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A grey-box approach to process modelling that combines deterministic and stochastic mod- 
elling is advocated for identification of models for model-based control of batch and semi-batch 
processes. A computer-aided tool designed for supporting decision-making within the corre- 
sponding modelling cycle is presented. 

1. INTRODUCTION 

With the development and increasing number of possible applications of advanced model 
based process control schemes, e.g. model predictive control (MPC), more and more rigorous 
demands are placed on the quality of available dynamic process models. Model quality mea- 
sures the ability of the model to predict the future evolution of the process, so in order to obtain 
good prediction performance, these models must be able to capture the inherently nonlinear be- 
haviour of many process systems, such as batch and semi-batch processes. Furthermore these 
models must be able to provide predictions in the presence of noise, i.e. process noise due to 
approximation errors, unmodelled inputs and plant-model mismatch and measurement noise 

due to imperfect measurements. Meeting both demands with the same model is difficult, so 
there is a tendency in litterature to use either a deterministic approach or a stochastic black-box 

approach to process modelling. 
The deterministic approach is based on using first engineering principles to derive ordinary 

differential equation (ODE) models. These models are well-suited for describing nonlinear 
behaviour, but they lack the desired predictive capabilities in the presence of noise, because 
they do not encompass a noise model and because unknown parameters are estimated in an 
output error (OE) setting, which tends to emphasize the pure simulation capabilities of the 
model instead of the predictive capabilities, cf. Young (1981). 

The stochastic black-box approach, on the other hand, is based solely on using time series 
data for identifying a model, usually in the form of a discrete time transfer function model. 
These models usually have very nice predictive capabilities because of their inherent noise 
model and because unknown parameters are estimated in a prediction error (PE) setting, cf. 
Young (1981). Unfortunately these models are not equally well-suited for describing nonlinear 
behaviour, especially not outside the (possibly narrow) operating region, within which the time 
series data for identification is obtained. 
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In this paper an alternative grey-box approach to process modelling is advocated. This ap- 
proach combines the deterministic approach and the stochastic black-box approach in a way that 
seeks to combine their respective strengths, i.e. from ODE models the intuitive appeal of their 
derivation from first engineering principles and their ability to describe nonlinear behaviour, 
and from stochastic black-box models the nice predictive capabilities and their ability to handle 
both process and measurement noise. 

The aim of this paper is to describe the grey-box approach and outline its advantages. This 
is done in Section 2, where a computer aided tool that aims to support decision-making within 
this approach is also presented. In Section 3 a small example is given to illustrate one of the 
advantages of this approach and the conclusions are presented in Section 4. 

2. A GREY-BOX APPROACH TO PROCESS MODELLING 

A very appealing way of combining the deterministic and the stochastic approaches to pro- 
cess modelling is to use stochastic differential equation (SDE) models as shown by Astrrm 
(1970). The grey-box approach advocated in this paper is therefore based on SDE models in 
the It6 sense or, to be more specific, on the continuous-discrete stochastic state space model 

dxt = f (xt , ut,t, O)dt + ~(t,  O)dcot (1) 

Yk = h(xk, uk, tk, 0) + ek (2) 

where t E ~ is time, xt E X c Nn is a vector of state variables, ut c U C Nm is a vector of input 
variables and Yk E y C R l is a vector of measurements, xk = Xt=tk and uk = Ut=tk. 0 C 19 C RP 
is a vector of parameters, and f ( . )  C R n, or(.) C ]t~ n x q  and h(-) E R l are nonlinear functions, cot 
is a q-dimensional standard Wiener process and ek C N (O,S(tk, O)) is an/-dimensional white 
noise process. 

Fig. 1. The modelling cycle for  control which constitutes the core of  the grey-box approach to 

process modelling. 

Figure 1 shows a modelling cycle based on this model, which describes the grey-box ap- 
proach, and by means of which some of its advantages can be outlined. 

�9 The continuous time system equation (1) allows the initial structure of the model to be 
determined from first engineering principles in the form of an ODE model, which is 
intuitively appealing, since any prior physical knowledge can be included and because 
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the parameters of the model can easily be given a physical interpretation. Furthermore, 
most chemical and process systems engineers are familiar with this way of constructing 
a model. 

�9 When subsequently determining unknown parameters of the model from a set of data, 
the continuous time system equation (1) and the discrete time measurement equation (2) 
make the model flexible by allowing varying sample times and missing observations. 

�9 The model provides a separation between process and measurement noise, which along 
with the stochastic nature of the model allow the parameters to be estimated in a PE 
setting using a statistically sound method, e.g. m a x i m u m  l ikel ihood (ML). 

