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1 Introduction

Supermarket refrigeration systems consists of a number of display cases, cooling
cabinets and cold rooms connected to a central compressor pack. This configuration
saves energy compared to placing a compressor at each cooling site.

The classical control setup of a supermarket refrigeration system is highly distributed.
The cooling sites are equipped with an individual hysteresis controller that keeps the
air temperature in the cooling site within a defined band by manipulating the opening
degree of an inlet valve. The compressor bank maintains a desired suction pressure
by adjusting the capacity to the given load from the cooling sites. An illustration of the
principle is shown in figure 1. This design is flexible and simple, but its major drawback
is however that it introduces self-inflicted disturbances and the dynamic coupling of
the display cases makes them synchronize. Synchronization results in low efficiency
and high wear of the compressor, because the compressor has to work much harder for
short periods of time. The problem increases when the load is small compared to the
available compressor capacity, which it is in the winter time, at night and when only a
few cooling sites are present in the supermarket.

Figure 1: Classical control setup of a small refrigeration system.

The first approach to solve this problem is to design an overall control system which
coordinates the compressor capacity and the current refrigeration load. The drawback
of this approach is the complexity of the single controller. The solution is investigated in
the first part of the report. A second solution is investigated where only the compressor
control is considered. This controller try to feed-forward the measured disturbances,
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i.e. opening and closing of the cooling site AKV’s. Last a performance analysis of the
refrigeration system is performed.

2



Part I

Compressor and Cooling Site Control

The idea that motivates this part of the project is to design an overall control system that
coordinates the compressor capacity with the refrigeration load. This will be done by
coordinating when the display cases, cooling rooms etc. are requesting refrigeration
from the compressor pack. The time constants of each cooling site then become
important, since the cooling can only be pulled for a curtain amount of time. Otherwise
food safety will get compromised.
The supervision system will be based on a Model Predictive Controller (MPC), which
has been used with success in many industrial applications. The advantage of this
controller is that it handles the dynamic couplings in the system, the constraints of the
system explicitly and allows a systematic control design. The normal MPC framework
(Maciejowski, 2002) is used, but has to be extended to scope with the discrete-valued
integer inputs. The trivial quadratic program therefore turns into a Mixed Integer
Quadratic Program (MIQP), which is considerable more difficult/complex to solve.
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2 Modeling

In a supermarket a lot of goods have to be refrigerated to ensure a proper food quality.
The required storage temperature of the goods varies, as some has to be deep frozen,
some kept just above the freezing point and others should only be chilled. No matter
the temperature these goods are always placed in display cases, cold rooms or cooling
cabinets (in one referred to as cooling sites). A simplified refrigeration system is shown
in figure 2. Normally the cooling sites are supplied with refrigerant in parallel from a
common central compressor rack. The compressors supply refrigerant by compressing
refrigerant from the low pressure side (i.e. suction manifold) to the high pressure side
(i.e. gas cooler). On the high pressure side the refrigerant is cooled by a gas cooler. In
this process energy is released in the form of heat. The evaporators inside the different
cooling sites are fed with refrigerant from the high pressure side. Refrigerant is lead
through an expansion valve and hereafter it turns into gas while absorbing heat/energy.
Air from the ”hot site” of the cooling sites is then blown through the cold evaporator,
which cools the air, and guided back into the cooling site. As the air is colder or at the
same temperature as the goods, these are kept cooled at the same temperature as the air.
The refrigerant gas is lead to the suction manifold and compressed again. The transport
cycle of heat is thus completed and thus the cooling cycle is completed.

Figure 2: Illustration of the modeled (simple) refrigeration system
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In reality the system is more advanced, since a bypass-valve is installed to remove flash
gas from the refrigerant and the freezers are separated from the fridges. The model used
in this project will not describe these parts directly.
A mathematical model is needed in order to design and validate the later control system.
For this purpose a nonlinear model was developed. The model is highly inspired by
the work of (Larsen, 2005), which model the refrigeration system with emphasis on
modeling the cooling sites (display cases) and compressors. The gas cooler is modeled
by a fixed pressure, since it has minor effect on the control systems. The model is based
on the refrigerant, R744, CO2.

2.1 The Cooling Sites

The cooling sites are all modeled as display cases, since in reality all cooling sites are
very similar in construction. Thus they are modeled by the same set of differential
equations. The model is derived by setting up energy balances for the goods, the
evaporator wall and the air curtain. A mass-balance is set up for the mass of liquid
refrigerant in the evaporator. This gives 4 states; Tair, Twall, Tgoods and Mre f . The heat
transfer between the first three states are given by

dTgoods

dt
= −

Q̇goodsair

MgoodsCpgoods
(2.1)

dTwall
dt

=
Q̇airwall − Q̇e + Q̇ f an

MwallCpwall
(2.2)

dTair

dt
=

Q̇goodsair + Q̇load − Q̇airwall

MairCpair
(2.3)

where the energy flows are

Q̇goodsair = UAgoodsair(Tgoods − Tair) (2.4)

Q̇airwall = UAairwall(Tair − Twall) (2.5)

Q̇e = UAwallre f (Twall − Te) (2.6)

Q̇load = UAairload(Tindoor − Tair) (2.7)

UA is the heat transfer coefficient with the subscript denoting the media which it
insulate. M is the mass and Cp is the heat capacity of the media. Tindoor is the indoor
temperature of the supermarket and Te is the evaporation temperature of the refrigerant.
UAwallre f is a function of ṁre f , which means that the more refrigerant there is in the
evaporator the better the evaporator cools the air entering the evaporator. It is assumed
that the relation is linear and described by

UAwallre f = UAwallre f ,max
Mre f

Mre f ,max
(2.8)
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The holdup of liquid refrigerant is described by the mass balance below

dMre f

dt
= ṁre f ,in − ṁre f ,out (2.9)

The mass flow of refrigerant into the evaporator is determined by the opening degree
of the expansion valve. The orifice equation determines this flow given the pressures,
Psuc and Pgc, the density of the liquid, ρsuc, and a constant characterizing the valve, KvA.
The equation is

ṁre f ,OD = OD · KvA ·
√

2ρsuc(Prec − Psuc)105 (2.10)

The opening degree, OD, is a value between 0 and 100% where 0 is completely closed
and 100% is completely open. The pressure difference across the valve is given by the
receiver pressure minus the suction pressure, since no pressure drop is assumed in the
suction and high pressure lines and evaporator. The evaporator has a maximum holdup
and when it is filled a local (superheat) controller will automatically reduce the inlet of
refrigerant. The inlet mass flow is therefore bounded by the relation

ṁre f ,in = min(ṁre f ,out, ṁre f ,OD) if Mre f ≥ Mre f ,max (2.11)

The refrigerant has to leave the evaporator and flows to the suction manifold. The
leaving mass flow is given by

ṁre f ,out =

 0 if Mre f ≤ 0
Q̇e

∆hlg
if Mre f > 0

(2.12)

Naturally there can only be an out-flow of mass when the holdup of mass in the
evaporator is greater than zero. When the holdup is positive the refrigerant boils off
with a constant rate Q̇e

∆hlg
, where Q̇e is the flow of energy supplied to the refrigerant and

∆hlg is the specific latent heat of the refrigerant in the evaporator, which is a function of
the suction pressure only.

The display cases are fitted with a number of temperature sensors, but only one air
and one evaporator temperature will be considered here. At Danfoss these sensors are
refereed to as S3 and S4. The temperature of the goods cannot be measured directly.
Therefore the air temperature is used as an indirect measure of the food temperature
and thus the air temperature is restricted to lie within narrow bands.

The complexity of the model should be reduced, because the heat capacity of the air is
close to zero. Setting the heat capacity equal to zero in (2.3) reduce the air temperature
to

Tair =
UAgoodsairTgoods + UAairloadTindoor + UAairwallTwall

UAgoodsair + UAairload + UAairwall
(2.13)
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Further the holdup of mass must be reduced because of the difficulties in detecting the
mass holdup and very fast dynamics. The energy transfer is therefore described by

Q̇e = ∆hlgṁre f ,in (2.14)

Using these expressions makes the system ”less stiff” and provide better simulation ac-
curacy and makes the problem less computational expensive. Note that the expression
is a simple approximation to the true energy transfer. The transfer is therefore likely to
be overestimated by up to 30%.

2.2 The Suction Manifold

The dynamics of the suction manifold are modeled by only one state, describing the
dynamics of the suction pressure, Psuc. Setting up the mass balance for the manifold
gives

dMsuc

dt
= ṁin,suc + ṁdist − V̇compρsuc (2.15)

where ṁin,suc = ∑N
i ṁre f ,out,i with N equal to the number of display cases. The

compressor that drives the freezers does also contribute to an increase of mass directly.
This contribution is modeled together with the disturbance mass flow.
Rewriting the derivative term as follows

dMsuc

dt
= Vsuc

dρsuc

dt
= Vsuc

dρsuc

dPsuc

dPsuc

dt
(2.16)

the expression in 2.15 can be reformulated as

dPsuc

dt
=

ṁin,suc + ṁdist − V̇compρsuc

Vsuc
dρsuc
dPsuc

(2.17)

Vsuc is the volume of the suction manifold and ṁdist is a disturbance mass flow which
can originate from the bypass valve, un-modeled display cases and freezers. ρsuc is the
density of the of the refrigerant in the suction manifold.

2.3 The Fridge Compressors

The fridge refrigeration systems in small supermarkets are often fitted with a compres-
sor rack where the capacity is discrete valued. This is due to the simple and cheap
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structure where a small number of compressors can only be turned on or off. In slightly
larger supermarkets the smallest compressor in the rack is fitted with a frequency
converter, making it possible to continuously adjust some of the capacity. The present
Fakta Otterup is fitted with a frequency converter and it has therefore been assumed,
with great precision, that the requested equals the delivered capacity.
The volume flow is given by

V̇comp =
cap
100
· ηvol ·Vsl (2.18)

where cap is the running capacity from 0 to 100%, ηvol is the constant volumetric
efficiency and Vsl is the maximal displacement volume. Most of the power consumption
originates from the compressor pack. It is therefore of great interest to reduce the power
consumption in exactly this part of the refrigeration system. For simplicity we will focus
only on the power consumption from the fridge compressors, which is also the largest
contributor. The compressor power consumption is given by

Ẇcomp =
1

ηis
V̇compρsuc(hc,out − hc,in) (2.19)

where ηis is the isentropic efficiency and ρsuc is the density of the refrigerant. V̇comp
is the volume flow through the compressor. hc,in and hc,out are the enthalpy of the
refrigerant in and out of the compressor. The enthalpies are found by the software
package ”RefEqns”.

