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�We extend the Independent Spike Model used to model the electricity price.
� We find that consumption can be used predict extreme events on the Nord Pool market.
� The model is used then to evaluate the effects of consumption management strategies.
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� Our results indicate that spikes and drops are virtually independent of each other.
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Integration of fluctuating renewables like wind and solar power is nowadays a hot topic, but this comes
at a cost of decreased stability of the power system. The deterioration often translates into so-called
spikes and drops in the electricity spot price, very large (even extreme) deviations from the regular spot
price, followed by a reversion to roughly the original level a few days later. We use the spikes and drops
as an strong indication that there is an imbalance in the physical power system in this paper.

Independent Spike Models (ISM) is a popular class of models for the electricity spot price that uses
regime switching, typically having three regimes (base regime, spikes and drops). We fit a such model
to Nord Pool spot data to characterize the size and intensity of these deviations, and proceed by augment-
ing the standard second generation, three factor Independent Spike Model by relating the spike and drop
intensity to several factors and find strong statistical support for relating the consumption to the spike
and drop intensity.

The model is then used to quantitatively evaluate the effects when modifying the consumption in order
to mimic how additional renewables are integrated into the power system or conversely the effects when
smoothing consumption using strategies that can be implemented in smart grids. We use this tool to
obtain a direct measure of how much the spike and drop intensity can be reduced by smoothing the con-
sumption and see that even a small increase in the variability of the consumption translates into
decreased stability (more spikes and/or drops) of the power system.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction facts. There have even been instance with negative prices in the
Large scale integration of renewable energy, such as wind or
solar energy, is increasing the complexity of the power system.
Efficient production planning is difficult as the actual amount of
power being generated is uncertain. This is reflected in the elec-
tricity spot price that is known to be very volatile and sometimes
spike (extreme upward movement) or drop (extreme downward
movement), see Escribano et al. [1] for an overview of stylized
German (EEX), see Nicolosi [2], and Danish (Nord Pool) markets,
see Nielsen et al. [3]. This trend can be expected to continue as
the amount of renewable energy keeps increasing throughout
Europe. The extreme spot electricity prices such sudden and very
large jumps to extreme levels, are usually attributed to unexpected
increases in demand, unexpected shortfalls in production, failures
of transmission infrastructure, cf. Geman and Roncoroni [4], and/or
the inelastic market structure, see Corradi et al. [5]. We utilize the
information carried by the spikes and drops to characterize the sta-
bility of the power system, cf. Lindström and Regland [6], the intu-
ition being that the number of spikes and drops experienced would
decrease if additional capacity was available.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2015.01.113&domain=pdf
http://dx.doi.org/10.1016/j.apenergy.2015.01.113
mailto:erikl@maths.lth.se
http://dx.doi.org/10.1016/j.apenergy.2015.01.113
http://www.sciencedirect.com/science/journal/03062619
http://www.elsevier.com/locate/apenergy


240 E. Lindström et al. / Applied Energy 146 (2015) 239–246
Our paper contributes to the current literature in two dimen-
sions. We extend the class of Independent Spike Models (ISMs)
by combining external information, see Mount et al. [7], Huisman
[8] with the class of second generation ISM models, cf. Janczura
and Weron [9], Lindström and Regland [10]. The model in this
paper is shown to provide a better fit to data than any of the mod-
els in those papers, as all parameters in the augmented model is
statistically significant.

We then proceed by using the model to evaluate the effect of
managing the electricity consumption in four different scenarios.
The scenarios are constructed by (artificially) modifying the
historical consumption, either by shaving peaks and/or troughs
or by adding variability. The unconditional probability of experi-
encing spikes or drops are then computed using Monte Carlo
simulations. Technical solutions for implementing smoothing
strategies in our first three scenarios for the consumption are dis-
cussed in a Danish context in Meibom et al. [11], see Siano [12] for
a more general overview. The simulations are primarily intended
as a demonstration – more advanced strategies can easily be
implemented and evaluated. This means that the tool provided in
this paper can be used to test and design smart grid strategies
without having to solve some complicated stochastic optimization
problem.

