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Abstract— The risk of hypoglycemia is one of the main
concerns in treatment of type 1 diabetes (T1D). In this paper we
present a head-to-head comparison of a currently used insulin-
only controller and a prospective bihormonal controller for
blood glucose in people with T1D. The bihormonal strategy
uses insulin to treat hyperglycemia as well as glucagon to
ensure fast recovery from hypoglycemic episodes. Two separate
model predictive controllers (MPC) based on patient-specific
models handle insulin and glucagon infusion. In addition, the
control algorithm consists of a Kalman filter and a meal time
insulin bolus calculator. The feedback is obtained from a con-
tinuous glucose monitor (CGM). We implement a bihormonal
simulation model with time-varying parameters available for 3
subjects to compare the strategies. We consider a protocol with
3 events - a correct mealtime insulin bolus, a missed bolus and
a bolus overestimated by 60%. During normal operation both
strategies provide similar results. The contribution of glucagon
becomes evident after administration of the overestimated
insulin bolus. In a 10h period following an overbolused meal,
the bihormonal strategy reduces time spent in hypoglycemia
in the most severe case by almost 15% (1.5h), outperforming
the insulin-only control. Therefore, glucagon contributes to the
safety of an Artificial Pancreas.

I. INTRODUCTION

The International Diabetes Federation estimates the preva-
lence of diabetes to be over 380 million worldwide [1]. Ap-
proximately 10% of the diabetic patients suffer from type 1
diabetes (T1D). In usual insulin therapy, patients are required
to make decisions on the actual insulin dosing infused by
insulin pens or pumps. However, these decisions are often
based on intuition as the amount of information available
to the patient is limited. Erroneous decisions may lead
to insulin overdosing followed by dangerous hypoglycemic
episodes. Conversely, the patient may deliberately underdose
the insulin to avoid hypoglycemia at the cost of long term
complications caused by insufficient diabetes compensation.

For decades, researchers have been developing an au-
tomated glucose control system, known as the artificial
pancreas (AP) [2]. Continuous subcutaneous insulin infusion
systems (CSII) allowed a continuous insulin dosing. Yet, the
closed-loop control had a fundamental drawback in missing
feedback from glucose sensing. Eventually, development of
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CGMs has made the idea of a closed-loop control practically
achievable.

With the feedback available, various control strategies
have been investigated. Among others PID control [3],
adaptive control [4]–[6], and fuzzy logic control [7]. The
most widely used control approach is the model predic-
tive control (MPC) due to its ability to elegantly handle
a broad range of system constraints [2], [8], [9]. Despite
the progress in AP research, it remains a great challenge
to overcome the difficulties in glucose regulation. Inter-
and intra-patient variability, considerable lag in action time
caused by subcutaneous route of insulin infusion and sensing,
and CGM reliability may all compromise safety of the
glucose regulation. Prevention and safe recovery from the
hypoglycemic episodes are the main concerns of the AP
systems.

A potential way to increase safety of these systems may be
to incorporate the insulin-antagonistic pancreatic hormone,
glucagon, into the control system. So far, the absence of
a stable soluble glucagon formulation has been a major
problem. Recently, several pharmaceutical companies re-
vealed information about a planned release of formulations
overcoming the current problems.

[10]–[12] involve glucagon in the control systems. Clin-
ical trials in [11], as well as simulation results in [12]
provide evidence that the bihormonal artificial pancreas can
significantly reduce the risk and time spent in hypoglycemic
episodes compared to usual insulin therapy. However, they
do not provide comparison of the bihormonal AP with an
insulin-only solution to distinguish the benefits of glucagon
use.

In this paper, we analyze the contribution of glucagon
in a blood glucose control system by means of simulation
to obtain preliminary results precluding a planned clinical
study. We describe a clinical protocol which will be used
in the study. We provide a comparison of an MPC-based
control system which employs only insulin and a bihormonal
control system containing two independent MPCs for insulin
and glucagon infusion. Both solutions include a pre-meal
insulin bolus calculator to partly compensate the postprandial
glucose peaks [13].

For the simulation purposes we use a bihormonal model
presented together with its parameters for three subjects in
[12]. The controller tuning is based on individual models
built from patient specific data.

