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Abstract: In this paper we compare the performance of five different continuous time transfer
function models used in closed-loop model predictive control (MPC). These models describe
the glucose-insulin and glucose-glucagon dynamics. They are discretized into a state-space
description and used as prediction models in the MPC algorithm. We simulate a scenario
including meals and daily variations in the model parameters. The numerical results do not
show significant changes in the glucose traces for any of the models, excepted for the first order
model. From the present study, we can conclude that the second order model without delay
should provide the best trade-off between sensitivity to uncertainties and practical usability for

in vivo clinical studies.
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1. INTRODUCTION

In people with type 1 diabetes (T1D), the immune sys-
tem destroys the insulin-producing B-cells in the islets
of Langerhans in the pancreas. This condition leads to
a deficiency in endogenous insulin production, which is
manifested by significant metabolic disturbances including
elevated blood glucose levels (i.e. hyperglycemia). To keep
the glucose level under control and avoid the long term
complications associated with hyperglycemia, people with
T1D have to administer exogenous insulin. Nowadays,
patients are treated either by Multiple Daily Injections
of insulin (MDI) or by Continuous Subcutaneous Insulin
Infusion (CSII) using an insulin pump. These therapies
are usually titrated empirically by the patient and his/her
physician. To a large extent, the efficiency of the treatment
is dependent on the patient’s decisions on insulin dosing.

For more than 50 years, scientists have been trying to
replace the patient’s decisions by an automated closed-
loop insulin delivery system, known as Artificial Pancreas
(AP). Various control strategies have been investigated
and tested. Yet, a popular approach with promising results
is MPC (Turksoy et al. (2014); Magni et al. (2009)). An
important component of the MPC is the choice of the
model used to compute predictions. Several models used
for modeling and/or control can be found in the literature.
For instance, Kirchsteiger et al. (2011) used a third order

* Funded by the Danish Diabetes Academy supported by the Novo
Nordisk Foundation. Contact information: John Bagterp Jgrgensen
(jbjo@dtu.dk).

transfer function with an integrator, van Heusden et al.
(2012) used a third order discrete transfer function model
and Percival et al. (2010) applied a first order transfer
function with a time delay and an integrator. In our
previous work, we used a second order transfer function
model, see Boiroux et al. (2012); Bétora et al. (2015). All
these models have been validated on simulations and/or
clinical studies. However, some of these models may not
be suitable as prediction models in an AP using MPC.

One way to reduce the risk of hypoglycemia is to incor-
porate glucagon as a safety hormone in the AP. Results
from Herrero et al. (2013a); Russell et al. (2014); Bétora
et al. (2014) show, that a dual-hormone AP (i.e. AP
with insulin and glucagon) has the potential to increase
the safety of the glucose control and provide a tighter
regulation without increasing risk of hypoglycemia. Fig.
1 shows a possible AP setup, including the CGM sensor,
a smartphone used for monitoring and control, and the
insulin and glucagon pumps.

The purpose of the present paper is to discuss the impor-
tance of the prediction model in the model predictive con-
trol (MPC) algorithm. We use a control strategy allowing
both administration of insulin and glucagon. We state and
compare five different transfer function models on 30-hour
simulations with meals and variations in the model pa-
rameters reflecting the Circadian rhythm for three virtual
patients.
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Fig. 1. The dual-hormone artificial pancreas. It includes
a CGM sensor, a smartphone for monitoring and
control, an insulin pump and a glucagon pump.

2. SIMULATION MODEL

The model proposed by Herrero et al. (2013b) simulates
the effects of subcutaneously administered insulin and
glucagon, as well as the effect of meal intakes. This model
presents an extension to the minimal model of plasma
glucose and insulin kinetics by employing a glucagon ac-
tion resulting in glucose production, a subcutaneous in-
sulin absorption model and the gastrointestinal absorption
model proposed by Hovorka et al. (2004). We augment this
model with a model for glucose transport from plasma to
interstitial tissues introduced by Breton and Kovatchev
(2008).

2.1 Extended Model of Glucose Kinetics

The glucose kinetics is described by a system of differential
equations in the form

G(t) = —[S¢ + X(t) — Y(D)]G(t) + SaGy + %
(1a)
X(t) = —p2X(t) + p2Si[I(t) — I (1b)

Y(t) = —psY (t) + psSn[N(t) — Np) (1c)
where G(t) [mg/dl] is the plasma glucose concentration,
I(t) [wU/d]] is the plasma insulin, and N(t) [pg/dl] the
plasma glucagon concentration. X (t) [min~=!] and Y (¢)
[min~—!] represent the insulin and glucagon action on
glucose production.

