∆i,Xi,Xi−1;θ)T ]

E[θ,.][h(∆i,Xi,Xi−1;θ)h(∆i,Xi,Xi−1;θ)]
h(∆i, Xi, Xi−1; θ) and

F ∗(θ) = −E[.,x][∂θk(θ)T ](E[.,x][k(θ)k(θ)T ])−1k(θ), for Markov processes with a simple

choice g∗, see above.
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Proof. Let G(θ; X1:n) be an estimating function from G

G(θ; X1:n) = H(θ; X1:n) + F (θ)

where F (θ) does not depend on X1:n.

First we will rewrite the expression of the posterior score

U(X1:n; θ) = ∂θln(f(x1:n; θ)π(θ)) = ∂θln(l(θ; X1:n)π(θ)) =
∂θl(θ; X1:n)

l(θ; X1:n)
+

∂θπ(θ)

π(θ)
, (7)

inserting the expression from (7) in

‖G(θ; X1:n) − U(X1:n; θ)‖2
L2(f(x1:n;θ)π(θ)dx1:ndθ)

yields

‖H(θ; X1:n) −
∂θl(θ; X1:n)

l(θ; X1:n)
‖2

L2(f(x1:n;θ)π(θ)dx1:ndθ)

+‖F (θ) −
∂θπ(θ)

π(θ)
‖2

L2(f(x1:n;θ)π(θ)dx1:ndθ)

+2 < H(θ; X1:n) −
∂θl(θ; X1:n)

l(θ; X1:n)
, F (θ) −

∂θπ(θ)

π(θ)
>L2(f(x1:n;θ)dx1:n)π(θ)dθ)⇒

‖G(θ; X1:n) − U(X1:n; θ)‖2
L2(f(x1:n;θ)π(θ)dx1:ndθ)

= ‖H(θ; X1:n) −
∂θl(θ; X1:n)

l(θ; X1:n)
‖2

L2(f(x1:n;θ)π(θ)dx1:ndθ)

+‖F (θ) −
∂θπ(θ)

π(θ)
‖2

L2(π(θ)dθ) (8)

since

E[.,x][H(θ; X1:n)] = E[.,x][
∂θl(θ; X1:n)

l(θ; X1:n)
] = 0.

From (8) it is concluded that

G∗(θ; X1:n) = H∗∗(θ; X1:n) + F ∗(θ),

where H∗∗(θ; X1:n) minimizes (9) for all θ ∈ Θ and all H(θ; X1:n) ∈ G

‖H(θ; X1:n) −
∂θl(θ; X1:n)

l(θ; X1:n)
‖2

L2(f(x1:n;θ)π(θ)dx1:ndθ) (9)

and F ∗(θ) minimizes (6) for all θ ∈ Θ and all F (θ) ∈ F . Next we need to prove that

H∗∗(θ; X1:n) = H∗(θ; X1:n)

This is however straightforward since if H∗(θ; X1:n) solves (2) for all θ ∈ Θ and all

H(θ; X1:n) ∈ G, the inequality is still fulfilled integrating both sides w.r.t. π(θ)dθ
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4 The Ornstein-Uhlenbeck Process

Consider the Ornstein-Uhlenbeck process given by the stochastic differential equation

dXt = −θ(Xt − α)dt + σdWt, (10)

which often is used in the literature to model an exponentially decaying function with

process noise. An explicit solution to (10) is readily obtained by using standard Itô

integration

Xt+τ = (Xt − α)e−θτ + α + σ

∫ t+τ

t

e−θ(s−τ−t)dWs

∼ N((Xt − α)e−θτ + α,
σ2

2θ
(1 − e−2θτ )).

Having the solution, standard maximum likelihood theory can be applied to estimate the

parameters in the diffusion. For the (O-U) process estimates applying maximum likelihood

theory and (EFL) turn out to result in the same estimator. In the following subsections

a description of the simulation study is presented. Next equations to determine estimates

using (EFL), (EFPKL) and (MAP) are shown. Finally results from the simulation study

is listed in Table 2.

Obviously when the (MAP) is easily derived which is the case for the Ornstein-

Uhlenbeck process the (MAP) will be preferred to (EFPKL), however from the simula-

tion study we note that estimators using (EFPKL) approximates (MAP) rather well, see

Table 2.

4.1 The simulation study

Consider now a population experiment where the Ornstein-Uhlenbeck process is used to

describe the evolution in time of the concentration of some injected chemical drug. In

each experiment the population size of 10 individuals is chosen, the process describing

each individual is created using the same parameters except for the parameter θj which

differs for each process. In each experiment data is created by first drawing a θj from

the prior and then simulating from (10) using θj, α, and σ. In Figure 1 (top, left) and

(top, right) two different experiments are presented. For the experiment shown in Figure
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(top, left), θj is chosen from a prior with smaller variance compared to the prior in the

experiment in Figure (top, right). As a consequence the processes in (top, left) are more

alike.