The paper is organized as follows. Section II describes
the bihormonal model used for the simulations. Section III

2015 American Control Conference
Palmer House Hilton
July 1-3, 2015. Chicago, IL, USA

978-1-4799-8684-2/$31.00 ©2015 AACC 5097



briefly presents the individual patient models and predictions
performed by a Kalman filter and predictor. Section IV
outlines the control system. Sections V and VI provide
simulation results and a conclusion.

II. SIMULATION MODEL

There are numerous models describing the glucose
metabolism which include the insulin and carbohydrate
absorption dynamics [9], [14]. However, only few of the
models incorporate glucagon and allow to simulate the
effects of subcutaneously injected insulin and also glucagon
[12], [15], [16]. To simulate the controlled system we use a
model proposed in [12]. The model presents an extension to
the minimal model of plasma glucose and insulin kinetics
by employing a glucagon action on endogenous glucose
production, a subcutaneous insulin absorption model and a
gastrointestinal absorption model proposed by Hovorka [14].
The bihormonal model [12] is described by a system of
ODEs that we introduce and explain in this section.

A. Extended Model of Glucose Kinetics

The glucose kinetics is described by a system of differen-
tial equations in the form

Ġ(t) =−[SG +X(t)−Y (t)]G(t)+SGGb +
D2(t)

tmaxGV
(1a)

Ẋ(t) =−p2X(t)+ p2SI [I(t)− Ib] (1b)
Ẏ (t) =−p3Y (t)+ p3SN [N(t)−Nb] (1c)

where G [mg/dl] is the plasma glucose concentration, I
[µU/dl] is the plasma insulin, and N [pg/dl] the plasma
glucagon concentration. X [min−1] and Y [min−1] represent
the insulin and glucagon action on glucose production. SG
[min−1] is the fractional glucose effectiveness describing
how glucose per se promotes its disposal and inhibits its
production. SI [min−1/(µU/ml)], SN [min−1/(pg/ml)] are the
insulin and glucagon sensitivities. p2 [min−1] and p3 [min−1]
are rate constants describing the dynamics of insulin and
glucagon action. V [dl/kg] is the glucose distribution volume
and Ra(t) = D2(t)/tmaxG [mg/min/kg] is the rate of appear-
ance of glucose in plasma following a meal ingestion. Values
with b denote the basal state.

B. Gastrointestinal Absorption Model

The model incorporates a two-compartment gastrointesti-
nal absorption subsystem presented by Hovorka [14]

Ḋ1(t) =
1

tmaxG
(−D1(t))+AGDG (2a)

Ḋ2(t) =
1

tmaxG
(−D2(t)+D1(t)) (2b)

where D1(t) describes glucose in the first compartment,
D2(t) is glucose in the second compartment, AG [-] is the
carbohydrate bioavailability. DG [mg/kg/min] represents the
intake of carbohydrates per kg of body weight.

C. Subcutaneous Insulin Absorption Model
The model employs a linear model of subcutaneous insulin

absorption

İ(t) =−keI(t)+
S2(t)

VItmaxI
(3a)

Ṡ1(t) = u1(t)−
S1(t)
tmaxI

(3b)

Ṡ2(t) =
S1(t)−S2(t)

tmaxI
(3c)

where ke [min−1] describes the insulin clearance from
plasma, u1 [µU/kg/min] is the subcutaneous insulin infusion
rate, VI [ml/kg] is the distribution volume of plasma insulin,
tmaxI [min] is the insulin absorption time constant and S1, S2
represent a two-compartment absorption of subcutaneously
administered insulin.

D. Subcutaneous Glucagon Absorption Model
Herrero et al. [12] use the same model structure as in case

of insulin to model subcutaneous glucagon absorption

Ṅ(t) =−kNN(t)+
Z2(t)

VNtmaxN
(4a)

Ż1(t) = u2(t)−
Z1(t)
tmaxN

(4b)

Ż2(t) =
Z1(t)−Z2(t)

tmaxN
(4c)

kN [min−1] describes the glucagon clearance from plasma, u2
[pg/kg/min] is the subcutaneous glucagon infusion rate, VN
[ml/kg] is the distribution volume of plasma glucagon, tmaxN
[min] is the glucagon absorption time constant and Z1, Z2
represent a two-compartment absorption of subcutaneously
administered glucagon.