2.2 Gastrointestinal Absorption Model
The model incorporates a two-compartment gastrointesti-

nal absorption subsystem suggested by Hovorka et al.
(2004)

Dr(t) = 1 (~Di(t) + AcDa (2a)
Dolt) = (-Dat) + Di(®)  (2)

D, (t) describes the glucose in the first compartment and
Dy(t) is the glucose in the second compartment.

2.8 Subcutaneous Insulin Absorption Model

The model employs a linear model of subcutaneous insulin
absorption
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I(t) = =k I(t) + Visz(?xz (3a)
510 = w( - 22 (3b)
Sy = 2O =2 (30)

S1(t) and Ss(t) represent a two-compartment absorption
model of subcutaneously administered insulin.

2.4 Subcutaneous Glucagon Absorption Model
Herrero et al. Herrero et al. (2013b) use the same model

structure as in case of insulin to model subcutaneous
glucagon absorption

N (0) =~k N () + 2 (1a)
2100) = ualt) - 20 (4b)
Iolt) = Zy (i)n;iz(t) (4c)

Z1(t) and Zs(t) represent a two-compartment absorption
of subcutaneously administered glucagon.

2.5 Model Parameters

In our simulations, we use separate sets of time-varying
parameters originally identified from 3 patients to repro-
duce the Circadian rhythm. We use the model together
with the identified time-varying parameters to compare
the performance of the different prediction models. The
detailed description and the numerical values of the model
parameters can be found in Herrero et al. (2013a).

2.6 Glucose Measurement

A CGM provides feedback to the controller. The sensor
measures glucose concentration in the interstitial tissue,
which differs from concentration in the plasma. We use
a CGM model to generate the CGM measurement data
with a non-Gaussian sensor noise from the plasma glucose
concentration (Breton and Kovatchev (2008)).

3. MODELING OF GLUCOSE-INSULIN DYNAMICS

In this section, we introduce several prediction models
for subcutaneous (sc) glucose, y(t). The model has a
deterministic part describing the effect of sc injected
insulin and glucagon, u(t), and a stochastic part describing
the effect of other unknown factors.

Even the most simple physiological models for people
with T1D, such as the minimal model developed by
Bergman et al. (1981), may be difficult to identify, as
shown in Pillonetto et al. (2003). Using a low-order linear
model to describe the glucose-insulin and glucose-glucagon
dynamics can overcome this limitation.

Transfer function models ~We compare continuous-time
transfer functions of the form

Y(s) =Yp(s) +Ys(s) =G(s)U(s)+ H(s)E(s)  (b)
Yp(s) represents the deterministic part and Ys(s) the
stochastic part. The term G(s)U(s) in (5) models the
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Table 1. Continuous-time insulin and glucagon
transfer functions.

Order Insulin t.f. Glucagon t.f.
Gi(s) Ga(s)
K K,
1st order + delay T —ors ¢ —fgs
(rrs+1) (tgs+1)
2nd order L Ko
(15 +1)2 (TG;(-F 1)2
K
2nd order + delay 71267015 7G2 —fgs
(TISI;F 1) (TG;(Jr 1)
3rd orde L ¢
rd order (TIS n 1)3 (TG;(‘F 1)3
3rd ord del L —0rs NG —bgs
rd order + delay (T[S+1)3e (TGS-"-I)SE

effects of the manipulated variables U(s) (insulin and
glucagon) on the output (glucose). Thus, the deterministic
part Yp(s) can be reformulated as

Yos) = Gis) Golo)] | {1()] (62

= G1(s)Ur(s) + Ga(s)Uc(s) (6b)
Gr(s) and Gg(s) represent the transfer functions from
insulin/glucagon to glucose. Us(s) and Ug(s) are the
Laplace transforms of the insulin injection, uy(t), and the
glucagon injection, ug(t).

The term H(s)E(s) in (5) is a stochastic part representing
the (unknown) process and measurement noises and other
plant-model mismatches to model the effect of sc injected
insulin and sc injected glucagon on sc glucose. Here, we
consider first, second and third order models. The different
transfer functions used in this paper are listed in Table 1.