The remainder of the paper is organized as follows. Section 2
reviews Independent Spike Models, including extensions intro-
duced in this paper. Section 3 fits the models to Nord Pool data
while Section 4 explores the unconditional probability of experi-
encing spikes and/or drops. Finally, Section 5 concludes the paper.

2. Modeling the electricity spot price

The electricity spot price is ultimately determined by equilibri-
um between supply and demand. The electricity spot market is
currently characterized by being inelastic demand (but varies on
a yearly, weekly and daily scale) while the supply curve that
resembles a hockey stick, see Fig. 1. Consequently, a small change
in demand can lead to a small or potentially very large change in
the spot price, depending on the available capacity.

The yearly seasonality can be tricky to model, as it is related to
factors like temperature, wind speed, the magnitude and arrival of
the spring flood etc. – the problem being that the spring flood
occurs every year but the actual time of the year is uncertain.
This makes models that accounts for seasonality using sums of
trigonometric functions or wavelets, see Weron et al. [13], prone
to overfitting the data when forecasting. However, trigonometric
techniques are still useful for modeling the weekly and daily
1 1.5 2 2.5 3
−200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

D: Sep 7

D: Jul 7

P
ric

e 
(E

U
R

/M
W

h)

Volum

Fig. 1. Supply and demand curves Nord Pool at four different times of the year, Marc
December 7th (solid line).
seasonal patterns, as they are constant over time and they do also
work well when removing the seasonal component for a fixed set
of data. Another approach, which we follow in this paper is to
use futures as these are cointegrated with the spot price, see De
Jong and Schneider [14], as their price implicitly depends all the
relevant factors listed above. The electricity price is also known
to be mean reverting, see Escribano et al. [1], i.e. the price returns
to some equilibrium price shortly after some external disturbance
caused the price to spike or drop dramatically.

Another statistical problem is the extreme volatility and spi-
kes/drops, see Escribano et al. [1] for an overview. It is well known
in the statistical literature that time-varying volatility
(heteroscedasticity), if not corrected for, degrade the efficiency of
the estimators, see Engle [15]. Spikes can affect several markets
simultaneously as markets are connected, see Lindström Regland
[6] for a study on inter market extreme dependence. It is well
known from robust statistics that removal of removed from the
data often leads to better (in the sense that the stochastic vari-
ability of predictions generated by the model is decreased), but
that general recommendation is not relevant in our context as
we are interested in the frequency and magnitude of the extreme
events in this paper.

Standard time series tools, see e.g. Madsen [16], does not work
very well on heteroscedastic and volatile data. It is well known that
the market changes over time, cf. the supply and demand curves
presented in Fig. 1. Many non-linear model identification methods,
see e.g. Lindström, [17], will also struggle with this type of depen-
dence as many tests for non-linear dependence suffers implicitly
from the curse of dimensionality in the parameter space of the
non-linear specification.

We are instead focusing on so-called Independent Spike Models
(ISM), which are Markov Regime Switching (MRS) models for the
electricity spot price, that are being able to capture most stylized
facts, see Janczura and Weron [9]. A latent Markov chain governs
the dynamics, allowing the model dynamics to adapt to changing
market conditions. It has been argued that MRS models are more
capable than e.g. jump-diffusion models to describe spikes that
lasts several days, see De Jong [18], as the reversion to the pre spi-
ke/drop level is part of the MRS model dynamics. An early study
that used regime switching models for the electricity price is
Davison et al. [19]. Their work was later extended by Mount
et al. [7], Huisman [8] and Kanamura and Ōhashi [20] who intro-
duced a simple time in-homogeneous transition probabilities in
the latent Markov chain.