2.4 Refrigerant

Different refrigerants can be used in supermarkets, depending on the temperatures of
the outdoor cooling air and legal restrictions. The refrigerant used in this particular
case is R744, i.e. CO2. The refrigerant properties are nonlinear and computed by a
free software package ”RefEqns” (Skovrup, 2003). The software is available to many
languages (including Matlab).
The properties used for this model is given by the function calls below

1 Te = TBubP(Psuc);
2 rho suc = 1/VTP(Te+Tsh,Psuc);
3 dRhodP = (1/VTP(Te+Tsh,Psuc+0.05)−1/VTP(Te+Tsh,Psuc−0.05))/(2*0.05);
4 hcin = HTP(Te+Tsh,Psuc);
5 hcout = HTP(Tgc,Pgc);
6 dhlg = RT(Te+273.15);

The package, RefEqns, has to be initialized by the commands below
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1 SetRNumber('R744');
2 SetPressureUnit(2); %Pressure in [bar] [Pa','kPa','Bar','psia']
3 SetTemperatureUnit(1); %Temperature in [°C] ['K','°C','°F','R']

2.5 Model in- and Outputs

From outside the model can be interpreted as a box consisting of manipulated inputs,
measured outputs, controlled outputs and disturbances. To summarize they are listed
below

u =


cap

OD1

OD..

ODN

 d =


ṁdist

UAairload,1

UAairload,..

UAairload,N

 y =



Psuc

ṁin,suc

Tair,1

Twall,1

Tair,..

Twall,..

Tair,N

Twall,N


z =


Psuc

Tair,1

Tair,..

Tair,N

 (2.20)

Where N is the number of cooling sites. The measurement, ṁin,suc, could be omitted
while still keeping the system observable. The measurement serves to ease the later
parameter identification problem.
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3 Parameter Estimation

The non-linear model stated in section 2 is a so-called gray-box model where theoretical
knowledge about the system has to be combined with information from measurements
performed on the true system . This insure a good model quality. Two important
advantages of using this approach, compared to using stochastic black-box models, are
the flexibility and physicality.

The initial model has been formulated from mass and energy balances and the list of
unknown parameters are

Suction Manifold Cooling Site(s)

Vsuc, Tsh, ηvol, ηis, Tindoor UAairwall, Cpwall, Mwall, Q̇ f an, Prec

Vsl, Prec, Pgc, Tgc and ṁdist UAgoodsair, Cpgoods, Mgoods, UAairload and KvA

The parameters associated with the cooling sites are individual for each cooling site.

It has not been possible to estimate all the unknown parameters in the model, due to
the fact that the parameters are linearly dependent seen from the model outputs. The
parameters below are therefore manually defined.

Manually defined parameters

Suction Manifold

Tsh = 11, Vsl = 6.5 · 70/50 + 12.0, Prec = 38, Pgc = 50, Tgc = 70,

Tindoor = 26, ηis = 0.6 and Vsuc = 2

Cooling Site(s)

Cpwall = 385 and Cpgoods = 1000

This leaves the set of parameters below which has to be estimated

Estimated parameters

Suction Manifold

ηvol and ṁdist

Cooling Site(s)

Mwall, UAairwall, Mgoods, UAgoodsair, UAairload, Q̇ f an and KvA
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The estimation of these parameters has been performed by an off-line method. The
advantage of the off-line method (against an on-line method) is its robustness and
ability to estimate more parameters. The down side is that it can naturally only
be performed off-line and time dependence in the parameters will not be described.
It is known that the cooling sites are isolated better at night than at day time and
only the day time is estimated here. Beside the isolation parameters, UAairload, the
parameters estimated here should be time independent and an on-line adaptation is
deemed unnecessary.

The parameter estimation has been formulated as an optimization problem. The stan-
dard cost function is used where the sum of squared errors between the experimental
data and simulated response are penalized. This type of optimization is not guaranteed
to be convex and many local minimizers are likely. One has to be careful not to find one
of these.
The method is called prediction-error minimization method (Ljung, 1999) (PEM) and
the dynamic system is described by the set of ordinary differential equations (or ODEs)
from section 2. In short the grey-box model can be written

ẋ(t) = f (x(t), u(t), θ) (3.1)
ŷ(tk) = g(x(tk), u(tk), θ) + v(t) (3.2)

The optimization problem is

ε(tk, θ) = y(tk)− ŷ(tk, θ) (3.3)

VN(θ) =
1
N

N

∑
tk=1

1
2

ε(tk, θ)εT(tk, θ) (3.4)

θ̂N = arg min VN(θ)
θ∈Dm

(3.5)

where y(tk) and ŷ(tk, θ) is the measured and estimated output at time tk. ε is the
estimation error (residual) and VN is the value of the cost function. There exists lots
of implementations of this algorithm and Matlab of cause also has a build in PEM
algorithm. A wrapper for the nonlinear estimation problem is made and the algorithm
returns both the estimated parameters and the standard deviation of the estimate.

The estimated parameters are
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Suc. Manifold ηvol = 0.916

POS 40A UAairload = 11.5, Mwall = 172.1, Mgoods = 574.1, UAgoodsair = 222.9,

UAairwall = 128.2, Q̇ f an = 481.7 and KvA = 0.76 · 10−6

POS 40B UAairload = 14.4, Mwall = 296.8, Mgoods = 349.4, UAgoodsair = 477.9,

UAairwall = 193.9, Q̇ f an = 639.6 and KvA = 1.19 · 10−6

POS 40C UAairload = 46.1, Mwall = 387.4, Mgoods = 3794.2, UAgoodsair = 288.2,

UAairwall = 272.5, Q̇ f an = 881.7 and KvA = 1.47 · 10−6

POS 30 UAairload = 37.3, Mwall = 178.9, Mgoods = 1416.5, UAgoodsair = 440.1,

UAairwall = 169.1, Q̇ f an = 0.0 and KvA = 0.97 · 10−6

POS 30B UAairload = 20.1, Mwall = 87.4, Mgoods = 439.7, UAgoodsair = 983.3,

UAairwall = 197.1, Q̇ f an = 8.03 and KvA = 1.44 · 10−6

POS 45 UAairload = 11.1, Mwall = 234.2, Mgoods = 368.5, UAgoodsair = 210.7,

UAairwall = 188.4, Q̇ f an = 779.7 and KvA = 0.82 · 10−6

POS 50 UAairload = 12.6, Mwall = 244.9, Mgoods = 449.9, UAgoodsair = 127.6,

UAairwall = 145.3, Q̇ f an = 20.4 and KvA = 0.89 · 10−6

The set of parameters for the cooling sites are individual and the total number of
estimated parameters are therefore, 7n + 1 = 50, where n is the total number of display
cases.

The estimated output is validated against the observed outputs in figure 3 and 4. The
first comparison, figure 3, is based on training data. Next the comparison is made for
the test data. The comparison is made using simulation, without feedback from the
data. This means that the 1-step predictor used in the Kalman filter will be even better
than achieved here. The two figures show that the model fits very accurately. The open
display cases have a tendency to have a slightly worse fit than the others, but in general
the fit is of very high quality. The fit can get improved by modeling the delay from the
air temperature sensors originating from the physical delay of moving the air around
the display case. An improvement can also be found by describing the opening and
closing of the door in the cold room. The bad fit of the suction pressure is due to fast
un-described transients and the bad excitation.
The model is deemed satisfactory for our control purpose.
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Figure 3: Validation of the gray-box fit quality using training data. A somewhat good estimate is
expected and achieved. The fast transients of the suction pressure are not captured.
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Figure 4: Validation of the gray-box fit quality using test data. The quality of the fit is high and the
model is deemed use-able for control.
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4 Linear Model

When designing a linear controller, whether it might be an MPC or PI-controller, a linear
model of the controlled system is advantageous to base the design upon. There are
several ways to identify a linear model. In this section a numerical and stochastic black-
box method will be considered.

4.1 Numerical Linearization

First the linear model is formed by the first order terms in the Taylor expansion of the
system equations. If the point of linearization is at a steady-state of operation the linear
model can in short be written

ẋ =Ax + Bu + Ed + σx (4.1a)
y =Cyx + Du + Fyd + σy (4.1b)
z =Czx + Fzd + σz (4.1c)

The linear system is in continuous time and time invariant. The matrices A, B, D, E, Fy,
Fz, Cy and Cz are most easily found by a numerical finite difference approximation. The
constants, σx,y,z, are given by

σx = −Ax− Bu− Ed , σy = y−Cyx−Du− Fyd , σz = z−Czx− Fzd (4.2)

where the underline indicate a value at steady-state and point of linearization.

The linear model provides the possibility to study how the system behaves by looking at
the eigenmodes. These tell about speed of convergence, damping and simply whether
the system is stable. The system considered here consists of 15 states, which gives the
same number of eigenvalues. From these it was simply found that the system consists
of only real stable poles. Their time constants range from 190 to 98,190 seconds, which
is a large span and indicate that the system can be difficult to handle by one controller.

4.2 Discrete model

The system is described in continuous-time, but the state estimation and controller are
implemented in digital electronics using zero-order-hold. This requires a transforma-
tion from continuous to discrete time dynamics. For a system with piecewise constant
input and with sampling time Ts, the state at time k + Ts is given by

∆xk+1 = eATs ∆xk +
∫ Ts

0
eAτBdτ∆uk +

∫ Ts

0
eAτEdτ∆dk
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which is converted into a linear difference equation

xk+1 = Axk + Buk + Edk + σk,x

σk,x = −Axk − Buk − Edk

where A, B and E are computed by the matrix exponential shown in the expression
below (Jørgensen, 2004). [

A BE
0 I

]
= exp

([
A BE
0 0

]
Ts

)

with BE equal to [B E]. The future notation will not distinguish between continuous
and discrete time system matrices, so the reader has to figure it out from the context i.e.
subscript of x.

The system output matrices are not changed and are

yk = Cyxk + Duk + Fydk + σk,y

zk = Czxk + Fzdk + σk,z

σk,y = y
k
−Cyxk −Duk − Fydk σk,z = zk −Czxk − Fzdk

The choice of sampling period, Ts, is found by trial and error. As a first step to determine
the sample period a set of empirical rules have been used given by (Hendricks et al.,
2008, p. 545):

Ts <
τd
10

=
400 sec

10
= 40 sec Ts <

τs

10
=

100 sec
10

= 10 sec

where τd and τs is the dominant time constant of the process and the closed loop settling
time respectively. The trial and error method revealed that the fast dynamics and short
settling time made it necessary to use a sample period of Ts = 20 sec.

4.3 Black-Box model by PEM

PEM is a method for estimating model parameters using an iterative prediction-error
minimization method. This method can also be used to estimate a black-box model
from measurements. The state-space will have the form

xk+1 = Axk + Buk + Kek

yk = Cxk + Duk + ek
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This model is slightly different from the earlier state-space model, since the input and
output noise are correlated. Correlated noise has to be handled by both the Kalman
filter and the optimal controller (Jørgensen et al., 2011). Through this project only non-
correlated noise has been considered and the term K is forced to zero in the estimation
procedure. Further the system has a different sample time of 1 min.
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Figure 5: Validation of fit performed on a separate test data set. The system is not persistently
excited and the estimate can therefore not be used.