Finally θj is estimated for each process j and each experiment applying the methods

mentioned above. To compare the methods we have chosen to calculate the sum of

the squared differences between the estimates and the true value of θj. For the data

presented in Figure 1 (top, left) and (top, right) the estimates applying the different

methods described previously is presented respectively (bottom, left) and (bottom, right).

Table 2 contains results for a more thorough investigation, here the different estimators

are compared for 24 different experiments.

4.2 Estimating Functions from the Linear family (EFL)

In order to estimate θj using estimating function from the linear family we determine

E[Xt+τ |Xt] and V ar[Xt+τ |Xt] which is straightforward having the solution i.e.

E[Xt+τ |Xt] = (Xt − α)e−θτ + α (11)

V ar[Xt+τ |Xt] =
σ2

2θ
(1 − e−2θτ ). (12)

The F-Optimal linear estimating function from the process defined by (10), is

G∗
EFL(θj) =

n
∑

i=1

−∆i(Xi−1 − α)e−θ∆i

σ2

2θj
(1 − e−2θj∆i)

(Xi − (Xi−1 − α)e−θj∆i − α),

hence the θ̂jEFL
is

θ̂jEFL
=

1

∆
ln(

∑n

i=1(Xi−1 − α)(Xi−1 − α)
∑n−1

i=1 (Xi − α)(Xi−1 − α)
)

when ∆i = ∆, otherwise an explicit expression is not possible to derive.

4.3 Estimating Functions with Prior Knowledge from the Linear

family (EFPKL)

Next (EFPKL) is applied on the data sets from Figure 1 (top, left) and (top, right). We

will assume that the prior knowledge of the parameter θj is θj ∼ N(θ0, σ
2
1). Inserting the
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expressions of the conditional moments from (11) and (12) in (5) and (6) the following

expression is obtained

G∗
EFPKL(θj) =

(θj − θ0)

σ2
1

+
n

∑

i=1

−∆iXi−1e
−θj∆i

σ2

2θj
(1 − e−2θj∆i)

(Xi − Xi−1e
−θj∆i).

As it appears is not possible to find an explicit expression of θ̂jEFPKL
.

4.4 Maximum Posterior estimates (MAP)

Since an explicit expression of the solution to (10) is available an equation maximizing

the posterior score can be found, after some trivial calculations the following equation is

obtained

∂lnp

∂θj

=
(θj − θ0)

σ2
1

+
(n − 1)

2θj

+

n
∑

i=1

∆i e
−2 θj ∆i

(e−2 θj ∆i − 1)
+ 2

(

Xi − (Xi−1 − α) e−θj ∆i − α
)

θj (Xi−1 − α) ∆i e
−θj ∆i

σ2 (e−2 θj ∆i − 1)
(

Xi − (Xi−1 − α) e−θj ∆i − α
)2

(2θj ∆i e
−2 θj ∆i +

(

e−2 θj ∆i − 1
)

)

σ2 (e−2 θj ∆i − 1)
2 = 0.
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Table 1: (top, left) represents 10 trajectories generated from the (O-U) process de-

scribed by (10) with the parameters: number of observations=20, ∆i = 0.1, α = 2, σ2 =

0.09, σ2
1 = 0.005 and θi ∼ N(1, σ2

1). (top, right) represents 10 trajectories generated from

the (O-U) process described by (10) with the parameters: number of observations=20,

∆i = 0.1, α = 2, σ2 = 0.09, σ2
1 = 0.04 and θi ∼ N(1, σ2

1). (bottom, left) and (bottom,

right) represents estimates obtained using the data from the (top) Figures. The following

symbols has been used (EFL) (�), (EFPKL) (◦) and maximization of the posterior score

(+). Solid lines ending points represent the true value of θj.
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n ∆ σ
2