E. Model Parameters
To mimic the Circadian rhythm for 3 real patients, [12]

identifies separate sets of parameters corresponding to 3
time windows of day. In our simulations we use the model
together with the identified time-varying parameters to com-
pare performance of a bihormonal and an insulin-only control
system.

F. Glucose Measurement
A CGM provides feedback to the controller. The sensor

measures glucose concentration in the interstitial tissue,
which differs from concentration in the plasma. We use a
CGM model [17] to generate the CGM measurement data
with a non-Gaussian sensor noise from the plasma glucose
concentration.

III. PREDICTION MODEL
The model [12] is too complex to be individualized

from the patient clinical data and directly used in a model
based controller. In this section we develop a simple linear
model of the subcutaneous glucose concentration identifiable
from basic patient data. The resulting model is the basis
for filtering and prediction in the model predictive control
system.
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A. ARMAX Model

The model has ARMAX structure with a deterministic
and a stochastic part. The deterministic part describes the
glucose-insulin and glucose-glucagon dynamics when insulin
and glucagon are administered subcutaneously. The stochas-
tic part accounts for unknown disturbances. Identification of
the glucose-insulin dynamics using various linear models has
been considered previously [6], [18]. We use second order
continuous-time transfer function models in the form

GI(s) =
Y (s)
U1(s)

=
KI

(τIs+1)2 (5)

Gg(s) =
Y (s)
U2(s)

=
Kg

(τgs+1)2 (6)

This simple model offers a key advantage - its parameters
KI , τI (Kg, τg) can be computed directly from the available
patient specific data, the insulin sensitivity factor (ISF) and
the insulin action time [5]. Definition and illustration of ISF
and τI can be found in [5]. From the time-domain impulse
response of (5), y(t)=KIt/τ2

I e−t/τI , it is easy to show that the
insulin action time is equal to τI . Consequently, y(τI)=−ISF
and KI =−τIe1 ISF . We discretize the models (5), (6) with
sampling time Ts = 5 min assuming a ZOH on the insulin
and glucagon infusion rates, u1(t) and u2(t). We augment
the discrete-time deterministic model with a stochastic part
presented in [5]. The resulting discrete-time model can be
expressed as a dual-input ARMAX model [13]

Ā(q−1)y(t) = B̄1(q−1)u1(t)+ B̄2(q−1)u2(t)+C̄(q−1)ε(t) (7)

The stochastic term C̄(q−1)ε(t) models effects of unknown
disturbances, e.g. exercise or uncertainty of meals.

B. Filtering and Prediction

An innovation form state space realization of (7) with A,
B, C, K in canonical observer form is [19], [20]

xk+1 = Axk +Buk +Kεk (8a)
yk =Cxk + εk (8b)

xk and yk represent deviations from the steady-state, uk =
[u1k u2k]

T is the control vector of the insulin and glucagon
infusion rates computed at step k. We use the Kalman gain,
K, identified in [5]. The gain is constant for all patients.
We denote the columns of matrix B as B = [B1 B2]. The
Kalman filter performs state estimation and prediction with
the innovation form state space model (8) as follows [20]:
The innovation of (8) is ek = yk−Cx̂k|k−1. x̂k|k−1 is a one-
step prediction of the state vector xk computed at step k−1.
Using x̂k|k = x̂k|k−1, the predictions are [20]

x̂k+1|k = Ax̂k|k−1 +Buk|k +Kek (9a)

ŷk+1|k =Cx̂k+1|k (9b)

x̂k+1+ j|k = Ax̂k+ j|k +Buk+ j|k j = 1,2, ...N−1 (9c)

ŷk+1+ j|k =Cx̂k+1+ j|k j = 1,2, ...N−1 (9d)

The Kalman filter receives all available information including
the current and future micro-bolus insulin and glucagon
infusion rates as well as the current mealtime insulin bolus.