Our model in this paper is a second generation Independent
Spike Model, essentially based on a combination of De Jong and
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Schneider [14], Janczura and Weron [9] and Regland and Lindström
[10]. De Jong and Schneider [14] showed that the (logarithm of the)
electricity spot price and the corresponding one month ahead for-
ward contract at the APX market was cointegrated, meaning that
the prices are strongly linked over time. The spot price and the
spread between logðSpotÞ � logðForwardÞ on the Nord Pool market
is presented in Fig. 2 where it can be seen that the forward contract
accounts for most of the seasonal variations.

The forward contract at time tn; FðtnÞ ¼ Fn (which is in fact a
swap contract, see Haug [21]) is priced by the market as a risk-
neutral expectation taken over the averaged future spot prices,
formally defined as

Fn ¼ pðtn; tn þ TÞEQ 1
T

Z tnþT

tn

sðuÞdujFðtnÞ
� �

: ð1Þ

Here sð�Þ is the electricity spot price and pðtn; tn þ TÞ is a zero cou-
pon bond with maturity T. Short term disturbances in the power
system is likely to influence the current spot price, but these varia-
tions are averaged out in the forward price as the price will revert to
the normal level a few days later. This suggests that any forward
with time to maturity that is long enough to smooth the short term
variations in the spot, yet having a time to maturity that is short
enough to have similar seasonal dynamics as the spot can be used
to account for most of the seasonality. Weron and Zator [22] plots
the electricity spot price, the 1 week future and the 6 week future
and finds that it is difficult to visually distinguish between the
1 week future and the spot, while the 6 week future is noticeably
smoother than the other two. We use the Nordic Electricity Base
Month Forward contract as it is a nice compromise between the
1 week future and 6 week future and also in line with the results
in De Jong and Schneider [14].

Our model is a three state MRS (several studies have indicated
that three states are needed) where the logarithm of the electricity
spot price yn ¼ log sðtnÞð Þ is modeled as an autoregressive model
with heteroscedastic noise in the base regime (reverting to the
logarithm of the one-month ahead forward price adjusted for the
risk premium), while the spikes and drops are modeled as iid ran-
dom variables.

The mathematical formulation of our second generation
Independent Spike Model is given by

ynþ1 ¼
yn þ aðln � ynÞ þ ryc

nzn if Rnþ1 ¼ B

f n þ nS if Rnþ1 ¼ S

f n � nD if Rnþ1 ¼ D

8><
>: ð2Þ

where the mean reversion level ln ¼ g logðFnÞ is a factor compen-
sating for the risk premium g times the logarithm of the month
ahead forward, a and r are positive constants while nS and nD are
iid random variables having some distribution (typically Gaussian,
log-normal or Gamma), see Regland and Lindström [10] for details.
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Fig. 2. The spot price (left) and spread between the logarithm of the spot price an
We take the risk premium as constant, even though Weron and
Zator [22] indicates that it may be related to the levels in the water
reservoirs (a substantial part of the power traded at Nord Pool is
generated in hydro power plants). However, we believe that this
approximation is justified as the effect from misspecifying the mean
is small compared to misspecifying the variance when it comes the
regime classification which is the primary purpose of the model.

The switching between regimes is governed by a Markov chain
fRg having a transition matrix

P ¼
1� pBS � pBD pBS pBD

pSB 1� pSB 0
1� pDB 0 pDB

0
B@

1
CA ð3Þ

The model does not allow for transitions directly from spikes S to
drops B, as these transitions are very unlikely in the real world;
including them in the model would add complexity without any
real gains.

