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Abstract 

In this work the heat dynamics of a storage tank were modelled on the basis of data and maximum likelihood 
methods. The resulting grey-box model was used for Economic Model Predictive Control (MPC) of the energy in the 
tank. The control objective was to balance the energy from a solar collector and the heat consumption in a residential 
house. The storage tank provides heat in periods where there is low solar radiation and stores heat when there is 
surplus solar heat. The forecasts of consumption patterns were based on data obtained from meters in a group of 
single-family houses in Denmark. The tank can also be heated by electric heating elements if necessary, but the 
electricity costs of operating these heating elements should be minimized. Consequently, the heating elements should 
be used in periods with cheap electricity. It is proposed to integrate a price-sensitive control to enable the storage tank 
to serve a smart energy system in which flexible consumers are expected to help balance fluctuating renewable 
energy sources like wind and solar. Through simulations, the impact of applying Economic MPC shows annual 
electricity cost savings up to 25-30%. 
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1. Introduction 

Economic Model Predictive Control (MPC) has previously been used to reduce the electricity costs of 
heating and cooling in buildings [1,2,3]. For a smart solar tank [4] the same MPC framework can be 
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applied in order to save energy and reduce electricity costs. For the system considered in this paper, the 
electricity consumption of the auxiliary heating elements in a storage tank must be controlled. The 
heating elements can be turned on in periods when the amount of solar energy alone cannot meet the heat 
demand, e.g. hot water and space heating in a residential house. 

The MPC exploits knowledge about the future inputs, so to minimize electricity costs a good tank 
model is required, along with excellent forecasts of both solar radiation and consumption patterns. In this 
paper we estimate the parameters in a storage tank model from measured data with a maximum likelihood 
method. With this model we design an Economic MPC to control the power consumption of the heating 
elements according to a price. By adding a price signal to the objective of the controller, the MPC will 
minimize the electricity costs for the individual tank by shifting power consumption to periods with cheap 
electricity. As the electricity costs are reduced the trade-off of considering prices and not power 
consumption alone is to use more power, but at the right time. 

The performance of the MPC in terms of power consumption and electricity costs is investigated for 
different consumption patterns in a one-year simulation period. The influence of uncertainty in the 
forecasts of both solar radiation and consumption is also examined. We assume that electricity prices are 
known each hour at least 12 hours ahead, which is true for the day-ahead Elspot market in Denmark [5]. 
These prices reflect the power demand of the overall energy system and also indicate the amount of cheap 
renewable energy sources available, such as wind power. 

2. Solar thermal collector and storage tank 

The smart solar tank consists of a solar collector with area of 9 m2, and a storage tank with a total 
volume of 788 l. The tank itself contains an inner tank for domestic hot water and a pressureless outer 
tank for space heating. The tank can be heated by the solar collectors. To help cover the remaining heat 
demand, three smaller electric heating elements of 3 kW each are installed in the tank, as shown in Figure 
1b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. (a) Sketch of the tank with inlets, outlets and eight temperature measurement points. (b) Photo of storage tank in lab 
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Solar energy is transferred to the tank by feeding water into the tank through a stratification device. In 
this way, beneficial thermal stratification is built up during solar collector operation [4,6]. Space heating 
is transferred from the upper part of the tank and the return inlet to the tank goes through another 
stratification device. 

2.1. Tank model 

We model the storage tank separated from the solar collector such that the energy balance is 
 

  lossnconsumptiosolarheater QQQQQtank       (1) 

The contribution from the solar collector Qsolar and heat consumption Qconsumption are forecasted inputs. 
The heating element input power consumption Qheater is controllable. The loss is modelled as proportional 
to the temperature difference between the internal tank temperature and the ambient room temperature. 
The actual energy in the tank Qtank cannot be physically measured, but is assumed to be dependent on the 
measured tank temperatures. Eight temperature measurements from different layers of the tank are 
combined to represent an overall tank temperature (Tt) proportional to the stored energy. Using an 
average from the eight sensors (n = 8) we get the tank temperature 
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Based on (1), the heat dynamics of the tank can be described as a simple first order differential equation  
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Qh is the controllable power consumption for the electric heating elements with efficiency . Ct is the 
specific heat capacity of the tank, while the energy contribution from the solar collector Qs and the house 
consumption Qc are both forecasted inputs. We use the forecasts computed from measurements in 
domestic households in southern Denmark based on [7,8]. The ambient temperature Ti should also be 
forecast, but is assumed to be a constant 20°C in further simulations. 