�9 For the same reasons statistical tests and residual analysis can subsequently be applied in 
a systematic manner to validate the model, and if it is found that the model is not valid 
these tools also provide information on how to alter the model to improve its quality. 

In the following the individual elements of the modelling cycle are explained in more detail. 
Once a model structure has been determined from first engineering principles, unknown pa- 

rameters of the model can be estimated from a set of data. Nielsen et al. (2000) have recently re- 
viewed the state of the art with respect to parameter estimation in discretely observed It6 SDE's 
and found that only methods based on nonlinear filtering provide an approximate solution to the 
full problem of determining ML estimates of the parameters of the continuous-discrete stochas- 
tic state space model. Unfortunately, applying nonlinear filtering is difficult, so in order for the 
grey-box approach to be feasible, extended Kalman filtering (EKF) is used instead as shown in 
the following. 

Determining ML estimates of the parameters means finding the parameters 0, including the 
initial conditions x0, that maximize the likelihood function with respect to 0 given a set of mea- 
surements Yo, yl . . . . .  y~ . . . . .  YN. By introducing 9~ = [Yk,Yk-1, . . . ,Yl ,YO] and ~klk_ 1 = E { y k l ~ k - 1 ,  0},  
Rklk-1 = V { y k l ~ k - 1 , 0 }  and ek -- Yk -- 33klk-1 and by assuming that the conditional probability 
densities are Gaussian, the likelihood function becomes 

e'k P~k k- 
L(YNI 0 ) f i p ( y k l ~ k _ l , O )  p(yolO) f i  exp (-- l13k) - -  - -  l p ( y o l O  ) (3) 

k=l k=l v/det (Rk k-l) (V/~) 

where, for given parameters 0, ek and Rklk-1 can be computed by using a continuous-discrete 
EKF. If prior information is available in the form of an a priori probability density function p(0) 
for the parameters, Bayes rule can provide an improved estimate of the parameters by forming 
the posterior probability density function, i.e. 

p(0[YN) -- L(YNIO)p(O) o, L(YNlO)p(O) (4) 
P(YN) 

and subsequently finding the parameters that maximize this function, i.e. by performing max-  

imum a pos ter ior i  (MAP) estimation. By assuming that the prior probability density of the 
parameters is Gaussian, and by introducing/1o = E{O}, E0 = V{O} and e0 = 0-/1o the poste- 
rior probability density function becomes 

p ( O i Y N ) ~  1-NI exp( - l e r O - 1  
l p(yolO) p (5) 

k=l 1 v/det (Rk k- ) (V/~) v/det (E0) (v~- )  
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If, instead of a single set of measurements, several consecutive, but yet separate, sets of mea- 
surements, i.e. y11, y22 . . . . .  YNi . . . . .  y s  s, possibly of varying length, are available, a similar 
estimation method can be applied by expanding the expression for the posterior probability 
density function to the general form 

f i  exp (  - 1  T -1 p(OIY)~ l~I exp(--l(e~)T(R~lk-1)-l(eik)) P(y~lO) 2 e ~ 1 7 6 1 7 6  

i=1 k=l ~//det(Rikk_l)(V/~) l v/det ( l ~ 0 ) ( v ~ )  p (6) 
I 

where Y - [yll ,  y22,... , Y/vi,'", ySs]" Finding the estimates of the parameters 0 is now a mat- 

ter of further conditioning on Y o -  [yl,y2,... ,rio,..., ySo] and applying nonlinear optimisation 
to find the minimum of the negative logarithm of the resulting posterior probability density 
function, i.e. 

t~ - a rgm~ - In (p(01Y , Yo)) (7) 
ttEt~ 

With this formulation it is possible to perform MAP estimation on several data sets of varying 
length, but as special cases it is also possible to perform ML estimation on several data sets 
(with p(0) uniform), MAP estimation on a single data set (with S - 1) and ML estimation on a 
single data set (with p(0) uniform and S = 1). 

When the unknown parameters of the model have been found using one of the above estima- 
tors, statistical tests and residual analysis can be performed. First of all, since the estimators 
are all asymptotically Gaussian the parameter estimates and their standard deviations can be 
used to perform marginal t-tests for parameter significance, i.e. to test if the parameters are sig- 
nificantly different from zero. This is particularly important for the process noise parameters, 
because parameters that are significantly different from zero indicate that the model structure 
is not perfect, i.e. that there may be approximation errors, unmodelled inputs or plant-model 
mismatch. 