Model (7) does not include a carbohydrate absorption
subsystem. The innovation ek provides feedback to the
Kalman filter and predictor. When CGM measures a rise
in the subcutaneous glucose concentration following a meal
ingestion, the Kalman filter receives the information about
meal indirectly, through this feedback.

IV. CONTROL SYSTEM

The control system consists of a micro-bolus insulin
infusion controller, a glucagon infusion controller, and an
insulin bolus calculator that is enabled if a meal is announced
at mealtime. In the center of the system is the Kalman filter
which interconnects the three elements. The filter reflects
previous insulin (micro-bolus as well as mealtime bolus) and
glucagon infusion in the state update and the predictions. The
insulin infusion rate, u1, k, computed at each sampling instant
consists of the micro-bolus insulin infusion, u1m, k, and the
mealtime insulin bolus, u1bol, k. u1, k represents a deviation
from the basal infusion rate, u1b, which maintains a steady
state glucose concentration 5.5 mmo/L.

A. Insulin and Glucagon Controller Switching

To avoid a simultaneous infusion of both hormones we
employ a simple switching logic of the insulin and glucagon
controller with hysteresis. The hysteresis prevents frequent
switching between the two controllers around a single glu-
cose level. During normal operation above the hypoglycemic
range, only the insulin controller is running. The glucagon
controller is switched on when glucose concentration de-
creases under 4.5 mmol/L and simultaneously the micro-
bolus insulin controller is switched off. In order to disable the
glucagon injection and turn the micro-bolus insulin controller
back on, the glucose concentration has to reach 5 mmol/L.
We could achieve the same behavior by a single MIMO
MPC, however, at the cost of a more complicated tuning
and increased computational requirements to solve a more
complex optimization problem.

B. Micro-Bolus Insulin Controller Design

Currently, the most successful strategy for the blood
glucose control is the MPC [2], [14], [21].

1) Linear Model Predictive Controller: In this section we
describe a linear MPC that is responsible for the insulin
infusion. We consider both input and output constraints.

The micro-bolus insulin controller and the glucagon con-
troller are never active simultaneously. Therefore, the insulin
micro-bolus controller prediction model does not have to
explicitly involve current and future glucagon infusion. In-
formation about past glucagon injections is present in the
Kalman filter state estimates and available for the micro-
bolus insulin controller. Conversely, the glucagon controller
does not have to explicitly involve current and future insulin
infusion in its prediction model. The state estimates also
contain information about the mealtime insulin boluses.
Thus, direct information is not necessary for the controllers.

At each sample instant we compute the insulin micro-bolus
infusion rate by solution of a constrained convex quadratic
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program

min
{u1m j ,η j+1}N−1

j=0

φ (10a)

s. t. x̂k+1|k =Ax̂k|k−1 +B1u1mk|k +Kek (10b)

ŷk+1|k =Cx̂k+1|k (10c)

x̂k+1+ j|k =Ax̂k+ j|k +B1u1mk+ j|k j∈N1 (10d)

ŷk+1+ j|k =Cx̂k+1+ j|k j∈N1 (10e)

u1m min≤u1mk+ j−1|k≤u1m max j∈N0 (10f)

ŷk+ j|k≥ymin− η̂k+ j|k j∈N0 (10g)

ŷk+ j|k≤ymax + η̂k+ j|k j∈N0 (10h)

η̂k+ j|k≥0 j∈N0 (10i)

with N0={1,...,N}, N1={1,...,N-1} and the objective function

φ =
1
2

N−1

∑
j=0
‖ŷk+1+ j|k− rk+1+ j|k‖2 +λI‖∆u1m k+ j|k‖2

+ γ‖η̂k+1+ j|k‖2 (11)

We use a prediction and control horizon of 20 hours (N =
240). It has to be sufficiently long to capture the slow
glucose-insulin dynamics and include the effect of all insulin
on board. The objective function (11) penalizes the glucose
deviations from the setpoint, rk+1+ j|k, as well as violations
of the output soft constraints (10g)-(10h). The asymmetric
soft constraint bounds, ymin and ymax, correspond to 4 and
10 mmol/L. The soft constraint violation is subject to heavy
penalty with γ = 100. The regularization term λI‖∆uk+ j|k‖2

ensures smooth control by tempering the controller aggres-
siveness. λI = 600/u1b is individualized by the patient-
specific basal rate, u1b, which maintains a steady state 5.5
mmol/L. The computed insulin infusion profile represents
deviations from the constant basal infusion rate u1b. Thus,
the micro-bolus insulin controller operates in the range
[−u1b,u1m max].