As seen, in figure 5, the fit is not good compared to the gray-box estimate. The problem
is, that for instance the first three cooling sites are strongly correlated in their response
due to a not persistently excited system. Generally this is a problem in the data and the
model cannot be estimated correctly. The model can therefore not be used.
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5 On-line (load) estimation

The display cases, cold rooms and cooling cabinets in the supermarket are subject
to a load disturbance. The sum of all the loads determines the total load which the
compressor rack has to remove from the cooling sites in the supermarket. It is therefore
obviously of large interest to reduce the load on each cooling site to reduce the total
load and thereby the total power consumption. The load on each cooling site originates
from a number of individual factors. A number of these are listed below

• Loss of energy through the insulation of the cooling sites

• The new goods are put into the cooling site without the proper temperature

• Customer and employee activity

• Temperature and humidity of the supermarket

• Temperature set-point in the cooling site

• Heat from evaporator fan

• Heat from the lights in the shop

• Defrost action

• Air infiltration from the shop

Some of the disturbances are time depended and will therefore vary over the day. This
means that the total load is also time depended which could be utilized by a predictive
controller. If the capacity of the compressor rack is limited, as it is on very hot summer
days, or if time varying power prices are introduced, the MPC could cool more at night
and/or cool when power is cheap without compromising food quality.
The task is to estimate the cooling load as a disturbance (and state of the system). The
idea is then, that the owner of the supermarket will be supplied with information about
the power consumption of each cooling site, and with that be able to take action in order
to reduce the power consumption. In some situations it could be to replace the worst
performing cooling site(s) with new more energy efficient ones.

The just estimated model will be used to determine the current refrigeration load of
each cooling site. The estimation can be carried out by for instance a linear or nonlinear
Kalman filter. The advantage of the linear filter is its simplicity and robustness while
the nonlinear filter gives a better estimate sacrificing simplicity and introduces a larger
computational burden. Both filters will be investigated.
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5.1 Linear Kalman filter

In order to determine the load (and use full state feedback in a controller) an estimator
has to be designed. The estimator is essential since it is not possible and/or desirable to
measure the load (nor all the states of the system). The task is therefore to estimate the
states and disturbances from the available measurements and system inputs. As both
measurements and system in general are influenced by noise, the estimation task is to
find an estimate which is optimal in some sense. A Kalman filter is optimal in the sense
that it minimizes the expected mean-square estimation/prediction error and finds the
mean value of the state.

The linear Kalman filter assumes that the observed system is linear and the noise
process which corrupts the measurements and system is zero-mean Gaussian random
sequences. For non-Gaussian noise and nonlinear systems, the Kalman filter is no
longer optimal.

5.1.1 Offset-free estimation

The disturbance estimation is handled by introducing a number of integrators in the
model description. In the same way as offset-free control is achieved by introducing
integrators in the control loop. Using the same integrators for both purposes make it
possible to use the estimator as both a state and disturbance estimator. The system can
be controlled offset-free since the number of controlled variables is smaller than the
number of inputs and measurements. Further the controlled variables are independent.

The disturbances (and load disturbances) are modeled as either constant input or
output-disturbances. The system model from section (4.1) is therefore augmented with
the disturbances. The augmented system is then

xk+1 = Axk + Buk + Gddk + vk (5.1a)
dk+1 = dk + vd,k (5.1b)
pk+1 = pk + ed,k (5.1c)

yk = Cyxk + Duk + Gppk + Gdpdk + ek (5.1d)

where d is the input disturbances and p is the output disturbances. The matrices Gd,
Gdp and Gp describes how the disturbances influence the states. The noise sources of
the disturbance states are vd,k ∈ Niid(0, Rd) and ed,k ∈ Niid(0, Rp).

How to choose the structure of the disturbances and noise variances is a challenging
task. First of all (Pannocchia and Rawlings, 2003, Lemma 3) states that there has to
be as many disturbance states as there are measurements. Further in order to obtain
offset-free control the augmented system has to be observable, because the augmented
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states are not stable. (Muske and Badgwell, 2002, Theorem 1) states that iff the following
condition is satisfied

rank

[
A− I Gd 0

Cy 0 Gp

]
= nx + nd + np (5.2)

then the augmented system is observable.
In order to be able to estimate the physical disturbances, such as the load, the input
disturbances are chosen equal to the true input disturbance matrix. Further the total
number of disturbances has to be equal to the number of measurements. Therefore
output disturbances are placed on the temperature measurement of the evaporator. The
input and output disturbance matrices are shown below

Gdp = Fy Gd = Ed Gp =



0 0 1 0 0 0 ... 0 0 0

0 0 0 0 1 0 ... 0 0 0

0 0 0 0 0 0 ... 0 0 0

0 0 0 0 0 0 ... 0 0 0

0 0 0 0 0 0 ... 0 0 0

0 0 0 0 0 0 ... 1 0 0

0 0 0 0 0 0 ... 0 0 1



T

(5.3)

The size of the elements in Gd, Gdp and Gp alone are not important, because the size
of the elements and the associated noise sources ed,k and vd,k, determines the speed of
which the steady-state error is removed. The noise sources are selected by trial and error
where the sensitivity to noise is weighted against the speed of which step disturbances
are rejected.
Through numerous simulations it has been found that good performance is achieved
with

ed,k ∈ Niid(0, Rp); Rp = diag
([

10−4 10−2 10−4 10−4 10−4 10−4 10−4
])

(5.4)

vd,k ∈ Niid(0, Rd); Rd = diag
([

44.4 0.64 0.64 0.64 0.64 0.64 0.64 0.64
])

(5.5)

These has been selected so that the disturbances which are likely to change have ”large”
variance and those which are not likely to be changed are set to a ”small” value with
respect to the absolute size of the disturbance or measurement.
The input and output noise sources are given by

ek ∈ Niid(0, R2); R2 = diag
([

15 95 15 15 15 15 15 15 15
])
· 10−4 (5.6)

The state noise variance, R1c, has to be transformed to discrete time from continuous
time. This is simply done by the transformation in (Poulsen, 2007, p. 231) and the result
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is

vk ∈ Niid(0, R1); R1 =
∫ Ts

0
eAτR1ceATs τdτ

where

R1c = B · 10−5 · diag
([

8.2 · 105 30 30 30 30 30 30 30
])

BT

The noise sources and linear model is now stated and the filter recursions can be made.

5.1.2 The filter

The problem of estimating the system states is handled as a filter problem where the
system is given by (5.1). Combining the integral states and the system states into one
combined state, x̃k, gives the formulation

x̃k+1 = Ãx̃k + B̃uk + σ̃x + ṽk (5.7a)

yk = C̃yx̃k + D̃uk + σ̃y + ẽk (5.7b)

which makes the notation of the filter simpler.

The Kalman filter is often grouped into an ordinary and predictive type. The predictive
type will be used, where the filter is predicting the state at the next sample, without
including the present measurement in the estimate. This gives the computer one sample
to compute the control signal, so that it is ready to be applied at the next sample.

The optimal estimate is given by (Poulsen, 2007, paragraph 7.6) and the recursions for
the filter are

x̂k+1 = Ãx̂k + B̃uk + σ̃x + Kk[yk − C̃yx̂k − D̃uk − σ̃y] (5.8a)

Kk = ÃPkC̃
T
y

[
C̃yPkC̃

T
y + R̃2

]−1
(5.8b)

Pk+1 =
[
Ã−KkC̃y

]
PkÃ

T
+ R̃1 (5.8c)

The filter is derived in details from a combination of a priori and posteriori filter
equations in (Simon, 2006, p. 131). The Kalman filter is initialized with Kk and Pk
equal to the steady-state values K∞ and P∞. This eliminates the transients where the
filter should otherwise converge to these by itself. The steady-state values are found
by solving the discrete algebraic Riccati equation (DARE) and calculate the associated
Kalman gain.
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5.2 Nonlinear Kalman filter

The idea of an Extended Kalman Filter (EKF) is to extend the linear Kalman filter to
directly estimate the states of the nonlinear system. The EKF is undoubtedly the most
widely used nonlinear state estimation technique that has been applied in the past few
decades (Simon, 2006). Unlike its linear counterpart, the extended Kalman filter is in
general not an optimal estimator. In addition, if the initial estimate of the state is wrong,
or if the process is modeled incorrectly, the filter may quickly diverge. Despite these
limitations, the filter often gives superior results.

The nonlinear system model, which the filter is supposed to track, is given by the
nonlinear model in section 2. The model is restated below with noise sources and offset-
disturbances added

xk+1 = ft,k(xk, uk, dk + d0) + vk (5.9a)
dk+1 = dk + vd,k (5.9b)
pk+1 = pk + ed,k (5.9c)

yk = gt(xk, uk, dk + d0) + Gppk + Gdpdk + ek (5.9d)

where the subscript k in ft,k indicate that the continuous function ft is integrated by an
ODE solver to get the discrete state evolution. The extended Kalman filter has been
derived in many forms and some are presented in (Simon, 2006, p. 400) and (Poulsen,
2007, p. 275). It has been chosen to use the same form of the predictive Kalman filter as
the earlier linear filter from Poulsen (2007), but with the nonlinear modifications from
Simon (2006).
The state estimate is given by the recursions below

x̂k+1 = ft,k(x̂k, uk, dk + d0) + Kk[yk − ŷk] (5.10a)

Kk = ÃPkC̃
T
y

[
C̃yPkC̃

T
y + R̃2

]−1
(5.10b)

Pk+1 =
[
Ã−KkC̃y

]
PkÃ

T
+ R̃1 (5.10c)

where

Ã =


∂ft,k
∂x

∣∣∣
x̂k,uk

Gd 0

0 I 0
0 0 I

 C̃y =

[
∂gt,k
∂x

∣∣∣
x̂k,uk

Gdp Gp

]
(5.11)

ŷk = gt(x̂k, uk, dk + d0) + Gppk (5.12)

It can be shown that the system matrices Cy, D and F are not depending on the point of
linearization and as a consequence do not need to be recomputed at every sample.
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5.3 Validation

The two filters are first validated against the nonlinear system model to check their
ability to predict the output generated by the system model. Secondly the filters are
validated against measured data from Fakta Otterup. Finally the filters are validated
against the system model in their ability to estimate the load disturbances.

5.3.1 Model validation

The linear Kalman filter in figure 6 follow the temperatures very close, but with a small
error even though it can be difficult to see at the figure. The air and wall temperature
estimation error never exceeds 0.2 degrees. The small error is due to the nonlinearities.
The nonlinearities are handled by the extended Kalman filter. The estimation error for
this filter is always less than 1.1 degrees through the whole period for both the suction
pressure and the air temperatures. One should keep in mind that the good results for
both filters are due to the fact that the model used in the filters are almost the same as
used to generate the data.

The larger error when using the nonlinear filter might be due to the very abrupt
excitation of the system, since the more steady suction pressure is better estimated by
the extended filter.