We extend the standard model by taking explanatory variables
into account, cf. Mount et al. [7], Huisman [8], Kanamura and
Ōhashi [20]. The transition matrix is then given by

PðZtÞ ¼
1� pBSðZtÞ � pBDðZtÞ pBSðZtÞ pBDðZtÞ

pSBðZtÞ 1� pSBðZtÞ 0
1� pDBðZtÞ 0 pDBðZtÞ

0
B@

1
CA ð4Þ

We parametrize the transition probabilities using a multinomial
logistic mapping, i.e. pBSðZtÞ being parametrized as

pBSðZtÞ ¼
exp bBS;0 þ bBS;1Zt

� �
1þ exp bBS;0 þ bBS;1Zt

� �
þ exp bBD;0 þ bBD;1Zt

� � ð5Þ

Multinomial logistic mappings are common in neutral networks,
see Hastie et al. [23], and certain regression problems, see
Madsen and Thyregod [24]. We also tried quadratic forms,
b�;0 þ b�;1Zt þ b�;2Z2

t or combinations of different explanatory vari-
able, but found little statistical support for these non-linearities,
see Noren [25]. They are therefore excluded from the remainder
of the paper.

Mount et al. [7] used the reserve margin as explanatory vari-
able, since they observed a clear dependence between the reserve
margin and the spike intensity on the PJM market. However, they
also note that the reserve margin may be inaccurately reported
or may not be available in the real time market. Another problem
is that the quality of the reserve margin is not accounted for; it is
easier to use hydro power than e.g. wind power when controlling
the power system. This could lead to a situation where the nominal
reserve margin is increased, while the controllable reserve margin
is decreased. Cartea et al. [26] also use the reserve margin when
studying the UK market and finds that it influences the probability
for spikes, but not in a monotonically increasing fashion, as would
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be expected. The lack of monotonicity indicates that other
variables may be better predictors. Huisman [8] proposed that
temperature could act as a proxy for the reserve margin while
Jónsson et al. [27] studied the impact of wind energy forecast
errors on the reserve margin. Escribano et al. [1] found that the
explanatory variables needed (e.g. load, hydro reservoir level, ratio
between load and generation capacity), depends on the market
structure.
3. Empirical study

Our study used daily electricity spot data from Nord Pool, from
January 1st 2006 to 30th June, 2013. All data was downloaded from
http://www.nordpoolspot.com/. The model is defined by Eqs. (2),
(4) and (5).
3.1. Fitting the model

The parameters in the model were fitted using the Expectation
Maximization (EM)-algorithm, cf. Dempster et al. [28], Regland and
Lindström [10], Janczura and Weron [29], Noren [25], testing sev-
eral two and three factor specification with Gaussian, log-normal
or Gamma distributed spike distributions. The EM-algorithm was
introduced in Dempster et al. [28] and computes the (often
intractable) Maximum Likelihood estimate by iterating between
the E-step and the M-step. The E-step consists of computing the
intermediate quantity

Qðh; h0Þ ¼ E log phðX;YÞjY; h0½ � ð6Þ

which can be done when the smoothing distribution of the latent
regimes has been computed. The M-step maximizes the intermedi-
ate quantity

ĥm ¼ arg maxQðh; ĥm�1Þ: ð7Þ

The M-step can often be derived in closed form when the latent
regime process is a time homogeneous Markov Chain. However, it
is somewhat more complicated to compute the parameter esti-
mates for a time in-homogeneous process, see Zucchini and
MacDonald [30] for a discussion.

The preferred time homogeneous model (measured using AIC or
BIC) for the Nord Pool market, cf. Janczura and Weron [9], Regland
and Lindstroöm [10] is a three regime model, with Gamma dis-
tributed spikes and drops. The extreme events (spikes, drops) on
the Nord Pool market are not as severe as they are on e.g. the
EEX market where the preferred spike distribution is found to be
log-normal (the large share of hydro seems to stabilize the system).
We also find, similar to Janczura and Weron [9], that there is not
support for assuming that the CEV parameter c is different from
Table 1
Exogenous data coefficients of three-state MRS models when applied to the Nord Pool mark
consumption (C), production (P), the reserve margin (RM) and wind power (W). Significant
test printed beneath in parentheses. The time series is evaluated from January 1st, 2006 u
available (October 1st, 2009–June 30th, 2013).