2) Algorithm Modifications: To enhance safety the algo-
rithm includes a time-varying reference signal [5], [22] when
the glucose concentration is above the target. Furthermore, a
set of security rules limits the maximal insulin infusion rate,
u1m max, depending on the current glucose level. A detailed
description of the modifications can be found in [13].

C. Mealtime Bolus Calculation

The mealtime insulin bolus calculation requires knowledge
of the insulin-to-carbohydrate ratio, IC (U/g), and the amount
of carbohydrates ingested, CHO (g). We estimate the IC from
the insulin sensitivity factor, ISF (mmol/L/U) and the glu-
cose rise, ∆G1 (mmol/L) after ingestion of a defined amount
of carbohydrates, CHO1 (g). Then, IC =(∆G/CHO)/ISF .
The amount of bolus insulin is computed as

Bolus=CHO · IC (12)

D. Glucagon Controller Design

The glucagon MPC uses the same structure as the MPC
that manipulates the insulin micro-bolus infusion (10b)-(10i)
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Fig. 1. Illustration of the glucose excursion penalty in the insulin (full
line) and glucagon (dashed line) MPC.

with control vector u2 and vector B2 corresponding to the
glucagon infusion. The objective function is

φ =
1
2

N−1

∑
j=0
‖ŷk+1+ j|k− rg k+1+ j|k‖2 +λG‖∆u2;k+ j|k‖2

+ γ‖η̂k+1+ j|k‖2 (13)

We do not restrict the maximal glucagon infusion rate (10f).
Naturally, the lower bound is 0. Soft constraints (10g)-(10h)
prevent hypoglycemia as well as excessive glucagon admin-
istration. The lower and upper constraints correspond to 4
mmol/L and 6 mmol/L. The soft constraint violation penalty
remains γ = 100. The term penalizing changes in glucagon
infusion rate uses λG = 0.1. The glucagon MPC tracks
the target 5 (∼ rg=-0.5) mmol/L. Fig. 1 depicts different
penalization of the glucose excursions from setpoints in the
micro-bolus insulin and the glucagon MPC.

V. SIMULATIONS
We compare the insulin-only and the bihormonal control

strategy for the 3 subjects with daily profiles of parameters
identified in [12].

A. Simulated Scenario - Simplified Clinical Protocol

For the simulation purposes we consider a simplified, and
idealized 3 day protocol. The protocol includes 3 different
events for each subject. In the idealized scenario, the events
are executed at separate days. Physical exercise should
also be included as an additional event. However, the vast
majority of the available models, including the one that we
are using, do not support exercise simulation. Therefore, we
exclude this event from the simulation study. We assume
that at the beginning of the simulation (00:00), the subjects
are at steady state (5.5 mmol/L). Each event includes a
meal containing 60 g of carbohydrates at 10:00. In the three
consecutive events, we administer 100%, 0% and 160% of
the calculated meal time insulin bolus.

B. Results

Fig. 2 illustrates the results obtained by the bihormonal
and the insulin-only control strategy for Subjects 1 and 2.
Tables I-IV summarize the time spent in different glucose
concentration zones for each patient.
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TABLE I
SUMMARY OF THE WHOLE EXPERIMENT. BIHORMONAL CONTROL.

Glucose (mmol/L) Subject 1 [%] Subject 2 [%] Subject 3 [%]
G≥ 10 3.36 4.63 1.62
G≥ 6.7 13.31 11.11 10.99

3.9≤G≤ 10 96.41 93.40 98.37
3.9≤G≤ 6.7 86.46 86.92 89.00

G≤ 3.9 0.23 1.97 0.00
G≤ 3.5 0.00 1.16 0.00

TABLE II
SUMMARY OF THE WHOLE EXPERIMENT. INSULIN-ONLY CONTROL.