5.3.2 True data validation

The filters are also tested using data from the real system. As the data are sampled
only every minute and the Kalman filters are sampled every 20 seconds, the data is
linearly interpolated between samples. The result is shown in figure 8 and 9. The
extended Kalman filter is not performing as good as the linear counter part of the filter.
This is seen from the mean square error of the suction pressure and air temperature, not
shown here. It is difficult to spot the difference by just inspecting the plots, since the air
temperature is spread over such a large span. The maximum estimated error of the air
temperature is approx. 0.2 degrees for the linear filter and 1.0 for the nonlinear one.

The same plots as, 8 and 9, but containing the night operation, show that the cooling
sites are synchronized. As stated before, the synchronized behavior originates from
the coupling of the individual cooling sites through the suction pressure (Larsen, 2005)
but also from the defrost planning which are planned to be performed at the same
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time. The behavior decreases the lifespan of the compressors and makes the system run
uneconomically, when the variable speed compressor cannot meet the cooling request.
The novel way of reducing synchronism is to use different upper and lower limits to
the hysteresis of the temperature-controllers. This will force them to desynchronize
over time.

5.3.3 Disturbance estimation

The ability to estimate the load on the cooling sites are tested against the nonlinear
model. This is because it has not been possible to do a real experiment where the load
was altered and known. The estimates given by the linear and nonlinear Kalman filter
is given in figure 10 and 11 respectively.

The load on the cooling sites are changed 60 minutes after the simulation starts. Both
before and after the load is changed, it is noticed that the linear filter do not estimate
the load as precise as the extended Kalman filter. Because of the large uncertainty when
using the linear filter, it is deemed impossible to use this filter for load estimation. But
since the filter show advantageous for state estimation purposes, it will be used for that
purpose.
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Figure 6: Validation plot of the 1-step predictor of the simulated
output performed by a linear Kalman filter. Only POS
40 A,B and C are shown.
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Figure 7: Validation plot of the 1-step predictor of the simulated
output performed by an extended Kalman filter. Only
POS 40 A,B and C are shown.
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Figure 8: Validation plot of the 1-step predictor of the measured
output performed by a linear Kalman filter. Only POS
40 A,B and C are shown.
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Figure 9: Validation plot of the 1-step predictor of the measured
output performed by an extended Kalman filter. Only
POS 40 A,B and C are shown.
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Figure 10: Validation plot of the 1-step predictor of the simulated
disturbance using a linear Kalman filter. Only POS 40
A,B and C are shown.
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Figure 11: Validation plot of the 1-step predictor of the simulated
disturbance using an extended Kalman filter. Only POS
40 A,B and C are shown.
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6 Model Predictive Control

This chapter describes the development of an MPC. The theory is based on the work of
Maciejowski (2002).
The discrete-time system description in (5.1) will be used in the later derivation of the
model predictive controller. The ability to reject disturbances and obtain offset-free
control, is fulfilled by including the disturbance models in the controller. The controller
uses the un-augmented system model, in (4.1), in the predictions while the disturbance
states are added to the states and outputs before the control signals are calculated. This
reduces the computational load due to the un-controllable integrators.

6.1 Control Problem

In the following the control problem of the MPC will be investigated, and the problem
will be transformed to a MI-QP. The MPC uses the objective function in (6.1), which
penalizes the future errors between the controlled output and reference plus a term that
penalizes control moves.

φ =
1
2

Nz

∑
j=1
‖z̃k+j|k − rk+j|k‖2

Qz
+

1
2

Nu−1

∑
j=0
‖∆uk+j|k‖2

S (6.1)

where ∆uk+j|k = uk+j|k − uk+j−1|k. The control and prediction horizon can be chosen
independently, but is chosen identical i.e. Nz = Nu = N in this project. Here the horizon
is chosen short, N = 5 min/Ts, such that the computational load is kept relatively small.
The optimal control problem is to minimize the objective function subject to predictions
of the controlled outputs, inputs and output constraints.

The objective function is only dependent on the control signal u, the manipulated
variables, and the optimization problem is thus to find the control sequence that
minimizes the objective function. The constrained control problem is written as

min
{uk+j|k}N−1

j=0

1
2

N

∑
j=1
‖zk+j|k − rk+j|k‖2

Qz
+

1
2

N−1

∑
j=0
‖∆uk+j|k‖2

S

s.t. xk+1+j|k = Axk+j|k + Buk+j|k + σx j = 1, 2 . . . , N − 1

zk+j|k = Czxk+j|k + σy j = 1, 2 . . . , N

umin ≤ uk+j|k ≤ umax j = 0, 1 . . . , N − 1

uk+j|k ∈ [0, 1] j = 0, 1 . . . , N − 1

zmin ≤ zk+j|k ≤ zmax j = 1, 2 . . . , N
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For simplicity the output constraints are written as hard-constraints, but will later be
transformed to soft-constraints. The stated constrained control problem is a constrained
convex optimization problem, but not in a standard form. To do that it is desirable to
rewrite the problem into a vector-matrix form. The objective function depends on future
outputs, references and inputs and the following vectors will therefore be defined.

Zk =


zk+1|k

zk+2|k
...

zk+N|k

 Rk =


rk+1|k

rk+2|k
...

rk+N|k

 Uk =


uk|k

uk+1|k
...

uk+N−1|k

 ∆Uk =


∆uk|k

∆uk+1|k
...

∆uk+N−1|k


Σx =

[
σx σx . . . σx

]T
Σy =

[
σy σy . . . σy

]T

The future outputs can be written as

zk+j|k = CzAjxk|k−1 +
j−1

∑
i=0

CzAj−1−iBuk+i|k +
j−1

∑
i=0

CzAj−1−iσx + σy ⇔

zk+j|k = CzAjxk|k−1 +
j−1

∑
i=0

Hj−iuk+i|k +
j−1

∑
i=0

Lj−iσx + σy

where Hi = CzAi−1B and Li = CzAi−1 for i ≥ 1. The terms originating from i = 0
are neglected because it will not change the control actions (Maciejowski, 2002). The
above notation makes it possible to rewrite the predictions into the simple vector-matrix
notation below

=Zk︷ ︸︸ ︷
zk+1|k

zk+2|k
...

zk+N|k

 =

=Φ︷ ︸︸ ︷
CzA
CzA2

...

CzAN

 x̃k|k−1 +

=Γ︷ ︸︸ ︷
H1 0 0 0

H2 H1 0 0
... . . . . . . 0

HN · · · H2 H1


︸ ︷︷ ︸
Hi=CAi−1B i=1,2,...,N

Uk︷ ︸︸ ︷
uk|k

uk+1|k
...

uk+N−1|k

+ . . .

=Ω︷ ︸︸ ︷
L1 0 0 0

L2 L1 0 0
... . . . . . . 0

LN · · · L2 L1


︸ ︷︷ ︸
Li=CAi−1 i=1,2,...,N

Σx︷ ︸︸ ︷
σx

σx
...

σx

+

Σy︷ ︸︸ ︷
σy

σy
...

σy
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Simplifying the notation gives

Zk = Φxk|k−1 + ΓUk + ΩΣx + Σy (6.2)

It is now possible to rewrite the first term in (6.1) into the vector-matrix notation

φ =
1
2

N

∑
j=1
‖zk+j|k − rk+j|k‖2

Qz
=

1
2
‖Zk −Rk‖2

Qz
= (6.3)

1
2
‖ΓUk −

(
Rk −Φxk|k−1 −ΩΣx − Σy

)
‖2

Qz
(6.4)

To reduce the length of the equations the constant b̃ is defined as

bk = Φxk|k−1 + ΩΣx + Σy (6.5)

The problem above is the well-known Weighted Least Squares problem. In order to
arrive at a QP the expression is expanded, utilizing ‖x‖2

Q = xTQx. From this, it is seen
that the problem easily can be factored into a quadratic and a linear term plus a constant.

φ =
1
2

UT
k ΓT

k QzΓkUk −
(

ΓT
k Qz(Rk − bk)

)T
Uk +

1
2
(Rk − bk)

TQz(Rk − b̃k)

This is a QP, but only weighing the deviation from the reference. Only solving for
this part will result in a minimum variance controller, because no penalty is put on
the control actions. The penalty of using the manipulated variables is put into the
optimization problem in the same way as the penalty for the output deviations. As
before it is desirable to write the cost in terms of vectors. The cost is

1
2

N−1

∑
j=0
‖∆uk+j|k‖2

S =
1
2
‖Uk −Uk−1‖2

S (6.6)

Since the optimization problem only depends on Uk and not Uk−1 a rewriting is made to
eliminate Uk−1. The rewriting is based on the fact that Uk−1 is just the delayed version
of Uk. Putting the above on matrix-vector form gives

=∆Uk︷ ︸︸ ︷
∆uk|k

∆uk+1|k
...

∆uk+N|k

 =

=Ψ︷ ︸︸ ︷
I 0 0 0

−I I 0 0

0 . . . . . . 0

0 0 −I I



=Uk︷ ︸︸ ︷
uk|k

uk+1|k
...

uk+N|k

−
=I0︷︸︸︷
I
0
...

0

 uk−1

With a further simplification of the notation it becomes

∆Uk = ΨUk − I0uk−1 (6.7)
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where uk−1 is treated as a constant which is updated each sample. The cost associated
with the control moves are therefore

1
2

N−1

∑
j=0
‖∆uk+j|k‖2

S =
1
2
‖ΨUk − I0uk−1‖2

S (6.8)

The expression needs to be written into the standard form of a QP and combined with
(6.6). Again the expression has the form of a Weighted Least Squares problem and the
problem can be factored into a quadratic and linear term plus a constant

φ =
1
2

UT
k ΨTSΨUk −

(
ΨTSI0uk−1

)T
Uk +

1
2
(I0uk−1)

T(I0uk−1)

The QP just derived is also constrained by input constraints and it will be handled in the
following. The input constraints are also vectorized and the future input signals should
satisfy

umin ≤ uk+j|k ≤ umax j = 0, 1, . . . , N

Writing the constraints in vector-matrix form gives

=Umin︷ ︸︸ ︷
uk,min

uk+1,min
...

uk+N,min

 ≤
=Uk︷ ︸︸ ︷
uk|k

uk+1|k
...

uk+3|k

 ≤
=Umax︷ ︸︸ ︷
uk,max

uk+1,max
...

uk+N,max


and with notation simplification it gives

Umin ≤ Uk ≤ Umax (6.9)

6.2 Soft Output Constraints

One of the primary reasons for using MPC is that constraints can be enforced on
the process. If hard-constraints are implemented on the output there could be
feasibility problems since situations will arise where no control sequence can satisfy
the constraints. To solve this problem it is utilized that the output constraints are not
physical limitations and these constraints can be enforced in a relaxed way so that
guaranteed feasibility is maintained.