Parameter identification  For all the transfer function
models, the gains K; and Kg, the time constants 7
and 7g, and the time delays 6; and s are identified by
least-square fitting of the insulin and glucagon impulse
responses. The insulin and glucagon boluses sizes are
0.1U and 1ug, respectively. Fig. 2 illustrates the impulse
response of each model for a 0.1U insulin bolus for the five
considered models. A similar result has been observed for
the glucagon impulse response (not shown).

Due to the fact that the glucose level returns to its initial
value after a bolus, models including an integrator cannot
be identified, and are therefore not included in this study.
Also, we assume the time constants to be equal in the
second and third order models. This choice has been
motivated by the following reasons. Firstly, identifying
more than one time constant does not improve the fitting.
Other research groups reached a similar conclusion, see
e.g. Kirchsteiger et al. (2011). Secondly, having more than
one time constant would be impractical for real clinical
studies where the parameters are obtained from patient-
specific parameters, such as body weight, basal insulin,
insulin sensitivity factor or insulin action time.

4. STOCHASTIC MODEL

We discretize the transfer functions (5) in the form
Bi(g™") Ba(g™h) Clg™)

y(t) = (oD (o) —e(t) (7)
(g™ alg™) D(q™1)

with a sampling time of 5 minutes. Similarly to the

continuous-time transfer function (5), the model (7) has

’LL[(t) +

uag (t) +

Subcutaneous glucose (mmol/L)
o
N
[6;]

5.4 —Nonlinear model
—1st order + delay
—2nd order
5.35¢ ---2nd order + delay
—3rd order
) ----3rd order + delay
0 5 20 25

10 15
Time (hours)

Fig. 2. Impulse response of each model on glucose for a
0.1U insulin bolus

a deterministic part describing the effects of insulin injec-
tions uy(t), the effects of glucagon injections ue(t) and
the stochastic term C(q~1)/D(q 1)e(t). e(t) is assumed
to be a white noise process. In addition, we assume that
ClgY) =1+cig t+eag 2 and D(qg71) = A;(g71). 1 and
co are determined from clinical data for one real patient
(Duun-Henriksen et al. (2012)). They are ¢; = 1.62 and
¢z = 0.68. This turns the model (7) into the following au-
toregressive moving average model with exogenous input
(ARMAX)

A(g Yy(t) = Br(g~ Yur(t) + Balq Huc(t) + C‘(Q’l)e((t

4.1 Realization and predictions

We can represent the ARMAX model (8) as the following
discrete-time state space model in innovation form

Tyl = Az + Bl-ui,k + Bgug,k + Key, (9&)
yr = Cxy + &g (9b)
The innovation of the discrete-time state space model (9)
is
er = Yk — Cpjp—1 (10)
and the corresponding predictions are
Tk = Agjk—1 + By + Kep, (11a)

j"k+1+j|k :A£k+j|k+B’&k+J\k7 j: 1,7N—1 (11b)
Z)k+j|k :C‘%k+j\k7 j=1,...7N (110)
The innovation (10) and the predictions (11) constitute

the feedback and the predictions in the model predictive
controller described in the next section.

5. MODEL PREDICTIVE CONTROL

In this section we describe the linear MPC responsible for
the insulin and glucagon infusion. The controller uses a
relay with hysteresis to avoid simultaneous injections of
insulin and glucagon and oscillations around a single relay
level. The switching strategy is discussed in Batora et al.
(2014) and is based on the current estimate of the output

Ure|k—1-
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The innovation (10) provides the feedback from the CGM
to the controller. We consider hard constraints on the
inputs (insulin or glucagon) and soft constraints on the
output (glucose level).

5.1 Micro-Bolus Insulin Controller Design

At each time sample the controller computes the insulin
micro-bolus infusion rate by solving the constrained con-
vex quadratic program

min (12a)
{urgmisr};y!

s. t. ik-ﬁ-l\k:Ain—l + Blul;k\k + Key, (12b)
Ukt 1)k=CZpt1k (12¢)
Tpg14 e =AZppj ik + Bruppgjn JEN1  (12d)
U145k =CTht 144k JEN1  (12e)
UL min SUTk4j—1 |k <ULmax J€ENo (12f)
Ukt |k = Ymin — Dhtj|k JENo  (12g)
Ukt |k <Ymax + Mtk JENo  (12h)
M1k >0 JENo  (12i)

with No={1,...,N}, N1={1,...,N-1} and the objective
function

1Nl
3 > Mdks1iin = rraregel® + Al Al

§=0

+7||77k+1+j|1~c||2 (13)