Glucose (mmol/L) Subject 1 [%] Subject 2 [%] Subject 3 [%]
G≥ 10 3.36 4.40 1.62
G≥ 6.7 12.38 11.00 11.00

3.9≤G≤ 10 95.95 91.55 98.37
3.9≤G≤ 6.7 86.92 84.95 89.00

G≤ 3.9 0.69 4.05 0.00
G≤ 3.5 0.00 2.78 0.00

1) Correct Meal Time Insulin Bolus: In case of the first
event with 100% of the mealtime insulin bolus administered,
both strategies ensure safe glucose control in each subject.
A noteworthy difference can be seen in Subject 2 where the
bihormonal control system ensures faster transition from the
lower zone of euglycemia to the target. The single hormone
control system is also able to avoid hypoglycemia thanks to
an early suspension of the micro-bolus insulin infusion by
the safety rules [13].

2) No Meal Time Insulin Bolus: In case of a missed
bolus, the micro-bolus insulin controller alone is not able
to compensate the postprandial glucose peaks particularly
due to the strict safety rules limiting the maximal micro-
bolus insulin infusion rate. On the other hand, the safety
rules prevent the controller from insulin overdose. After the
peak, the glucose smoothly converges to the target without
any considerable undershoot.

3) Overestimated Insulin Bolus: The last event simulates
a situation when the patients overestimate a meal and the al-
gorithm administers a too large meal time insulin bolus. This
may lead to insulin overdose and potential hypoglycemia.
In case of Subject 3, the two strategies perform almost
identically with small glucagon injections caused by the
measurement noise. The situation changes with Subject 1
and 2 where the glucagon controller actively helps to bring
the glucose concentration back to the target. Especially in
Subject 2, the glucagon controller considerably reduces the
time spent in hypoglycemia.

4) Experiment Summary: Tables I - IV provide a sum-
mary of the whole experiment and of a 10 hour window
following the 3rd event with 160% of the bolus adminis-
tered. In general, during normal operation both strategies
provide good results. However, in case of an eventual insulin
overdose, the bihormonal strategy clearly outperforms the
insulin-only control. The bihormonal control reduces time
spent in hypoglycemia during a 10 hour period after the
meal ingestion and bolus administration by almost 16% as
indicated in Table III and Table IV.

TABLE III
SUMMARY OF EVENT 3. BIHORMONAL CONTROL.

Glucose (mmol/L) Subject 1 [%] Subject 2 [%] Subject 3 [%]
G≥ 10 0 0 0
G≥ 6.7 25.62 14.88 8.26

3.9≤G≤ 10 98.35 85.95 100
3.9≤G≤ 6.7 72.73 71.07 91.74

G≤ 3.9 1.65 14.05 0.00
G≤ 3.5 0.00 8.26 0.00

TABLE IV
SUMMARY OF EVENT 3. INSULIN-ONLY CONTROL.

Glucose (mmol/L) Subject 1 [%] Subject 2 [%] Subject 3 [%]
G≥ 10 0 0 0
G≥ 6.7 19.01 14.05 8.26

3.9≤G≤ 10 95.04 71.07 100
3.9≤G≤ 6.7 76.03 57.02 91.74

G≤ 3.9 4.96 28.93 0.00
G≤ 3.5 0.00 19.83 0.00

VI. CONCLUSION

This paper provides a head-to-head comparison of a bi-
hormonal and an insulin-only control system for the blood
glucose concentration in people with type 1 diabetes. The
simulation results provide evidence, that in case of unex-
pected events, such as meal overestimation, the glucagon
has large potential to mitigate effects of the insulin-induced
hypoglycemia, and thus, provide additional safety compared
to the insulin-only controller. The simulations do not include
physical exercise. Intensive exercise may further prove the
glucagon to be an efficient way to prevent hypoglycemia and
ensure a fast recovery.

Due to significant variance of the parameters over time,
adaptive strategies should be considered in future work. Tun-
ing of the glucagon controller to be sufficiently aggressive,
but at the same time resistant to unwanted activation caused
by measurement noise is also an important challenge.
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