The time varying hard output constraints are

zmin,k ≤ zk+j|k ≤ zmax,k j = 1, 2 . . . , N − 1 (6.10)
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These constraints can be avoided by allowing a violation of the output constraints, by
adding a combined quadratic and linear-term to the objective function. This method is
described by Scokaert and Rawlings (1999) and Prasath and Jørgensen (2009). The cost
function then becomes

φ =
1
2

N

∑
j=1
‖zk+j|k − rk+j|k‖2

Qz
+

1
2

N−1

∑
j=0
‖∆uk+j|k‖2

S +
N

∑
j=1

1
2
‖ηk+j|k‖2

Sη
+ ST

ηk+j|k
ηk

where η is an introduced slack-variable that converts the hard constraints in (6.10), into
soft constraints as shown below.

zk+j|k ≤ zmax,k + ηk+j|k j = 1, 2, . . . , N

zk+j|k ≥ zmin,k − ηk+j|k j = 1, 2, . . . , N

ηk+j|k ≥ 0 j = 1, 2, . . . , N

As seen the relaxation i.e. soft constraints are only active when the hard output
constraints should have been active. This is important because it does not change
the objective function under unconstrained operation. If an output constrain becomes
active it forces η to some positive value which makes the associated terms in the cost
function greater than zero. In this way the constraints are obeyed by using a suitable
weight Sη.

As before it is desirable to rewrite the cost function into the simple vector-matrix
notation. The terms originating from the soft output constraints are then

N

∑
j=1

1
2
‖ηk+j|k‖2

Sη
+ ST

ηk
ηk+j|k =

1
2

ηkSηηk + ST
ηk

ηk (6.11)

The constraints are dependent on zk+j|k which is a function of uk+j|k. The constraints
has to be put in vector/matrix notation and thus the expression for Zk in (6.2) can be
used to express the constraints as a function of Uk. This gives

Zmin,k − ηk ≤ Zk ≤ Zmax,k + ηk ⇔
Zmin,k − bk − ηk ≤ ΓkUk ≤ Zmax,k − bk + ηk ⇔
Zmin,k − ηk ≤ ΓkUk ≤ Zmax,k + ηk

ηk ≥ 0

where

Zmin,k = Zmin,k − bk

Zmax,k = Zmax,k − bk

The complete Model Predictive Controller is now defined, but it has to be put into one
QP.
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7 MPC Quadratic Program

The above derivation of the controller is collected into one MI-QP. The problem below
is the control problem with soft-constraints.

min
Xk

1
2

XT
k HXk + gTXk + ρ (7.1a)

s.t. Xmin ≤ Xk ≤ Xmax (7.1b)
bl ≤ AXk ≤ bu (7.1c)
Xsub ∈ [0, 1] (7.1d)

where

X =

[
Uk

ηk

]
H =

[
H 0
0 Sηk

]
g =

[
g

Sηk

]
(7.2a)

Xmin =

[
Umin

0

]
Xmax =

[
Umax

∞

]
(7.2b)

bl =

[
−∞

Zmin,k

]
A =

[
Γk −I
Γk I

]
bu =

[
Zmax,k

∞

]
(7.2c)

ρ is omitted because the solution U∗k does not depend on it. Xsub is the integer subset of
variables from the U vector that represents the valves. The soft-constraints add variables
to the optimization problem, i.e. make the problem larger, but guarantees a solution.
The above convex QP is solved every sample and gives the solution, U∗k , which is a set
of control signals for the complete control horizon. At each sample only the first control
action is used i.e. u∗0 .

The problem is a MI-QP due to the combination of integer and floating values in X. In
order to solve this type of problems one need a (commercial) solver. Just to mention
a few there is Cplex (Ilog, Inc.), Xpress-MP (Dash Optimization) and Mosek (Mosek
ApS). The Mosek solver is used in this project because its free for academic use and it
integrates very well with the Matlab environment. The downside of Mosek is its speed,
which showed to be very slow. For later system comparison, a simulation using floating
point valve control has also been made. For this optimization problem the standard
Matlab solver, quadprog(), was used.
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Control weights

The performance (index) is highly dependent on the weighting matrices Qz, S and Sηk
which are used to achieve the desired performance of the control system. The matrix Qz
weighs the error of the controlled variables and S the change-rate of the manipulated
variables. An increase in a weight will decrease the variance of the associated controlled
or manipulated variable. Sηk weighs how much it should be penalized to violate a
constraint. The cost of violating a constraint is much higher than the penalty of error
and control moves. For the QP to converge at a minimizer the weights are restricted to
be positive semi-definite.

Integer valve positions

The weights on the controlled variables are chosen so, that it penalizes a deviation of
the suction pressure from the set-point. The air temperatures should not be kept at a
set-point. It should instead be controlled within a band. To achieve this behavior the
deviation from the set-point is penalized by zero and soft-constraints are set to keep
the temperatures within a defined region. The control actions are penalized by a small
weight on the compressor control and a relatively large weight on changing the valve
position. This will prevent the valves from opening and closing in a PWM manner.

Qz =


50 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 S =


102 0 0 0

0 104 0 0

0 0 104 0

0 0 0 104

 Sη =


103 0 0 0

0 105 0 0

0 0 105 0

0 0 0 105


The block diagonal matrices used in the MPC deviation are then

Qz =

Qz 0 0

0 . . . 0

0 0 Qz

 S =

S 0 0

0 . . . 0

0 0 S

 Sη =

Sη 0 0

0 . . . 0

0 0 Sη


The performance of the controller is validated in the later section. Notice that only three
cooling sites are operated by this controller, otherwise the computational load exceeds
the sample time.

Floating point valve positions

The control structure was originally designed for floating point valve positions and
solving this control problem is very easy, by just replacing the Mosek solver with the
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quadprog solver. The only modification to the integer setup is the control weights. By
trial and error good performance was achieved using the weights below

Qz =


4.0 0 0 0

0 11.11 0 0

0 0 11.11 0

0 0 0 11.11

 S =


0.0816 0 0 0

0 0.1 0 0

0 0 0.1 0

0 0 0 0.1

 Sη =


102 0 0 0

0 102 0 0

0 0 102 0

0 0 0 102


The performance of the controller is validated in the later section. Again only three
cooling discs are modeled for simplicity.

Constraints

In the following the constraints on the manipulated and controlled variables, u and z,
will be given. In general, these are found from process and actuator knowledge, which
in this case are restrictions to the air temperature in the cooling sites and constraints to
the compressor bank and valves at the cooling sites.

The soft-constraints on the output are chosen so that safe operation is maintained. Safe
operation means that the air temperature is maintained within a band, so that food
quality is preserved. It is assumed that the air of all three cooling sites should be
bounded within 0 to 5 degrees. The suction pressure is chosen to be within -20 to 0
degrees, which it should never reach in normal operation. The input constraints are
naturally chosen so that the valves are operated between 0 and 100%. The same goes
for the compressor which is operated from 0 to 100% load.

The constraints are shown in table 1.

Type Signal Units Min. Max.

Output Psuc
◦C -20 0

Tair,i
◦C 0 5

Input comp % 0 100

ODi % 0 100

Table 1: List of constraints that are used by the MPC. i ∈ [1; 2; 3].
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8 Validation

The performance of the controller is investigated by simulations. The performance
is highly dependent on the state-estimate and since the linear filter showed superior
performance when validated by real data, only the linear Kalman filter will be used.
The closed-loop performance with the linear MPC and Kalman filter will be investigated
here.

Integer valve positions

The integer valued control setup has been simulated for 200 min. The result is shown
in figure 12 and 13. The simulation is made without noise, but still the suction pressure
is clearly disturbed. The disturbance is self-inflicted and originates from valves turning
on and off in the cooling sites. Inspecting data from Fakta Otterup shows that the effect
is also visible in real life and the problem get worse when the compressors are not able
to deliver the requested capacity. Using completely variable speed compressors and/or
floating point valve control will significantly reduce these problems.
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Figure 12: Plot of outputs using integer controlled valves. No
disturbances present.
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Figure 13: Plot of inputs using integer controlled valves. No
disturbances present.

The simulation also shows that despite the bad nature of the system, the cooling sites
are desynchronized within a short period of time to reduce the fluctuation of the suction
pressure. This means that the control system works for this state of operation. The
controller is also able to handle the significant change in load due to opening and
closing of the supermarket. Figure 14 and 15 shows the simulation where the load on
the display cases and bypassed refrigerant is decreased to 50% at time 40 min into the
simulation.

37



−12

−11.5

−11

−10.5

−10

P
su

c [o C
]

0 20 40 60 80 100 120 140 160 180 200

1.5

2

2.5

3

3.5

4

4.5

5

T
ai

r [o C
]

Time [min]

Figure 14: Plot of outputs using integer controlled valves while hit by a
50% reduction in load and bypass ref. at t=40 min.
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Figure 15: Plot of inputs using integer controlled valves while hit by a
50% reduction in load and bypass ref. at t=40 min.
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Floating point valve positions

The floating point control setup has been simulated for 100 min. The result is shown
in figure 16 and 17. The simulation consists of 3 events. First the temperature
reference is changed from 3 to 4 degrees, then the load is decreased by 50% to
simulate when the supermarket closes and last the bypassed flow of mass is set to
zero. The first event, from 8 to 25 min where the temperature reference is changed,
clearly makes the temperature in the cooling sites change. It takes approximately
15 min to reach a new steady-state and in the meantime the valves rapidly closes to
increase the temperature. This has the side effect that the requested cooling drops
and the compressor compensates to keep the suction pressure constant. Notice that
the requested cooling capacity is lower after the temperature has been increased. The
second event occurs 40 min into the simulation, where the load is decreased by 50%.
This leads to a smaller load on the cooling site which must be compensated by the valves
to keep the desired air temperature. Until the load has been rejected the air experiences
a large decrease in temperature for about 20 min. The decrease is not serious due to the
short period and seldom occurrence. Notice the fact that the load is not the dominant
source of heat, but Q̇ f an is. This is clear from the small change in opening degree after
the load has changed. Q̇ f an do not only originates from the fans, but also from air
infiltration and freezing of moisture in the air. Last the bypassed refrigerant is set to
zero at time 75 min, which reduce the load on the compressors. The disturbance clearly
shows up in the suction pressure until the compressor has stabilized at the new steady-
state. This is due to the penalization of the change of compressor capacity. As seen the
required compressor capacity has dropped after it has settled, as expected.
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Figure 16: Plot of outputs for floating point controlled valves.
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Figure 17: Plot of inputs for floating point controlled valves.

The two simulations clearly shows that it is a huge advantage to use floating point
valve control, since it reduce the self-inflicted disturbance of the suction pressure. The
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advantage is then that the compressor control will get more stable and the suction
pressure could get increased when allowed by the ADAP KOOL controller. Thus
reducing energy consumption. The disadvantage is that the evaporators will more
often be half full of refrigerant or so and ice will build up. Danfoss has developed
an expansion valve that distribute the refrigerant and therefore eliminate the problem.
It is highly recommended to use this type of AKV.

The faster computation time of solving a QP compared to a MIQP results in the
possibility to increase the prediction horizon. Increasing it from the previous 5
minutes to 10 minutes gives better damped responses and shorter settling time.
The computational time increases from 0.0048 to 0.018 seconds when increasing the
prediction horizon to 10 minutes.
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Part II

Compressor Control

The idea that motivates this part of the project is to design a compressor control that
stabilizes the suction pressure by utilizing both feedback and feedforward. The suction
pressure, the controlled variable, is used as feedback and the opening and closing of
valves in the cooling sites are used as feedforward. Feedforward of disturbances have
shown very effective in many applications (such as district heating) and is deemed to
improve performance. As in part 1 of the report, the proposed controller will be based
on Model Predictive Control (MPC). The advantage of this controller is its ability to
handle the system dynamics, constraints and disturbances.