Var. bBS;0 bBS;1 bBD;0 bBD;1

C �27:84 28:14 6:53 �17:54
06-Q1 (0.000) (0.000) (0.000) (0.000

P �30:96 31:23 5:87 �16:75
06-Q1 (0.000) (0.000) (0.000) (0.000

RM �4:45 1:11 �4:30 0:08
06-Q1 (0.000) (0.059) (0.000) (0.853

W �4:58 1:66 �4:52 1:20
09-Q4 (0.000) (0.101) (0.000) (0.335
zero (i.e. using a Vasicek model) when a sufficiently flexible regime
switching model is used.

We found that the reserve margin does not work very well on
the Nord Pool market, and proceeded with estimated the model
using several other explanatory variables, generically denoted
fZtgt¼1:T (consumptions, production, the reserve margin and wind
power), see Noren [25] for details. The all explanatory variables
was scaled according to

eZt ¼
Zt

maxu21:T Zu
ð8Þ

as this makes it easier to interpret the estimates.
The log-likelihood (and hence AIC/BIC etc.) when using con-

sumption or production data is nearly identical (this is not surpris-
ing as the consumption and production are similar, the main
difference being imports/exports), both are clearly better than
the reserve margin, which in turn is slightly better than wind
power.

The estimates of the parameters in the transition matrix are
reported in Table 1 (these are the only relevant parameters for
the remainder of the paper). It can be seen that the most reliable
variable for predicting spikes or drops in the Nord Pool market
was the consumption, hereafter denoted fCtgt¼1:T , closely followed
by the production (these variables are very similar, the main differ-
ence is that the consumption includes information about imports
and exports). All b�;1 parameters are statistically different from zero
for the consumption model, meaning that the model is clearly an
improvement upon the time-homogeneous independent spikes
models. The estimates for using production data is similar, but
the bDB;1 is not statistically significant, even though the sign coin-
cides with that of the consumption based model. We will therefore
focus on the consumption based model.

There are no statistically significant b�;1 parameters when the
reserve margin is used as explanatory variable (meaning that it is
questionable whether it is any better than a time homogeneous
model), and wind power is only marginal better, the only sig-
nificant variable being bSB;1, which indicates that additional wind
power increases the probability of leaving the spike regime. This
is plausible as more power being produced would reduce the risk
for a power shortage.

It can be seen in Table 1 that the probability of going from the
base regime to the spike regime is small when the consumption is
low, while the probability is clearly different from zero (as
bBS;1 > bBS;0) when the consumption is large. Similarly, going from
the spike regime to the base regime is unlikely when consumption
is high, while relatively likely when the consumption is low.

The fit of the model is presented in Fig. 3, presenting the spread
defined as logðSpotÞ � logðForwardÞ (top panel), classification of the
regimes (the classification is computed as (E½Xt jYT � ¼ 1 � ptjTðSpikeÞ
et using Vasicek dynamics together with gamma spikes for daily day-ahead prices for
coefficients are emphasized in bold with corresponding p-values for a standard Wald
ntil June 30th, 2013, except for the wind power where only a subset of the data was

bSB;0 bSB;1 bDB;0 bDB;1

13:27 �16:34 �6:02 7:71
) (0.020) (0.013) (0.002) (0.013)

29:80 �33:61 �4:31 4:42
) (0.019) (0.018) (0.036) (0.177)

�1:79 0:45 �1:63 �1:48
) (0.000) (0.474) (0.000) (0.089)

�3:96 5:37 �0:48 �4:43
) (0.000) (0.003) (0.298) (0.079)

http://www.nordpoolspot.com/
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Fig. 3. Log spread with identified spikes (red dots) and drops (blue dots) in the top panel, corresponding classification of the regimes (second panel), the scaled consumption
process (middle panel) and the estimated regime transition probabilities for going from the base regime to any of the spike regimes (second last panel) and the probability of
going from any of the spikes to the base regime (last panel). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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þ0 � ptjTðBaseÞ þ ð�1Þ � ptjTðDropÞ), the consumption process and the
estimated transition probabilities. The difference between the clas-
sification by this model, and a homogeneous model where the
spikes are expected to arrive uniformly in time is striking!.
4. Simulation study