σ
2

1

∑m

j=1
(θ̂jEFL

− θj)
2

∑m

j=1
(θ̂jEFPKL

− θj)
2

∑m

j=1
(θ̂jMAP

− θj)
2

5

0.1

0.01
0.005 .13134 .06668 .06836

0.04 .31546 .27171 .27231

0.09
0.005 1.35790 .10775 .10618

0.04 1.25224 .40624 .38911

0.5

0.01
0.005 .05606 .03579 .03563

0.04 .02425 .02015 .02000

0.09
0.005 .39042 .04523 .04262

0.04 .13845 .09696 .09712

20

0.1

0.01
0.005 .14033 .06218 .06181

0.04 .12693 .11796 .12286

0.09
0.005 .55852 .03351 .03883

0.04 .32418 .23436 .19109

0.5

0.01
0.005 .05372 .01512 .01379

0.04 .04980 .04708 .04719

0.09
0.005 .34615 .04525 .04411

0.04 .43681 .37527 .36348

50

0.1

0.01
0.005 .06107 .04617 .04520

0.04 .31646 .29114 .27900

0.09
0.005 .56771 .04689 .04947

0.04 .49285 .23729 .47473

0.5

0.01
0.005 .03777 .02780 .02569

0.04 .08272 .05237 .04882

0.09
0.005 .25874 .02176 .02791

0.04 .93075 .37642 .24393

Table 2: Comparison between the different estimators for the Ornstein-Uhlenbeck process

for 24 different experiments. The parameters used to create data for each experiment is

presented in the first 4 columns, the next 3 columns contains the sum of squared difference

between the estimate θ̂j and the true value θj for each estimator in each experiment.
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5 The Cox, Ingersoll and Ross (CIR) process

Consider the Cox, Ingersoll and Ross (CIR) diffusion process given by the stochastic

differential equation

dXt = −θ(Xt − α)dt + σ
√

XtdWt, (13)

which often in the literature is used to model short term interest rates, see [Cox et al.,

1985]. It can be shown that the transition density is a non central chi-square distribu-

tion with non-integer parameters. However, applying (EFL) is straightforward to obtain

estimates since analytical expression for conditional moments in the (CIR) process is

straightforward to find. After some calculations we obtain

E[Xt+τ |Xt] = Xte
−θτ + α(1 − e−θτ ) (14)

V ar[Xt+τ |Xt] =
σ2

2θ
(1 − e−θτ )(α(1 − e−θτ ) + 2Xte

−θτ ). (15)

5.1 Estimating functions from the Linear family (EFL)

The F-Optimal linear estimating function for sampled realizations from (13), is

G∗
EFL(θj) =

n
∑

i=1

−∆i(Xi−1 − α)e−θj∆i(Xi − (Xi−1 − α)e−θj∆i − α)
σ2

2θj
(1 − e−θj∆i)(α(1 − e−θj∆i) + 2Xi−1e−θj∆i)

=
n

∑

i=1

(Xi−1 − α)(Xi − (Xi−1 − α)e−θj∆i − α)

α(1 − e−θj∆i) + 2Xi−1e−θj∆i
. (16)

Given this expression it is not possible to derive an explicit expression of the estimator of

θj. Estimating the parameter α is also straightforward applying the same procedure we

obtain the estimating equation

G∗
EFL(αj) =

n
∑

i=1

(1 − e−θ∆i)(Xi − (Xi−1 − αj)e
−θ∆i − αj)

σ2

2θ
(1 − e−θ∆i)(αj(1 − e−θ∆i) + 2Xi−1e−θ∆i)

=
n

∑

i=1

(Xi−1 − αj)(Xi − (Xi−1 − αj)e
−θ∆i − αj)

αj(1 − e−θ∆i) + 2Xi−1e−θ∆i
. (17)

Estimating σ2 is not possible applying (EFL) since the first conditional moment does not

depend on σ2. However applying estimating functions from the Quadratic Family (EFQ)

it is possible to create an estimating function to estimate σ2 see [Bibby and Sørensen,

15



1995]. Creating the estimating equation from the EFQ it is possible to estimate θj, αj

and σ2 simultaniously see [Bibby and Sørensen, 1995] however these estimating equations

do not yield equations from where explicit expressions for the estimators can be found.

Keeping the Martingale property but using weights not being F-Optimal, as investigated

in [Bibby and Sørensen, 1995], equations are created from where explicit expressions

can be found. In [Pedersen, 2000] explicit expressions is derived for parameters in a

(CIR) process using Martingale estimating functions not being F-Optimal, we will not

investigate these estimating functions further. Also note that it is straightforward to do

the calculations in [Bibby and Sørensen, 1995] in a (EFPK) framework estimating all

parameters simultaneously incorporating prior knowledge.