The model data to be used for model estimation was based on a storage tank that uses stratification 
pipes for optimal injection of the return water. Therefore a layered model with more than one temperature 
state should possibly be considered. However, for the given data set and a time scale of minutes, a first 
order model with only one layer was found sufficient for describing the heat dynamics of the tank. 

The solar thermal power is simulated from measured climate data recorded at the local district heating 
plant in Sønderborg. A standard flat-plate collector is used as the simulation model, as described in [9]. 
The solar thermal power is forecast with the method described in [7], where a conditional parametric 
model is applied for forecasting the hourly solar thermal power up to 36 hours ahead. The forecasting 
model takes numerical weather predictions of global radiation as input. Based on past data, the collector 
thermal performance is modelled and takes local effects into account, such as the orientation of the 
collector and shading from objects in the surroundings. 

2.2. Model parameter estimation 

CTSM was used to estimate the unknown parameters of a continuous discrete stochastic state space 
model. The model consists of a set of stochastic differential equations describing the dynamics of a 
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system in continuous time and a set of algebraic equations describing how measurements are obtained at 
discrete time instants. 
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The model includes a diffusion term to account for random effects, but otherwise it is structurally 
similar to ordinary differential equations. Therefore conventional modelling principles can be applied to 
set up the model structure. Given the model structure, any unknown model parameters can be estimated 
from data, including the parameters of the diffusion term. The parameter estimation method is a maximum 
likelihood (ML) method and a maximum a posteriori (MAP) method [10,11,12,13]. 

 

 

Fig. 2. Data measurements from real storage tank used for parameter estimation. The estimated  tank temperature has been also been 
plotted 

The model parameters UACt  were estimated in the continuous time stochastic state space 
model (4) with tTyx  and ics TQQd   that contains the forecast disturbances from (3). It is 
assumed that the measurement error is normal-distributed. with a variance of 1°C such that )1,0(Ne . 
The process noise was assumed to have standard deviation 001.0 . 
 
The parameter estimation was based on the data shown in Fig. 2. The estimated parameters of (3) were 
found to be:  

UA = 8.29 (± 0.0278) W/K   Ct = 3881.3 (± 0.00167) kJ/K        (5) 
 

It should be noted that the heating element efficiency was fixed at 1and the tank temperature 
representing the stored energy was assumed to be an average of all eight temperature measurements. The 
fit of the resulting estimated tank temperature tT̂  is also compared to the average tank temperature Tt in 
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Fig. 2, and reveals a nice match. Note that the consumption pattern Qc in this data set is deterministic and 
the same amount of energy is deliberately drawn from the tank at 7 am, 12 pm, and 7 pm. 

3. Economic MPC 

Traditionally the heating elements in a storage tank are controlled by a thermostat that is either on or off 
and keeps the temperature close to a temperature set point in a hysteresis loop. Instead of specifying a 
temperature set point for the tank, a set of constraints on the tank temperature and on power consumption 
is specified. For the MPC strategy, as long as the temperature is within some bounds, there is no need to 
force it to a certain temperature. In this way knowledge about the future weather and heat consumption 
can help to minimize the power consumption of the heating elements. Adding a price signal to the 
objective will then not only try to minimize the power consumption, but also the electricity costs. So the 
finite static MPC optimization problem to be solved at every sampling time t is 
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At each sampling time, t, we minimize the electricity costs over the prediction horizon N, given the 

forecasts available at time t. The first control action u0 of the solution is implemented on the process and 
the procedure is repeated at the next sampling instant. This is usually referred to as receding horizon 
control. The model (3) is discretized into a discrete time state space model defined by the matrices 
(A,B,E,C) with the estimated parameters (5). The constraints on temperature and power consumption 
must also be satisfied. 