We use a prediction and control horizon of 24 hours
(N =288). It has to be sufficiently long to capture the
slow glucose-insulin dynamics and include the effect of
all insulin on board. The objective function (13) penal-
izes the glucose deviations from the setpoint, 74414k,
as well as violations of the output soft constraints (12g)-
(12h). The asymmetric soft constraint bounds, ymi, and
Ymax correspond to 4 mmol/L and 10 mmol/L. The slack
variables 7;41 are used to penalize the soft constraint
violation, which is subject to heavy penalty with v =100.
The regularization term Ar[|Auyyyj;[|* ensures smooth
control by tempering the controller aggressiveness. A\ =
600/uq p is individualized by the patient-specific basal rate,
urp, which maintains a steady state 5.5 mmol/L. The com-
puted insulin infusion profile represents deviations from
the constant basal infusion rate ur,. Thus, the micro-bolus
insulin controller operates in the range [—us.b, Us:max)-

o=

Algorithm Modifications  To enhance safety the algo-
rithm includes a time-varying reference signal when the
glucose concentration is above the target. Furthermore, a
set of security rules limits the maximal insulin infusion
rate, Urmax, depending on the current glucose level. A
detailed description of the modifications can be found in
Bétora et al. (2014).

5.2 Mealtime Bolus Calculation

The insulin mealtime bolus calculation utilizes information
about the insulin-to-carbohydrate ratio IC' (U/g) and
the meal size (g). We estimate the IC from the insulin
sensitivity factor and the patients response to a defined

0.1

o o o
o o o
= =z ==

Cost function x 10°

o
o
i

. 7 8
Glucose concentration (mmol/L)

Fig. 3. The asymmetric cost functions for insulin and
glucagon.

amount of carbohydrates ingested. We compute the bolus
size in the following way

CHO
"j1c
CHO (g) is the amount of carbohydrates ingested. To

prevent insulin overdose, we choose n=0.7 regardless of
the current glucose level.

Bolus = (14)

5.8 Glucagon Controller Design

The glucagon MPC uses the same structure as the MPC
that manipulates the insulin micro-bolus infusion (12b)-
(121) with control vector ug and vector Bg corresponding
to the glucagon infusion. The objective function is

N—-1
=3 Z 19kr1141% = el + Aa | Augk skl

j=0
+7H77k+1+j|kH2 (15)

We do not restrict the maximal glucagon infusion rate
(12f). Soft constraints (12g)-(12h) prevent hypoglycemia
as well as overshooting the target glucose level due to
excessive glucagon administration. The lower and upper
constraints correspond to 4 mmol/L and 6 mmol/L. The
soft constraint violation penalty remains v =100. The
term penalizing glucagon infusion rate uses Ag =0.1 to
prevent sudden variations and unnecessary administration
of glucagon. The asymmetric cost functions for insulin (13)
and glucagon (15) are plotted in Fig. 3.

6. SIMULATION RESULTS AND DISCUSSION

We compare the five transfer function models introduced
in Table 1 for the three patients identified in Herrero et al.
(2013b). The model parameters change throughout the day
and reflect the intra-patient variability. We simulate a 30-
hour scenario including three major meals and one snack.
The meal sizes are adjusted according to the body weight
of the subject. We consider the nominal case where the
parameters in the transfer function (gains, time constants
and time delays) are correctly estimated for the morning
(5:00 - 12:00). We use the same CGM noise realization for
each of the five models for comparison purposes.
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6.1 Qualitative analysis of the glucose, insulin and glucagon
traces for patient 3

Fig. 4 depicts the glucose, insulin and glucagon traces
for the five models for patient number 3. The glucose
traces do not show any substantial difference for the second
and third order models. However, slightly more severe
hypoglycemia and slower recovery occur for the first order
model.

For the first order model, the switching timings between
insulin and glucagon differ from the other models. The
CGM noise sequences are identical for all the models.
However, the inaccuracy of the output estimates for the
first order model explains such a difference (data not
shown).

It can also be noticed that the third order models have
more abrupt variations in the insulin and glucagon traces.
Increasing the penalty parameter on insulin variation in
the objective function (13) would only partially solve this
issue, as the predictions are more sensitive to noise.