It is an inherent assumption of the above methods for estimation of parameters that the con- 
ditional probability densities are Gaussian, and for nonlinear systems this assumption is only 
likely to hold when small sample times are used, so the validity of this assumption should also 
be tested by performing a test for Gaussianity. 

Finally it is possible to test if the model is correct by performing a goodness of fit test as 
shown by Bake t  al. (1999) and by performing residual analysis. For the latter purpose both 
standard linear methods and nonlinear methods based on nonparametric modelling are available, 
cf. Nielsen and Madsen (2001). 

For supporting decision-making within the modelling cycle a computer aided tool, CTSM, 
has been developed, cf. Kristensen and Madsen (2000). Within this tool a number of program 
units corresponding to the individual elements of the modelling cycle have been or will be im- 
plemented, including a graphical user interface for setting up the model structure and algorithms 
for estimating parameters and performing statistical tests and residual analysis. Altogether these 
program units aid the chemical or process systems engineer when setting up models. 

3 .  E X A M P L E  

The following is an example, which illustrates an important feature of the grey-box approach 
- the possibility of determining whether a given model structure is correct from estimates of the 
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process noise parameters. 
The process considered is a simple fed-batch fermentation process described by an unstruc- 

tured model, i.e. 

d s  - / - ~ ( s ) x /  8 ) 

yS = S/< -I-- e~ 
\y~,] Vk \ e  v 

[o! 0 0] 
-I- (1 ) F dt + (y2 dot , t C [0, 3.8] (8) 

1 0 (y2 

(9) 

where X and S are the concentrations of biomass and substrate, V is the volume of the fermenter 
v and F is the feed flow rate, and finally e~k C N (0, 0.01), e s C N (0, 0.001) and e k C N (0, 0.01). 

For the growth rate/~(S) two different cases are considered, namely 

s �9 A correct model structure with lu(S) - -  ~ m a x  K 1 S 2 + S + 0 . 5  �9 

�9 An incorrect model structure with p(S) - / U m a x  S s-4E" 
corresponding to biomass growth with Monod kinetics and with and without substrate inhibition 
respectively. 

Using the true parameter values in Table 1, 10 sets of simulation data (100 samples each with 
a sample time of 0.038) have been generated by perturbing the feed flow rate along an analyti- 
cally determined optimal trajectory, and all the results mentioned in the following correspond to 

2 2 and the initial conditions ML estimation of ]-/max (or/Umax), g l  (or/~1 ), (y2, (y2, (y2, (YS' (Ye S, (Ye v 
using all 10 data sets. 

Table 1 
True and estimated values of the parameters of the fermentation process model. Upper part: 
Case 1-  correct structure of ll(S). Lower part: Case 2-incorrect  structure of  l2(S). 

Parameter True value Estimated value Standard deviation Significant 
]-/max 1 1.021 0.0044 YES 
K1 0.03 0.03005 0.00139 YES 
o 2 0 4.026e-4 1.270e-4 NO 
o 2 0 1.365e-5 1.391e-5 NO 
c~ 2 0 3.100e-4 1.298e-4 NO 

~max - 0.7661 0.0066 YES 
/~1 - 0.01066 0.00007 YES 
c~ 2 0 0.05687 0.00369 YES 
o 2 0 0.08714 0.00935 YES 
c~ 0 0.002089 0.000167 YES 

With the correct model structure, the parameter estimates in the upper part of Table 1 are 
obtained. The estimates of ,t/ma x and K1 are very accurate, and the estimates and standard devi- 
ations of (y2, (y2 and (y2 indicate that these parameters are not significantly different from zero. 
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This is subsequently confirmed by performing t-tests, and this indicates that the model structure 
is indeed correct. 

With the incorrect model structure, on the other hand, the parameter estimates in the lower 
part of Table 1 are obtained. Now 6~, 6 2 and 6 2 are all significantly different from zero, 
indicating approximation errors, unmodelled inputs or, as in this case, plant-model mismatch. 

4. CONCLUSION 

A grey-box approach to process modelling that combines deterministic and stochastic mod- 
elling is advocated for identification of models for model-based control of batch and semi-batch 
processes, and a computer-aided tool designed for supporting decision-making in the corre- 
sponding modelling cycle has been presented. 

The grey-box approach is based on flexible and statistically sound continuous-discrete stochas- 
tic state space models, which have the same appeal as ODE models with respect to their deriva- 
tion from first engineering principles. One of the most important advantages of the approach 
is its built-in features for performing model validation by means of statistical tests and resid- 
ual analysis, e.g. that the significance of the parameters of the process noise term may provide 
information about the validity of a proposed nominal model. 
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