5.2 Estimating Functions with Prior Knowledge from the Linear

family (EFPKL)

Assume that the prior knowledge of is θj ∼ N(θ0, σ
2
1) and is αj ∼ N(α0, σ

2
2). Inserting

the expression for the conditional moments from (14) and (15) in (5) and (6) yields

G∗
EFPKL(θj) =

(θj − θ0)

σ2
1

+
−∆ie

−θj∆i

σ2

2θj
(1 − e−θj∆i)

n
∑

i=1

(Xi−1 − α)(Xi − (Xi−1 − α)e−θj∆i − α)

α(1 − e−θj∆i) + 2Xi−1e−θj∆i

G∗
EFPKL(αj) =

(αj − α0)

σ2
2

+
n

∑

i=1

(1 − e−θ∆i)(Xi − (Xi−1 − αj)e
−θ∆i − αj)

σ2

2θ
(1 − e−θ∆i)(αj(1 − e−θ∆i) + 2Xi−1e−θ∆i)

=
(αj − α0)

σ2
2

+
(1 − e−θ∆i)

σ2

2θ
(1 − e−θ∆i)

n
∑

i=1

(Xi − (Xi−1 − αj)e
−θ∆i − αj)

(αj(1 − e−θ∆i) + 2Xi−1e−θ∆i)
. (18)

(18) is not possible to solve with respect to αj but a comparison between the estimators

obtained from (17) and (18) has been carried out by simulation in the same manner as

for the Ornstein-Uhlenbeck process, see Figure 3
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Table 3: (top, left) represents 10 trajectories generated from the (CIR) process de-

scribed by (13) with the parameters: number of observations=20, ∆i = 0.1, θ = 2, σ2 =

0.09, σ2
2 = 0.005 and αi ∼ N(1, σ2

2). (top, right) represents 10 trajectories generated from

the (CIR) process described by (13) with the parameters: number of observations=20,

∆i = 0.1, θ = 2, σ2 = 0.09, σ2
2 = 0.04 and αi ∼ N(1, σ2

2). (bottom, left) and (bottom,

right) represents estimates obtained using the data from the (top) Figures. The following

symbols has been used (EFL) (�), (EFPKL) (◦). Solid lines ending points represent the

true value of θj.
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n ∆ σ
2

σ
2

1

∑m

j=1
(θ̂jEFL

− θj)
2

∑m

j=1
(θ̂jEFPKL

− θj)
2

5

0.1

0.01
0.005 .06926 .02631

0.04 .17051 .11770

0.09
0.005 1.51666 .06233

0.04 1.97042 .34325

0.5

0.01
0.005 .03002 .02536

0.04 .01596 .01335

0.09
0.005 .13827 .03564

0.04 .09817 .10801

20

0.1

0.01
0.005 .01907 .00747

0.04 .02619 .02625

0.09
0.005 .14172 .02714

0.04 .18824 .07697

0.5

0.01
0.005 .00298 .00258

0.04 .00726 .00725

0.09
0.005 .04661 .01357

0.04 .07527 .06393

100

0.1

0.01
0.005 .00584 .00450

0.04 .00251 .00255

0.09
0.005 .02229 .01532

0.04 .06257 .03467

0.5

0.01
0.005 .00168 .00153

0.04 .00072 .00073

0.09
0.005 .00991 .00797

0.04 .00776 .00740

Table 4: Comparison between the different estimators for the (CIR) process for 24 different

experiments. The parameters used to create data for each experiment is presented in the

first 4 columns, the next 2 columns contains the sum of squared difference between the

estimate θ̂j and the true value θj for each estimator in each experiment.

6 Conclusion

The proposed method Estimating Functions with Prior Knowledge (EFPK) constitutes

a method for parameter estimation which incorporates prior knowledge in the estimates.
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This is done by adding an additional term to the ordinary estimating equation. Adding

this term in the estimating function results in equations from where explicit expressions

of estimators in general are more difficult to derive. Also as a consequence of the structure

of the estimating equations derived from (EFPK) the method can be applied whenever

ordinary (EF) is applicable.

The Estimating Functions with Prior Knowledge approach is in particular useful for

small sample sizes since the classical estimates in this situation might be very unreliable,

the incorporated prior pools estimates towards the prior and thereby ”remove” extreme

estimates, and reduce the variation of the estimates. The basic idea behind (EFPK) is to

create estimating function which are maximal correlated with the posterior score, contrary

to the classical setup where we try to imitate the score function. The idea is formalized

by minimizing the L2 distance to the posterior score.

We have demonstrated how to implement (EFPK) for parameter estimation for

discretely observed diffusions. As case studies the Ornstein-Uhlenbeck Process and the

Cox, Ingersoll and Ross (CIR) process were chosen. For Ornstein-Uhlenbeck Process an

expression for the posterior score is readily found and we saw from the simulations that

(EFPK) clearly out preforms (EFL) and get reasonably close to the (MAP) estimators.

For the Cox, Ingersoll and Ross (CIR) process the method illustrates is worth, again it

clearly in many cases out performs (EFL) and on the other hand the (MAP) estimator is

not easy to derive.
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