4.  Simulation 

Fig. 3 shows a simulation of the resulting MPC with the estimated tank model. The scenario is based 
on real measured solar radiation and consumption patterns from residential houses in southern Denmark 
during a whole year from May 17 2010. The simulation is a closed loop simulation with a 24-hour 
prediction horizon based on forecasts subject to uncertainty and actual electricity prices from the Nordic 
Elspot market [5].  

In Fig. 4, one week in March 2011 of the simulation from Fig. 3 has been extracted. During the first 
few days the heating elements mostly use power during night-time when the prices are low. In the 
remaining period a lot of solar radiation heats up the tank and the heating elements are practically not 
used. The temperature stays within the predefined interval that defines the storage capability. 
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Fig. 3. A one-year simulation starting May 17 2010 with 24 h prediction horizon using uncertain forecasts. The upper plot shows the 
tank temperature, the middle plot contains the electricity price and the optimal power consumption for the heating element, and the 
lower plot contains the solar heat input and the house consumption demand. The heating element is turned on when the electricity 
price is low. 

 

 

Fig. 4. Shows the same as Fig. 3. but contains only one week in March 2011 to make it easier to read the details. 
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Fig. 5. (a) Annual savings in percent compared to conventional thermostat control for the six different houses. (b) Annual power 
consumption (upper) and electricity costs (lower) for house #2 as a function of the prediction horizon N for four different control 
strategies. Closed loop Economic MPC with perfect forecasts (EMPCp), with real forecasts subject to uncertainty (EMPC), a 
constant electricity price of 1 (MPC) and a Thermostat control keeping the temperature at 60°C. 

5. Results and discussion 

For a whole year the annual power consumption and electricity costs were found from closed loop 
MPC simulations for four different control strategies. The results can be found in Fig. 5a, while a 
simulation for one of the houses is shown in Fig. 5b. For a prediction horizon N larger than 24 hours, the 
cost savings do not increase by much as the prediction horizon increases further. This is mainly due to the 
maximum input power and the storage capacity of the system. Information about the solar radiation or the 
consumption next week will not change the optimal power consumption due to these system constraints. 
Furthermore, using perfect forecasts, i.e. knowing the future inputs exactly, does not increase the savings 
significantly. The annual savings of considering the price with an Economic MPC are 25-30% for the 
given simulation scenarios for six different houses. 

Note that the power consumption for the Economic MPC grows larger than for the ordinary thermostat 
control as the prediction horizon increases. However the costs go down. Consequently, to save more 
money, more electricity must be used for control. However, the increased power consumption can be 
justified when the electricity price reflects the amount of renewable energy in the power system. 

Another result of the investigations is that in the MPC strategy in which only power consumption is 
minimized and where prices are not considered, the annual power consumption is constant regardless of 
the prediction horizon. Since the sampling period is so high (1 h) compared to the dynamics (< 5 min), 
the amount of power (9 kW) that can be delivered instantaneously in every one-hour sampling period is 
higher than the instantaneous demand at any time. So the control signal matches the consumption at every 
sampling time even for a one-hour prediction horizon. Also the control is only active at the lower 
temperature bound, because it is not possible to actively cool the tank. 

Similar results were obtained for the five other houses, with the same conclusions. 
Any missing data in the forecasts was ignored by setting it to zero. This means that some periods in the 

annual simulation have no solar input or no consumption at all. For the six different houses the total 
missing number of samples in the consumption data sets was around 510 (~21 days) for all houses except 
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house 1, where 1800 samples were missing (~78 days). For the solar data that were used for every house, 
351 samples were missing (~14 days). An example of the missing data in the consumption forecast can 
easily be seen in Fig. 3. 

Computation times for solving the individual open loop MPC problem are in the millisecond range. 
Simulating a whole year takes around 5-10 seconds for a prediction horizon of 24 hours running Matlab 
on an Intel i7 2.67 GHz laptop. 

6. Conclusion 

The heat dynamics of a smart solar storage tank were modelled and its parameters were found from 
maximum likelihood estimation procedures. An Economic MPC was designed to control the power 
consumption of the auxiliary heating elements in the storage tank. The MPC minimizes electricity costs 
given the price and forecasts of the solar radiation and consumption. Electricity cost savings of 25-30% 
compared to current thermostat control strategy were found for six different houses. 
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