In this section we shall illustrate how the proposed modeling
framework can be used to study the effect of the power
consumption on the unconditional probabilities for price spikes
and drops. We will studied four very simple scenarios; eliminating
low consumption, eliminating high consumption, eliminating both
or simulating additional renewables by adding variability. The four
different scenarios are selected such that they illustrate important
main characteristics of a future electric energy system. The
scenarios are inspired by the various realizations of a future energy
system with a large share of wind power described in Meibom
et al. [11].

The assumed consumption strategies may be overly simplistic.
However, a description of an energy system which in a proper
way describes future interactions between eg. power and district
heating systems and markets will readily become complicated
and questionable. The risk by using this approach is that the focus
will be on the assumptions behind these scenarios and the mathe-
matical formulation of more realistic future consumption profiles.
Consequently the simplicity is justified by the fact that the
scenarios in this paper are used mainly for illustrating the pro-
posed statistical modeling framework. More advanced strategies
can easily be evaluated within the same modeling framework.

Even given the overly simplistic assumptions, we believe that
the setup and the scenarios give an indication of how the price
spike and drop probabilities are influenced when managing the
consumption by adding storage solutions. In a similar simplistic
setting we aim at studying the consequences of adding more fluc-
tuating renewables, like wind and solar power, on the uncondition-
al price spike and drop probabilities.
A review of physical energy storage technologies for wind pow-
er integration support is given in Zhao et al. [31]. The physical
energy storage solutions considered are pumped hydro, com-
pressed air, flywheel, superconducting magnetic systems, and a list
of battery systems. The paper provides also a review of related
operational and control strategies for wind power integration. In
Ibrahim et al. [32] the main characteristics of the different
electricity storage techniques and their field of application (long-
or short-term storage, permanent or portable, maximum power
required, etc.) are described.

However, it is clear that intelligent and IT-based methods for
demand side management in combination with energy systems
integration (power, gas, thermal, biomass) provide very efficient
virtual storage solutions, see e.g. Meibom et al. [11] and Corradi
et al. [5]. The later also describes methods for price based demand
side management or control of the power consumption using the
thermal mass of buildings. The simple concepts of a superb battery
used in this paper can be considered as a simplistic approach for
describing physical or virtual storage solutions in an ideal setting.

Methods for implementing consumption control and optimiza-
tion strategies for demand side management are discussed in
Meibom et al. [11] and Morales Gonzále [33]. A comprehensive
overview in a general setting is presented in Siano [12].

In the simplistic approach taken in the following we shall, how-
ever, use the concept of a superb battery which without any cost
and any restrictions on the amount and rate can store large
amounts of energy.

The parameter estimation routine using in Section 3 provides an
estimate of the states for each day in our sample, fptgt¼1:T . The
unconditional probability for being in a specific state is therefore
computed as the sample mean over time

p̂ ¼ 1
T

XT

t¼1

pt ; ð9Þ

where the vector pt is computed as

pt ¼ pt�1PðZtÞ: ð10Þ
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Table 3
Unconditional regime probabilities when shaving the largest consumption, with 0%,
5%, 10%, 15% and 20 % of the total system capacity.

Battery capacity (%) 0 5 10 15 20

Base prob. 0.8794 0.8806 0.8902 0.9016 0.9072
Spike prob. 0.0304 0.0292 0.0196 0.0081 0.0025
Drop prob. 0.0902 0.0902 0.0902 0.0902 0.0904
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The same technique is used for our four scenarios, replacing the
historical consumption with the corresponding modified con-
sumption process. The sample mean is a consistent estimate of
the unconditional probability vector as the any of the consumption
processes and hence the regime probabilities are stationary and
ergodic. The impact of the initial condition on the computation
of the unconditional probabilities is negligible, as the Markov chain
is mixing well.