9 Modeling

The dynamics of the suction pressure is very fast and thus has to be controlled by a
fast sampling control system. The present data is sampled every 1 min and is not fast
enough to capture all the fast (and important) dynamics of the system. Still it has been
tried to estimate a simple PEM model which gave the fit as shown in figure 18 and 19.
The first figure shows how well the model fits the training data and the second figure
shows how well the model fits the test data. The two data series are slit so that the test
dataset continues the training dataset. The output of the dataset is the suction pressure
and the inputs are the running compressor capacity and the seven opening degrees of
the valves of the cooling sites.
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Figure 18: Suction pressure; Training data and model response for the 1-step predictor. X-axis is
no. of samples. Ts = 60 sec
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Figure 19: Suction pressure; Test data and model response for the 1-step predictor. X-axis is no. of
samples. Ts = 60 sec
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Figure 18 and 19 shows that the model, stated in equation 9.1, has captured all the
slow dynamics but cannot explain the high frequency noise. The noise might arise from
start/stop of compressors and the fact that the valves actually are PMW controlled can
also have an impact. Examining the residuals, in figure 20, show that the model have
captured much of the information in the data, since the residuals are almost white noise.
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Figure 20: Residual evaluation using test data from compressor to suction pressure.

The plotted residuals are based on the test data. The estimated state-space model was
estimated using the PEM black-box estimator in Matlab. The model was estimated with
focus on prediction and gave the result

xk+1 = Axk + Buk + Edk + Kek (9.1a)
yk = Cxk + ek (9.1b)
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with

A =

 0 1 0

0 0 1

0.029258 −0.60552 1.424

 B =

−0.10943

0.00866

0.0068899

 CT =

1

0

0

 K =

0.34529

0.1221

0.10108



E =

 0.016301 0.78675 1.0763 0.94925 0.45373 1.5324 0.98432 0.93104

0.0036179 0.20164 0.1983 0.31112 0.12109 0.17796 0.35645 −0.26475

0.0023047 0.22852 0.30776 0.32694 0.089884 0.22146 0.34994 −0.14564


The input, u, is the running compressor capacity and the output, y, is the suction
pressure. The disturbances are running fridge compressor capacity and the seven akv
opening degrees. A step response analysis show that the suction pressure will drop
approx. 0.1 degree by increasing the running compressor capacity by 1%. Notice that
the model and system is sampled every minute, Ts = 60 sec, where else the earlier
model is based on 20 sec sampling.

The bad fitting quality / percent, shown in figure 18 and 19, indicate that it has not been
possible to estimate the system model. Therefore it has been decided not to develop a
new controller.

10 Control

The present strategy is to stabilize the suction pressure by a PI-controller, without feed-
forward, which determine a requested compressor capacity. To meet the requested
capacity a scheduler is used to determine which compressors should be running at
present time. Often one of the compressors are fitted with a frequency converter making
it easier to meet the requested capacity. Decoupling the controller and scheduler is
advantageous since it simplifies the controller. A future MPC setup should also utilize
this structure, since an MPC including scheduler will have to solve a computational
difficult mixed integer optimization problem.

It was not possible to identify a system model with sufficient accuracy, and the controller
has not been designed. As mentioned earlier, this is due to the sample time of 60 sec,
which is too slow for identification of a model for compressor control.
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Part III

System Performance

A supermarket is one of the most electricity-intensive types of retail stores. This is due
to the need for refrigeration of the foodstuff, which uses a large amount of electricity.
Some states that energy expenses represent the most significant portion of the annual
operating budget after labor costs for the grocery retail sector. At the same time the
profit margins of supermarkets are thin, and reducing the cost of operation i.e. energy
consumption is an increasing concern to the supermarket owners.

The supermarket owners do not have the deep insight and most of all tools to optimize
operation of the refrigeration system. Therefore they often face difficulties in identifying
potential savings and how to achieve these savings. In order to assist these in their effort
this part of the project has concentrated on estimating the load of each cooling site, as
well as the total load and give a measure of how well the total refrigeration system
is performing. The performance measure of the total refrigeration system will offer
an opportunity to identify the worst performing supermarkets and therefore identify
the most cost-effective and rewarding opportunities for energy savings. Knowledge
of the energy consumption of each cooling site makes it possible to identify which are
performing badly and therefore reveal the potential of replacing/upgrading to a more
energy efficient cooling site. All in all the information can be used to improve system
efficiency.

The refrigeration system is sketched in figure 21, to give a brief overview of the position
of sensors and naming convention.
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Figure 21: Description of the system and naming convention.

11 Cooling Site Energy Consumption

Normally it is not possible to determine the energy consumption of each cooling site,
since mass flow meters are very expensive. Fakta Otterup has been fitted with mass
flow sensors measuring, among others, the total flow of refrigerant used by all seven
fridges and all four freezers in the store respectively. Using these sensors makes it
possible to estimate the refrigeration load from each cooling site. For this purpose valve
size knowledge, opening degree, pressure difference and other factors are also used in
order to determine how much each of the cooling sites contributes to the total flow of
refrigerant.
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11.1 Theoretical Load from OD

Initially engineers consult the specifications delivered by the expansion valve manufac-
turer, in order to estimate the theoretical capacity or load of a cooling site. The valves
are known and so is their theoretical capacity. A part of the data-sheet belonging to
the Danfoss valves used in Fakta Otterup is shown in figure 22. The relation below is
used to determine the delivered capacity given the size, opening degree of the valve
and pressure difference across the valve. The relation is

Q̇akv = f (AKV, Prec − P0) ·OD (11.1)

where f is a function of the pressure difference and valve type/size. OD is the opening
degree. Prec is the reciever pressure and P0 is the suction pressure. The characteristic
of the valve is nonlinearly dependent on the pressure difference, and f is therefore
described by the previously mentioned valve specific table.

Figure 22: List of delivered capacity as a function of pressure across the
valve and type.

Table 22 is based on ideal conditions where the refrigerant only consists of liquid at
a certain temperature, no sub-cooling and no energy loss in the pipes. Further the
table is not corrected for the evaporation temperature. These conditions will reduce
the accuracy of the relation since the conditions can be far from satisfied in real life
conditions.

The seven fridges and four freezers have all been fitted with a Danfoss valve as follows;

Fridges POS 40A POS 40B POS 40C POS 30 POS 30B POS 45 POS 50

Valve type AKV 10-5 AKV 10-5 AKV 10-4 AKV 10-5 AKV 10-3 AKV 10-5 AKV 10-2
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Freezers POS 25A POS 25B POS 25C POS 20

Valve type AKV 10-2 AKV 10-2 AKV 10-2 AKV 10-3

The resulting refrigeration load, calculated by (11.1), of each fridge and freezer cooling
sites are plotted in figure 23 and 24 respectively. The noise in the data originates from the
fact that the cooling sites are actually controlled by a hysteresis controller giving a time
varying load. Notice that the data is heavily low-pass filtered to remove dynamic effects
from the hysteresis controller. Low-pass filtering is performed by using smooth(.) in
Matlab.

POS 40 A, B and C have almost the exact same behavior. This is due to the similarities
in construction and usage of the three sites. The sites is not covered in day time and
constructed like a shelf. This gives large variations between night and day and an
overall high energy consumption. POS 30(B) cools a fridge room, giving variations
in the load due to employee activity. POS 45 chills vegetables and is therefore very
similar to POS 40 in usage and construction. POS 50 is a covered display case containing
meet, which has to the chilled at a very certain temperature. The AKV of the site is
therefore continuously controlled which gives very stable and low refrigeration load.
The spikes in load is due to defrosting. All the freezers have a continuously controlled
AKV and is covered to reduce energy usage. As the figure indicate this gives a very
stable load which does not show day and night variations. The large spikes in load is
due to defrosting.

Estimating the load from the AKV’s have shown to be rather good. The AKV load is
investigated by summing the individual AKV contributions and compare it to the total
cooling load measured by a sensor. The result is shown in figure 25 and 26 (Blue line is
the AKV estimate and Green line is the measured load).

The combined AKV load is calculated by the relation below.

Q̇MT
akv =

7

∑
i=1

Q̇MT
akv,i Q̇LT

akv =
4

∑
i=1

Q̇LT
akv,i (11.2)

The summed AKV load is only slightly low-pass filtered to make comparison easier
(assuming that the mass-flow meter receives a low-pass filtered flow of energy).

The load is measured by a coriolis mass flow meter. Knowing the enthalpy of the
refrigerant and the flow of mass, makes it possible to calculate the load. The energy
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Figure 23: Individual load for each cooling site. The data is sub-sampled to remove
dynamic behavior and only 5 days are shown.
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Figure 24: Individual load for each cooling site. The data is sub-sampled to remove
dynamic behavior and only 5 days are shown.

load is calculated as follows

Q̇MT = mMT
(

HTP
(

TMT, PKL
0

)
− HTP (TBubP (Prec) , Prec, ’liquid’)

)
(11.3)

Q̇LT = mLT
(

HTP
(

TLT, PFR
0

)
− HTP (TBubP (Prec) , Prec, ’liquid’)

)
(11.4)

As seen the enthalpy is given by the difference of enthalpy at the mass flow meters and
the receiver. The receiver contains refrigerant at the boiling point and thus the functions
has to be supplied with the the initial guess of liquid or vapor.

