Control of Blood Glucose for People with Type 1 Diabetes: an in Vivo Study

Dimitri Boiroux1, Signe Schmidt2, Anne Katrine Duun-Henriksen1, Laurits Frøssing2, Kirsten Nørgaard2, Sten Madsbad2, Ole Skyggebjerg1, Niels Kjølstad Poulsen1, Henrik Madsen1, John Bagterp Jørgensen1

1DTU Informatics
Technical University of Denmark
2Department of Endocrinology
Hvidovre Hospital

17th Nordic Process Control Workshop, January 27th, 2012
Outline

1. Introduction
2. Material and methods
3. Controller design
4. Conclusion
People with type 1 diabetes must rely on exogenous insulin to regulate blood glucose.

Ideally, try to keep blood glucose (BG) in the range 4-8 mmol/L:
- A too low glucose concentration (hypoglycemia) has immediate effects: seizures, coma, brain damage or even death.
- A too high glucose concentration (hyperglycemia) has long-term effects: blindness, nerve disease, kidney disease etc.
Introduction

Continuous Subcutaneous Injection of Insulin (CSII)

- Continuous Glucose Monitor (CGM) to measure subcutaneous glucose
- Insulin pump injects insulin subcutaneously
- The patient decides on the insulin dosage: preset continuous insulin injections (basal rate) + bigger discrete insulin injections before mealtimes, or if the BG is too high (boluses)

Main issues:

- Sensor accuracy, even if correctly calibrated
- Insulin action time
- Daily variations in physiology
- Human factor
The artificial pancreas

- Closed-loop control of blood glucose (here, using MPC) using a CGM and an insulin pump

- Test our closed-loop controller for two "pilot" studies on the same patient at Hvidovre Hospital
The clinical protocol

- Overnight \implies No meal
- 2 Randomized cross-studies

```
<table>
<thead>
<tr>
<th></th>
<th>Open - Loop</th>
<th>Closed - Loop</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 patients</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1 night</td>
<td>1-4 weeks</td>
<td>1 night</td>
</tr>
</tbody>
</table>
```

Compare overnight CSII therapy vs. closed-loop control ability to
- Stabilize blood glucose
- Bring blood glucose to target

Scenario:
- The patient arrives at 16:00.
- A meal is consumed at 18:00 and an insulin bolus is administrated.
- The loop is closed at 22:00 (for closed-loop studies only).
- The closed-loop ends at 07:00 the following day (for closed-loop studies only).
The Graphical User Interface

- Glucose measurement from CGM provided to the software every 5 minutes (if available)
- Discrete insulin injection every 15 minutes implemented by hand
Patient model computation

- No use of prior data
- Instead, use of empirically estimated patient parameters
 - **Basal insulin** (in U/hr): Insulin needed to keep BG constant
 - **Insulin sensitivity factor (ISF)** (in mmol/L/U): Decrease in BG per unit of insulin
 - **Insulin action time** (in hours): Time to reach the minimum BG
- Second order transfer function model from insulin to glucose

\[Y(s) = G(s)U(s), \quad G(s) = \frac{K}{(\tau s + 1)^2} \]

- Example: Impulse response for a simulated patient (Bolus size: 0.1U)

![Graph showing blood glucose levels over time](image)

Basal insulin: 0.4 U/hr
ISF: 4 mmol/L/U
Insulin action time: 4 hours
ARMAX model

\[Y(s) = G(s)U(s), \quad G(s) = \frac{K}{(\tau s + 1)^2} \]

Discretization of the previous transfer function model

\[\bar{A}(q^{-1})y(t) = q^{-nk} \bar{B}(q^{-1})u(t) + \xi(t) \]

where

\[\bar{A}(q^{-1}) = 1 + \bar{a}_1 q^{-1} + \bar{a}_2 q^{-2} \]
\[\bar{B}(q^{-1}) = \bar{b}_1 q^{-1} + \bar{b}_2 q^{-2} \]