Nevertheless, the deterministic part in (7) does not take
into account all the uncertainties, such as the process and
measurement, noises, uncertainty in meal size or model-
patient mismatches. Addressing these uncertainties ade-
quately could benefit to the overall performance of the
controller.

The second order model without delay performs similarly
compared to the third order models. The second order
with delay avoids hypoglycemia after dinner (i.e. in the
time 18:00 - 21:00) and can reduce the postprandial hy-
perglycemia after dinner. Therefore, it seems to be slightly
superior to the other models in terms of the controller
performance for this specific patient and scenario.

6.2 Quantitative analysis for all patients

Table 2 shows the time spent in target, in hypo- and in
hyperglycemia along with the total amount of adminis-
tered basal insulin and glucagon for each virtual patient
and each model.

All prediction models perform similarly. In terms of time
spent in hypoglycemia, the second order and the third
order models without delays perform the best, at the
expense of a larger amount of administered glucagon. The
first order model spends the largest time in hypoglycemia.

In terms of time spent in euglycemia, the second order
models on average outperform the other ones. However,
it is important to notice that the difference is small. The
third order models use by far the least amount of insulin.

From the Table 2 and the traces shown in Fig. 4, we can
conclude that the second order with delay offers a slightly
better performance than the other models.

However, a model with delay requires the identification
of an extra parameter (the time delay). In practice, this
parameter is difficult to obtain without conducting an
impulse response experiment. Third order models are
more sensitive to the effects of uncertainties. The first
order model with delay has a slower response to glucose
variations, leading to longer hypoglycemic events. From
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Fig. 4. Comparison of the bi-hormonal control strategy
for all the transfer function models in the nominal
case. From top to bottom: Glucose trace, Insulin and
glucagon traces for the first order model with delay,
the second order model, the second order model with
delay, the third order model, and the third order
model with delay. Red triangles: Meal. Blue circles:
Bolus

this, we can conclude that the second order model without
delay should provide the best trade-off between the overall
performance and the use in a clinical practice.

7. CONCLUSION

This paper presents a qualitative and quantitative com-
parison of the performance of five prediction models for
three virtual patients with T1D. The numerical results
suggest that the performance of the controller is almost
not affected by the choice of the prediction model. Even
models fitting the impulse response poorly are able to
provide a fairly good glycemic control. On the other hand,
models specifically designed for modeling may not perform
optimally when it comes to closed-loop control. Therefore,
one of the most important criteria in the choice of the
prediction model is the implementation in vivo.
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Table 2. Summary of the experiment, no mismatch

1st order + delay  2nd order 2nd order + delay  3rd order  3rd order + delay
Patient 1 G > 10 mmol/L (%) 0.00 0.00 0.00 0.00 0.00
8 < G <10 mmol/L (%) 7.50 7.78 7.50 8.89 778
3.9<G <8 mmol/L (%) 92.50 92.22 92.50 91.11 92.22
G < 3.9 mmol/L (%) 0.00 0.00 0.00 0.00 0.00
Total basal insulin administered (U) 8.33 7.63 8.15 5.42 6.78
Total glucagon administered (ug) 0.00 48.47 7.97 28.85 17.77
Patient 2 G > 10 mmol/L (%) 0.00 0.00 0.00 0.00 0.00
8 <G <10 mmol/L (%) 6.39 6.67 6.39 6.94 6.67
3.9< G <8 mmol/L (%) 88.89 91.67 89.72 91.95 91.39
G < 3.9 mmol/L (%) 4.72 1.66 3.89 1.11 1.94
Total basal insulin administered (U) 12.19 10.12 12.18 9.12 10.91
Total glucagon administered (ug) 0.00 48.94 10.64 42.25 28.91
Patient 3 G > 10 mmol/L (%) 0.00 1.39 0.00 0.00 0.00
8 <G <10 mmol/L (%) 5.83 8.33 6.39 12.22 11.67
3.9< G <8 mmol/L (%) 91.11 90.28 93.61 87.78 88.33
G < 3.9 mmol/L (%) 3.06 0.00 0.00 0.00 0.00
Total basal insulin administered (U) 22.54 21.43 21.03 16.84 17.40
Total glucagon administered (ug) 7.92 126.27 63.22 111.21 101.42
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