It is easy to identify, in figure 25, that there is a small difference between the total AKV
and total measured load (for both the fridges and freezers). There are several reasons
to his, but in all the the estimate is very good. Each of the AKV loads, Q̇MT

akv,i, describing
the load are tryed corrected using a linear polynomial fit. The function that we want to
fit is as follows

Q̇MT
akv, f it =

7

∑
i=1

ciQ̇MT
akv,i Q̇LT

akv, f it =
4

∑
i=1

ciQ̇LT
akv,i (11.5)
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Figure 25: 30-06-2012, Shows the fridge refrigeration load estimated, measured by the mass
flow meter and last the corrected estimated refrigeration load.
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Figure 26: 30-06-2012, Shows the freezer refrigeration load estimated and measured by the
mass flow meter.
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The least squares fit determines the coefficients c such that they minimize the sum of
squared residuals. These are given by

ρ = ∑
all

(
Q̇MT/LT − Q̇MT/LT

akv, f it

)2
= ∑

all

(
Q̇MT/LT −

7

∑
i=1

ciQ̇MT/LT
akv,i

)2

(11.6)

This is a linear system of equations in the coefficient vector. The system can be put to
the matrix-vector form

r = y− Fc (11.7)

where boldface indicate vetors and matrices. y is equal to Q̇MT/LT, c is a vector of
unknown constants and F is a matrix of [Q̇MT/LT

akv,1 Q̇MT/LT
akv,2 ... Q̇MT/LT

akv,7 ]. Hence the partial
derivative of the sum of errors with respect to the unknown constants is

∇ρ = −2FTr = −2FT(y− Fc) = −2(FTy− FTFc) (11.8)

For this vector to be the zero vector, ∇ρ = 0, we must solve the linear system of
equations with respect to the coefficient vector c, which gives

c =
(

FTF
)−1

FTy (11.9)

For the sake of numerical precision the QR factorization is used, which in Matlab is
done simply by the command c = F\y.
The list of constants, c, are then

Cooling site POS 40A POS 40B POS 40C POS 30 POS 30B POS 45 POS 50

c, factor 0.583 0.725 1.333 0.502 1.989 0.977 1.910

c, conf. int. ±0.03556 ±0.03663 ±0.05758 ±0.05073 ±0.1634 ±0.0287 ±0.3054

Freezing site POS 25A POS 25B POS 25C POS 20

c, factor 1.221 0.836 0.978 1.048

c, conf. int. ±0.06858 ±0.03645 ±0.07424 ±0.02903

The table show that the correction is very large and vary from cooling site to cooling site.
Notice the 95% confidence interval, which indicate that the parameters are very certain.
The parameters were estimated using data from the 30-June-2012. The data shown in
figure 25 is also from 30-June-2012, and the same data is therefore used to validate the
fit. The resulting estimated total energy flow, Q̇MT/LT

akv, f it , is shown in figure 25 (Red line).
The corrected cooling load is very close to the measured one. Sadly this calculation only
holds if the time-delay of each cooling site are negligible. This is not the case and some
error is expected. A more plausible way of determining the individual load is to use the
”AKV-method” mentioned earlier or simply install a mass-flow sensor on each cooling
section (even though this solution is very expensive).
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11.2 Cooling Load Dependence

The cooling load depends on several factors. Most significant is the indoor temperature,
the indoor humidity and the opening and closing of the supermarket. For the
cooling sites which are defrosted using heaters, the defrosting also make a significant
contribution to the subsequent cooling load. It is deemed impossible to predict the
dependency of the individual cooling sites, because the individual cooling is hardly
possible to estimate correctly. The dependency of factors are therefore estimated for the
total load on the fridges and freezers. Assuming that the total (measured) load changes
instantly when the factors change, make it possible to estimate the dependence by s
linear polynomial fit. This is done by letting y equal to the measured cooling load and
F equal to the temperature, humidity and opening indicator in (11.7) as seen below

r = Q̇MT −
[

Tindoor SHindoor Iopen

]
cMT (11.10)

r = Q̇LT −
[

Tindoor SHindoor Iopen Ide f rost,1 Ide f rost,2

]
cLT (11.11)

This type of fit is based on a static relation between the inputs and outputs. It is evident
that Q̇MT and Q̇LT changes as the cooling sites request cooling. These dynamics has to
be removed and is done by heavy low-pass filtering of both inputs and outputs to the
linear model.
The regressors, F, are formed by the indoor temperature, humidity and opening/closing
of the supermarket. If defrost is performed by electrical heaters, these are also
incorporated. The indoor temperature is measured together with the relative humidity.
The indicator variable for the opening and closing is constructed using the official
opening and closing times of the specific supermarket. The fridges are not using heaters
in order to defrost properly, but the freezers are. The freezers are therefore fitted
with two defrost indicators. In order to remove the temperature dependence of the
relative humidity the specific humidity, SH, is used instead. The conversion is based
on calculating the saturated water pressure from which the actual water pressure is
determined as the fraction given by the relative humidity. The specific humidity is
given as; assuming the total pressure of air equal to 1025 · 105 Pa

Ph2o =
RHindoor

100
· (1.0007 + 3.46 · 10−6 · 1015) · 6.1121e

17.502·Tindoor
240.97+Tindoor (11.12)

SHindoor = 0.622 ·
Ph2o

1015− Ph2o
· 1000 [g/m3] (11.13)

The system of linear equations are solved for both systems to determine the coefficient
vectors cMT and cFR. The parameters are fitted using data from the 30-June-2012 to
05-July-2012. The equation in (11.9) is solved and the result is shown in table 2.
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c1 c2 c3 c4 c5

Fridges 398.45±14.63 -82.95±44.361 8608.9±112.46

Freezers 167.54±2.403 -74.28±7.22 939.6±20.52 3188.3 ±103.9 2786.3±146.8

Table 2: Parameters describing the dependency for the cooling site loads.

In order to determine whether the parameters are significant the variance of the
parameters were calculated. The variance of these are given by (Madsen, 2007, p. 37)
and states

Var(c) = σ2(FTF)−1 (11.14)

The estimated variance of the innovations, σ2, are estimated by

σ2 =
(y− Fc)T(y− Fc)

N − p
(11.15)

N is the number of observations and p is the number of parameters. The 95% confidence
interval is found by multiplying the standard deviation of each parameter by 2.5758.
The result is also shown in table 2. As seen the confidence interval is quite narrow.
It indicates that the parameter are significant and that the output does depend on the
input variables.

Calculating the estimated load is performed by

̂̇QMT
=
[

Tindoor SHindoor Iopen

]
cMT (11.16)

̂̇QLT
=
[

Tindoor SHindoor Iopen Ide f rost,1 Ide f rost,2

]
cLT (11.17)

Plotting the measured against the estimated load makes it possible to validate the fit
quality by visual inspection. The data for validation is from 30-June-2012 to 05-July-
2012 and is therefore the same as the parameters were estimated from. The plots are
shown in figure 27 and 28.
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Figure 27: Total measured and estimated load through a period of 4 days.
Date: 30-June-2012 to 05-July-2012
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Figure 28: Total measured and estimated load through a period of 4 days.
Date: 30-June-2012 to 05-July-2012
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The estimated total load actually follows the complete data-set well. There are some
temporary large deviations, which may be caused by synchronous defrosting or other
phenomenas which are not covered by this model. The model is assumed accurate to
determine the load given this supermarket.

The uncertainty of the estimate has to be considered. Calculating the estimation error
variance by equation (11.15) gives the following 95% confidence interval.

con f = 2.5758
√

σ2
MT = ±3668 W (11.18)

con f = 2.5758
√

σ2
LT = ±592.97 W (11.19)

The confidence interval of the freezers are relatively larger compared to the size of the
load. The uncertainties are also evident from figure 28.

11.3 Vortex mass-measurement

The supermarket, Fakta Otterup, has been equipped with three very expensive coriolis
mass-flow sensors. These are very accurate and has proven able to measure the mass-
flow of refrigerant. Though, there exists cheaper methods for flow measurements which
could be used. In the future it would be nice to have cheaper ways of measuring the
mass-flow and thus the vortex method has been investigated. The sensor has been
installed in the liquid stream of the receiver.
A vortex sensor provides a measure of the volume-flow, V̇f low, and the temperature,
Tf low. From these it is possible to estimate the mass-flow by

ṁvortex = V̇f low/VTP(Tf low, Prec, 0) (11.20)

It turns out that the massflow estimated from the vortex sensor is very accurate
compared to the massflow of the trusted coriolis sensors. For comparison the flows
from the two sensors is shown in figure 29 .
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Figure 29: 30-June-2012, Total flow of refrigerant measured by the
Coriolis mass-flow sensor and Vortex volumen-flow sensor.

In the plotted period, the total massflow was 34.978 kg and 34.587 kg for the vortex and
coriolis sensor respectively.

11.4 Coefficient Of Performance

11.4.1 True COP

The Coefficient Of Performance (COP) is of special interest to the supermarket owner,
because it is a measure of how optimal the refrigeration system is performing. Looking
directly at the cooling load only give a picture of how much energy which are needed
to keep the food refrigerated, not how efficiently the compressor and rest of the
refrigeration cycle delivers the cooling. For that purpose the COP is developed. The
relation is as follows

COP =
Q̇
Ẇ

(11.21)

Where Q̇ is the cooling load and Ẇ is the power used to deliver that amount of cooling.
The refrigeration system is divided into a fridge and freezer part, and as such it would
be interesting to study the COP of the fridge, freezer and total refrigeration system
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individually. The refrigeration load from the fridges and freezers are given, using the
measured mass-flow and the enthalpy of the stream, as follows

Q̇MT = mMT
(

HTP
(

TMT, PKL
0

)
− HTP (TBubP (Prec) , Prec, ’liquid’)

)
(11.22)

Q̇LT = mLT
(

HTP
(

TLT, PFR
0

)
− HTP (TBubP (Prec) , Prec, ’liquid’)

)
(11.23)

MT and LT is an acronym for fridges and freezers.

The construction of the refrigeration system is so, that the freezer compressors are
attached to the fridge cooling system as a load similar to the cooling sites. This eases
the load on the freezer compressors, but of course also increase the load on the fridge
compressors. This means that the total load on the fridge compressors is a sum of the
freezer load and the fridge load. In the same way a fraction of the fridge power usage
originates from the freezers and has to be taken into account.
The COP for the fridge and freezers are then

COPMT =
Q̇MT

Q̇MT

Q̇MT+Q̇LT ẆKL
(11.24)

COPLT =
Q̇LT

ẆFR + Q̇LT

Q̇MT+Q̇LT ẆKL
(11.25)

COPtotal =
Q̇MT + Q̇LT

ẆKL + ẆFR
(11.26)

Figure 30 shows the calculated COP by the above equations.
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Figure 30: Plot of COP (Coefficient Of Performance) for the fridge, freezer and total
system.

As seen the fridge COP is significantly higher than the freezer COP. This makes sense,
since it is more efficient to have a low difference between the cold and hot side of the
refrigeration system. Further it is noticed that the efficiency is higher at night time than
at day time, again due to the lower difference between the hot and cold sides in the
refrigeration system. Generally the total COP lies between 1.8 to 3.3 at day and night
respectively.

11.4.2 Estimated COP

Generally it is not possible to calculate the true COP due to the expensive Coriolis
mass-flow sensors. Another approach has been presented by Danfoss, where no
mass-flow sensors are used and the COP is estimated from already present sensors
in common supermarkets. The approach is based on the fact that the mass-flows can
be estimated by the displacement and speed of the compressors and enthalpies from
temperature and pressure sensors. The idea has been introduced in a commercial
product by ”ClimaCheck Sweden AB”, and has ever since been subject for criticism
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due to unrealistic COP estimates. In order to validate the method presented here the
estimated COP and the true one is compared.