4.1. Scenario: Increasing the minimum consumption

It is possible to increase the minimum electricity consumption
by installing additional district heating, by converting electricity
into e.g. gas through electrolysis, by charging electrical cars or by
running additional cooling (such as smart refrigerators). We model
this mathematically by imagining a superb battery that can charge
large amounts of energy instantaneously without any cost. The
modified consumption is then defined as

eC Floor
t ¼max min

u21:T
ðeC uÞ þ Battery; eCt

� �
: ð11Þ

The resulting consumption process, with a battery with capacity
that corresponds the 10% of the total system consumption, is pre-
sented in Fig. 4.

The unconditional probabilities for some different size of the
batteries are analyzed in Table 2, where it can be seen that this
strategy reduces the unconditional drop probability (from 9% down
to 2% when the battery is 20%) while leaving the spike probability
unchanged for all practical purposes.

4.2. Scenario: Reducing the top consumption

Another scenario that we study is the effect limiting top
demand. This can e.g. be achieved by adding reserve gas power
plants to the grid, by modernizing (e.g. smart grids) the control
and market design of the power system and combinations thereof,
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Fig. 4. Modified consumption when a lower boundary (here 10%) is introduced.

Table 2
Unconditional regime probabilities when increasing the lowest consumption by 0%,
5%, 10%, 15% and 20 % of the total system capacity.

Battery capacity (%) 0 5 10 15 20

Base prob. 0.8794 0.8815 0.8958 0.9239 0.9485
Spike prob. 0.0304 0.0304 0.0304 0.0304 0.0304
Drop prob. 0.0902 0.0881 0.0738 0.0458 0.0211
see Siano [12]. We have modeled this by shaving the electricity
consumption using a perfect battery that will discharge instanta-
neously whenever the consumption is above some threshold.
Hence, the modified consumption process is then be given by

eCCap
t ¼min max

u21:T
ðeC uÞ � Battery; eCt

� �
: ð12Þ

The modified consumption process is graphically presented in
Fig. 5.

The implications on spike and drop probabilities are analyzed in
Table 3. It can be seen capping the consumption reduces spike
probabilities (from 3% down to a 1/4% when the battery is 20%),
but does hardly influence the drop probabilities.
4.3. Scenario: Perfect battery

A perfect battery would be able to absorb or deliver energy
instantaneously. Here we disregard any technical and economical
limitations that current batteries suffers from in order to analyze
what can be achieved in an idealized world. Our simplified model
replaces the historical consumption with the modified consump-

tion eCt defined as

eCBat
t ¼max min

u21:T
ðeCuÞ þ Battery;min max

u21:T
ðeCuÞ � Battery; eCt

� �� �
:

ð13Þ

This is graphically presented in Fig. 6, where a battery of at most
10% of the total market capacity is used. All peaks and troughs are
eliminated.

The resulting unconditional regime probabilities are presented
in Table 4. It can be seen that adding a perfect battery reduces both
spikes and drops, but there are few other gains compared to what
was achieved in the other scenarios presented in Sections 4.1 and
4.2. However, we acknowledge that real world batteries often are
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Fig. 6. Original and modified consumption with the perfect battery 10% capacity.

Table 4
Unconditional regime probabilities when having a perfect battery with 0%, 5%, 10%,
15% and 20 % of the total system capacity.

Battery capacity (%) 0 5 10 15 20

Base prob. 0.8794 0.8827 0.9066 0.9461 0.9763
Spike prob. 0.0304 0.0292 0.0196 0.0081 0.0025
Drop prob. 0.0902 0.0881 0.0738 0.0458 0.0213
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Fig. 7. Modified consumption when adding Uð�10%;10%Þ iid noise.