Offset-free description

\[A(q^{-1})y(t) = B(q^{-1})u(t) + (1 - \alpha q^{-1})e(t) \]

in which

\[A(q^{-1}) = (1 - q^{-1})\bar{A}(q^{-1}) \]
\[B(q^{-1}) = (1 - q^{-1})\bar{B}(q^{-1}) \]
\[0 \leq \alpha \leq 1 \]

may be realized as a stationary state space model in innovation form

\[x_{k+1} = Ax_k + Bu_k + K\varepsilon_k \]
\[y_k = Cx_k \]
MPC with soft output constraints

\[
\min_{\{u_{k+j}, v_j\}_{j=0}^{N-1}} \phi = \frac{1}{2} \sum_{j=0}^{N-1} \|\hat{y}_{k+j+1|k} - \hat{r}_{k+j+1|k}\|_2^2 + \lambda \|\Delta u_{k+j}\|_2^2 + \kappa \|v_{k+j}\|_2^2
\]

s.t.
\begin{align*}
\hat{x}_{k+1|k} &= A\hat{x}_{k|k-1} + Bu_k + K\varepsilon_k \\
\hat{y}_{k+1|k} &= C\hat{x}_{k+1|k} \\
\hat{x}_{k+j+1|k} &= A\hat{x}_{k+j|k} + Bu_k \\
\hat{y}_{k+j+1|k} &= C\hat{x}_{k+j+1|k} \\
u_{\min} \leq u_{k+j} \leq u_{\max} \\
G_{\min} - \hat{y}_{k+j+1|k} \leq v_{k+j} \\
v_j \geq 0
\end{align*}

- \(\hat{y}_{k+j+1|k}\) j+1 step ahead predictions of glucose
- \(\hat{r}_{k+j+1|k}\) glucose setpoint
- \(u_{k+j}\) predicted insulin injections
- Penalize low BG, ie. \(\hat{y}_{k+j+1|k} \leq G_{\min}\)
Glucose reference signal

- Reduce the risk of low BG
- Improve the stability of the controller
- The time constant determines the aggressiveness of the controller
Results

- Use the right CGM for control
- Insulin overdose followed by severe hypoglycemia
Example of prediction

- Only based on the 2 last observations
Observer design

We consider an ARMAX model

\[A(q^{-1})y(t) = B(q^{-1})u(t) + C(t)e(t) \]

where

\[A(q^{-1}) = 1 + a_1 q^{-1} + a_2 q^{-2} + a_3 q^{-3} = (1 - q^{-1}) \bar{A}(q^{-1}) \]
\[B(q^{-1}) = b_1 q^{-1} + b_2 q^{-2} + b_3 q^{-3} = (1 - q^{-1}) \bar{B}(q^{-1}) \]
\[C(q^{-1}) = 1 + c_1 q^{-1} + c_2 q^{-2} + c_3 q^{-3} = (1 - \alpha q^{-1})(1 - \beta_1 q^{-1})(1 - \beta_2 q^{-1}) \]

and its reformulation in the innovation form

\[x_{k+1} = A x_k + B u_k + K \varepsilon_k \]
\[y_k = C x_k \]

Goal: Choose \(\alpha \), \(\beta_1 \) and \(\beta_2 \) which are the roots of the characteristic polynomial of \(A - KC \)

\[\chi(z) = z^3 + c_1 z^2 + c_2 z + c_3 \]

based on data from the previous study (ie. estimate process and output noise variances), such that the reconstruction error vanished less rapidly. Here:

\[\beta_{1,2} = 0.8 \pm 0.15i \]
Example of prediction with the redesigned observer

- More taking the global trend of BG into account
Results - 2nd study

- Use the left CGM for control
- Still some insulin overdose
Conclusion and discussion

- Overnight closed-loop control of BG
- Importance of observer design for control
- Still few issues related to insulin overdosing
- Need to handle more carefully parameter variability for further trials
 - Do not inject insulin if the BG is too low
 - Overestimate the gain
 - Underestimate the time constant