First the mass-flows and power consumption of the two compressor racks are estimated
by the relations below

ṁKL = ηKL
vol ρ

KL runKL
comp

100
VKL

sl
3600

ṁFR = ηFR
vol ρ

FR runFR
comp

100
VFR

sl
3600

(11.27)

ρKL =
1

VTP(SKL
s , PKL

0 , 1)
ρFR =

1
VTP(SFR

s , PFR
0 , 1)

(11.28)

And the compressor power is estimated by

ẆKL =
1

ηKL
is

ṁKL
(

HTP(SKL
ds , PKL

c )− HTP(SKL
s , PKL

0 )
)

(11.29)

ẆFR =
1

ηFR
is

ṁFR
(

HTP(SFR
ds , PFR

c )− HTP(SFR
s , PFR

0 )
)

(11.30)

with

SKL
ds = TVSP(STP(SKL

s , PKL
0 ), PKL

c ) (11.31)

SFR
ds = TVSP(STP(SFR

s , PFR
0 ), PFR

c ) (11.32)

The displacement volume is easily found by inspecting the metal plate on the compres-
sors to; VKL

sl = 6.5 · 70/50 + 12.0 and VFR
sl = 2.71 + 3.48. Further, the Volumetric and

Isentropic efficiencies of the compressors has to be known to the equations. These are
seldom known, but is estimated by a relation given for a Bitzer compressor by

ηvol = b1 + b2
Pc

P0
+ b3

(
Pc

P0

)2

(11.33)

ηis = a1 + a2
Pc

P0
+ a3

(
Pc

P0

)1.5

+ a4

(
Pc

P0

)3

+ a5

(
Pc

P0

)−1.5

(11.34)

with

a1 = 4.39004614408 a2 = −3.5085777881 a3 = 1.5130806248; (11.35)
a4 = −0.0236297366209 a5 = −2.31968952362 (11.36)
b1 = 0.967 b2 = −0.037 b3 = 0 (11.37)

The earlier mass-flows, ṁKL and ṁFR, has to be transformed into the flows through
the bypass-valve, the medium pressure cooling sections and the low pressure cooling
sections. The amount of bypassed refrigerant can be estimated by a fraction of the
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total mass-flow through the gas cooler. First this fraction is determined by dividing
the enthalpy at the gas cooler into a fraction of the dew and bubble enthalpy .

HTPgc =(1− x) · HBubP(Prec) + x · HDewP(Prec) <=> (11.38)

x =
HTPgc − HBubP(Prec)

HDewP(Prec)− HBubP(Prec)
(11.39)

Where the gas cooler enthalpy has to be determined by the relation

HTPgc =

{
HTP(Sgc, Pgc, 0) if Pgc > Pkrit

HBubP(Pgc) else
(11.40)

The critical pressure, Pkrit, is defined as the pressure where the refrigerant goes from
subcritical to transcritical operation. The bypass mass-flow, as well as the flows through
the fridges and freezers, are then simply determined by

ṁBP = x · ṁKL (11.41)

ṁLT = ṁFR (11.42)

ṁMT = ṁKL − (ṁBP + ṁLT) (11.43)

The bypassed mass-flow will be split into two parts, such that the load of having a
bypass is divided into a proportion originating from cooling in the fridges and freezers.
The fraction is simply found by taking the ratio between the fridge and freezer load of
the bypassed mass-flow

ṁBP
MT = ṁBP ṁMT

ṁLT + ṁMT (11.44)

ṁBP
LT = ṁBP ṁLT

ṁLT + ṁMT (11.45)

The refrigeration load has to be expressed in power, not mass-flow. The enthalpies of
the flows is multiplied by the mass-flow and the energy is determined as shown

Q̇MT = ṁMT(HTP(SKL
2 , PKL

0 )− HTP(TBubP(Prec), Prec, 0)) (11.46)

Q̇LT = ṁLT(HTP(SFR
2 , PFR

0 )− HTP(TBubP(Prec), Prec, 0)) (11.47)

The temperatures, SKL
2 and SFR

2 is the temperature of the refrigerant just after it leaves
the evaporators. These are approx. SKL

2 ≈ −3 oC and SFR
2 ≈ −21 oC. The refrigeration

load is now determined and the power used by the compressors has to be determined
as well, to construct the COP of the fridge and freezers respectively. The power of the
compressors was determined earlier, but due to the design of the system, the power of
the fridge and freezers has to be found. This is because of the booster setup where the
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load of the freezers are attached at the fridge system as an additional load. The power
used is therefore

ẆMT = ẆKL ṁMT + ṁBP
MT

ṁLT + ṁMT + ṁBP (11.48)

ẆLT = ẆFR + ẆKL ṁLT + ṁBP
LT

ṁLT + ṁMT + ṁBP (11.49)

The COP of the system is calculated by the relation below

COPMT =
Q̇MT

ẆMT
(11.50)

COPLT =
Q̇LT

ẆLT
(11.51)

COPtotal =
Q̇MT + Q̇LT

ẆMT + ẆLT
(11.52)

The three COP’s have been plotted in figure 31 together with the true COP. As seen the
total estimated COP (COP Total) is closely relted to the true COP (COP true total) and
have a similar trend. The accuracy of the result can get even better by filling in the true
volumetric and isentropic efficiencies.
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Figure 31: Plot of COP (Coefficient Of Performance) for the fridge, freezer and total
system estimated by the methods of Danfoss.
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11.4.3 Optimal COP

The second law of thermodynamics puts a fundamental limit on the thermal efficiency
of all cooling systems. Even an ideal cooling system has an upper limit on the
efficiency. From Carnot’s theorem, for any engine working between two temperatures,
the maximal efficiency is given by

COPcar
MT =

T1,L

TH − T1,L
(11.53)

COPcar
LT =

T2,L

TH − T2,L
(11.54)

COPcar
total =

Q̇MTCOPcar
KL + Q̇LTCOPcar

FR
Q̇MT + Q̇LT

(11.55)

The low temperature, TL, is equal to the cold side of the cooling process i.e. approx
T1,L = 2◦C and T2,L = −20◦C. The hot side of the process is given by the outdoor
temperature i.e. TH = Toutdoor. The Carnot efficiency of the total system is approximated
by weighting the two Carnot efficiencies by their energy-flow.

In order to compare the actual efficiency of the process relative to the limit of efficiency,
the ratio between these are used. The clever thing is that one gets a number between
0 and 1, indicating zero efficiency and maximum efficiency decoupled from seasonal
temperature variations. The ratio is simply given by

ηcar =
COP

COPcar (11.56)

The result is shown in figure 32. The figure show the efficiency of the total system using
the load estimated using the mass-flow sensors and power sensors.
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Figure 32: Ratio between the true COP and the reference Carnot COP.
Calculated for the total system.

From figure 32 it is clear that there is a potential for improvement as the refrigeration
system have generally a low efficiency. This is notable when considering that the system
is known to use less energy than the preceding HFC based generation of refrigeration
systems. One should however bear in mind that maximum achievable ηcar in praxis is
limited to around 0,5. It can be seen that for the days chosen the efficiency vary with
time. The difference between the highest and the lowest value corresponds to a 20%
decrease in efficiency. It would be expected that a decrease would correspond to an
increase in the outdoor temperature where the trans critical CO2 process is known to
have a poor performance, but on the contrary it corresponds to low temperatures in
the night. The reason for this is probably that the load in the night is very low and the
resulting frequent on/ off cycling of the compressors reduce the efficiency.

The ratio between COP’s, ηcar, can be used to identify supermarkets where the
refrigeration systems are running uneconomically and start initiatives to reduce the
energy usage. If mass-flow sensors are not available, the estimated load using the AKV’s
could be used.

11.5 Estimation of Volumetric and Isentropic efficiencies

The isentropic efficiency is estimated by isolation in equation (11.29). The mass-flow
and power consumption is measured, and thus the unknown efficiency is known.
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Figure 33: Estimation of isentropic efficiency.

The volumetric efficiency is estimated by isolation in equation (11.27). The mass-flow
and running capacity is measured/known, and thus the unknown efficiency is known.
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Figure 34: Estimation of volumetric efficiency.

12 Conclusion

The report has presented an approach to control and monitor the performance of
supermarket refrigeration systems. Simulations showed that the proposed Model
Predictive Controller can reduce synchronization by coordinating the cooling sites
with the compressor capacity. The computational load of running the controller is
though significant and refrigeration systems of more than three cooling sites are not
computational feasible to solve in real-time. A feed-forward control solution was also
proposed for the compressor-rack controller, but due to the low sample frequency, it
turned out to be impossible to identify a model and do control. The refrigeration
performance has been investigated using both Coriolis mass-flow sensors and general
methods applicable to standard supermarkets. This made it possible to correct and
verify that the load can be estimated using the characteristics of the valves or the
compressor rack. Both methods only make use of already installed sensors in standard
supermarkets, thus making the methods commercial applicable. The estimated COP
can be used to continuously optimize the performance of the system.
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13 Plots of Operation

Data has been logged with 1 min sample interval since 25/08-2011 and until now (04-
10-2011). Generally the data has often been corrupted by data-dropouts for shorter and
longer periods, a system malfunction at the refrigeration system and the power sensors
did not work through the entire period. The data sequences which has been used for
this project was therefore carefully selected. The data at used as training data is from
the period 25-08-2011 09:29:00 to 25-08-2011 14:59:00. Test data is from the period 26-08-
2011 09:29:00 to 26-08-2011 14:59:00. Below is a list of figures showing data (the entire
day at 25-08-2011) from the cooling sites, compressors and the gas cooler.
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Figure 35: 25-08-2011, POS 40A
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Figure 36: 25-08-2011, POS 40B
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Reg. condition

Figure 37: 25-08-2011, POS 40C
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Reg. condition

Figure 38: 25-08-2011, POS 30
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Reg. condition

Figure 39: 25-08-2011, POS 30B
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Reg. condition

Figure 40: 25-08-2011, POS 45

00:00 02:24 04:48 07:12 09:36 12:00 14:24 16:48 19:12 21:36

0

5

10

T
ai

r

 

 
S3A air on temp.
S4A air off temp.
(S3+S4)/2

00:00 02:24 04:48 07:12 09:36 12:00 14:24 16:48 19:12 21:36
0

20

40

60

80

A
K

V
 %

 

 
AKV opening degree

00:00 02:24 04:48 07:12 09:36 12:00 14:24 16:48 19:12 21:36
2

4

6

8

10

R
eg

. c
on

.

 

 
Reg. condition

Figure 41: 25-08-2011, POS 50
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Figure 42: 25-08-2011, Fridge compressor and fridge suction pressure.
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Reg. condition

Figure 43: 25-08-2011, POS 25A
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Reg. condition

Figure 44: 25-08-2011, POS 25B
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Reg. condition

Figure 45: 25-08-2011, POS 25C
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Figure 46: 25-08-2011, POS 20
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Figure 47: 25-08-2011, Freezer compressor and freezer suction pressure.
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Figure 48: 25-08-2011, Gas cooler showing gas bypass valve and
controlled high pressure at the cooling site.
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Figure 49: Plot of estimated power consumption against measured.
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Fridge

Figure 50: 25-08-2011, Plot of measured mass-flow at the fridges.

00:00 04:48 09:36 14:24 19:12 00:00 04:48 09:36 14:24 19:12
0

2

4

6

8

10

Time

Q
 [K

W
]

 

 
Freezer

Figure 51: 25-08-2011, Plot of measured mass-flow at the freezers.
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Bypass

Figure 52: 25-08-2011, Plot of measured mass-flow at the by pass.
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