Table 5
Unconditional regime probabilities when adding iid uniform random noise Uð�a; aÞ to
the historical consumption process with a ¼ 0%, 5%, 10%, 15% and 20% of the total
system capacity. The second row (numbers in parentages) are estimated standard
deviations computed over 1000 replications.

a (%) 0 5 10 15 20

Base prob. 0.8794 0.8696 0.8421 0.8013 0.7524
(0.0000) (0.0014) (0.0027) (0.0039) (0.0049)

Spike prob. 0.0304 0.0349 0.0460 0.0624 0.0829
(0.0000) (0.0009) (0.0016) (0.0023) (0.0030)

Drop prob. 0.0902 0.0958 0.1121 0.1360 0.1636
(0.0000) (0.0011) (0.0021) (0.0031) (0.0039)
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used for smoothing steep ramps in consumption, something we are
not modeling in this paper.
4.4. Scenario: Additional renewables

Production of renewables is less predicable than more tradi-
tional sources of energy. We will model additional renewables
being integrated into the power system (replacing the more
dependable, traditional sources) as negative consumption, here
as random noise. We simplify this scenario as much as possible
for two reasons: transparency, and due to the fact the variations
in weather typically operates on an daily scale. Hence, or modified
consumption is given by

eC Renew
t ¼ Ct þ �t; �t 2 Uð�a; aÞ ð14Þ

Generalizing this to dependent noise would be straightforward,
but it would not be clear whether it is the noise per se, or the
dependence that is the main driver behind the findings. A realiza-
tion of the noisy consumption process is given in Fig. 7. The process
is similar to the original consumption process, but it can be seen
that the new modified consumption sometimes exceeds 1, mean-
ing that we are likely to see more extreme events.

The estimate of unconditional probabilities varies between dif-
ferent simulations, as the sequence of noise f�tðxÞgt¼1:T results in
slightly different estimates, cf. Eqs. (9) and (10) for different
simulations. We report the means and standard deviations across
1000 independent estimates for different levels of noise parame-
trized by the parameter a in Table 5.

It can be seen that the electricity spot price is expected to
become much more volatile (the unconditional probability for base
regime decreases from 88% down to 75% when the noise is 20%),
due to an increase in both spikes and drops. The can equivalently
be expressed as the probability of experiencing spikes or drops
increased from 12% (roughly one day out of eight) to 25% (which
roughly means one day out of four days). Even more concerning
is that the increase is primarily (at least in relative terms) in the
probability for spikes, indicating that there will be shortage of
power more often.

5. Conclusion

We fit an extended Independent Spike Model to Nord Pool spot
price data, testing several explanatory variables to improve the
forecast of spike and drop intensity. Spikes are often due to lack
of capacity in the power system while drops are due to surplus
capacity, both events indicating that the power system is not oper-
ating optimally. We found, after considering several variables, that
the consumption can improve forecasts in all directions (going to
and from spikes or drops), resulting in a model that is significantly
better (in a statistical sense) than the corresponding time-homoge-
neous model in describing the extreme dynamics in the Nord Pool
electricity spot market.

The estimated model is used to analyse the effects when
modifying the consumption. It is shown that the spike and/or drop
intensity can be reduced substantially if additional production
capacity or storage is added. Furthermore, we find that it is possi-
ble reduce the probability for spikes without influencing the prob-
ability for drops and vice versa. This means that a strategy that
caps consumption has very little effect on drops and vice versa
which is reasonable as it would be unlikely to face too much and
too little power at the same time. We also observe that there are
no noticeable gains from using a perfect battery, compared to sepa-
rate strategies related to energy system integration for dealing
with very high or very low electricity consumption. We interpret
this results as an indication that modern energy system integration
techniques may be an attractive solution for solving future power
system problems.
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The statistical results also indicate, when extrapolating from
the model, that the electricity spot price is going to become much
more volatile (power shortage will be more frequent) as more and
more renewable energy is being integrated into the power system,
meaning that modern energy system integration is necessary as
the scenario of not integrating additional renewables is unaccept-
able for many reasons.
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