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Morten Hagdrup ∗ Niels Kjølstad Poulsen ∗ Henrik Madsen ∗

John Bagterp Jørgensen ∗

∗ DTU Compute, Technical University of Denmark, Kgs. Lyngby,
Denmark

∗∗ Danish Diabetes Academy, Odense, Denamrk

Abstract: In patients with type 1 diabetes, the effects of meals intake on blood glucose level
are usually mitigated by administering a large amount of insulin (bolus) at mealtime or even
slightly before. This strategy assumes, among other things, a prior knowledge of the meal
size and the postprandial glucose dynamics. On the other hand, administering the meal bolus
during or after mealtime could benefit from the information provided by the postprandial meal
dynamics at the expense of a delayed meal bolus. The present paper investigates different bolus
administration strategies (at mealtime, 15 minutes after or 30 minutes after the beginning of
the meal). We implement a continuous-discrete unscented Kalman filter to estimate the states
and insulin sensitivity. These estimates are used in a bolus calculator. The numerical results
demonstrate that administering the meal bolus 15 minutes after mealtime both reduces the
risk of hypoglycemia in case of an overestimated meal and the time spent in hyperglycemia if
the meal size is underestimated. Faster insulin and the use of glucagon will have the potential
to encourage postprandial meal bolus administration and hence will not require to accurately
estimate the meal size.
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1. INTRODUCTION

It is essential for patients with type 1 diabetes (T1D) to
regulate their blood glucose tightly using frequent insulin
injections, ideally in the range 4-8 mmol/L. Prolonged high
blood glucose levels (hyperglycemia) may lead to long-
term clinical complications, while low blood glucose levels
have immediate effects.

An increasing number of patients use continuous glucose
monitors (CGMs) and continuous subcutaneous infusion
of insulin (CSII) pumps instead of multiple daily injec-
tions (MDI). This sensor- and pump- augmented therapy
has proven to improve glycemic regulation compared to
the conventional insulin therapy (Haidar et al. (2015)).
Nevertheless, yet only a minority of patients using a CGM
and CSII pump can manage to control their blood glucose
level correctly according to the study by Nørgaard et al.
(2013).

Automated or semi-automated control of blood glucose,
also called the artificial pancreas (AP), has the potential
to improve glycemic control and assist patients with T1D
in their therapy. Current prototypes of the AP consist of
a CGM, a control algorithm residing on a mobile platform
(e.g. a smartphone) and a CSII pump. Fig. 1 illustrates
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Fig. 1. The artificial pancreas.

the AP. Clinical studies demonstrated that the use of an
AP during the night reduces the risk of nocturnal hypo-
or hyperglycemia (Hovorka et al. (2010); Schmidt et al.
(2013)). More recently, outpatient clinical studies were
performed (Kovatchev et al. (2014)). However, tight glu-
cose regulation during daytime is more difficult to achieve
than during night time because of various disturbances
that can affect the glucose level.
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As a matter of fact, meals represent a major challenge
both for the patient and the control algorithm due to
the high nonlinearity of the insulin-glucose dynamics, the
difficulty to accurately estimate the carbohydrates (CHO)
content and the slower action of insulin compared to the
meal intake. Brazeau et al. (2013) show the difficulty for
patients with T1D to correctly estimate the CHO content
of a given meal. An example illustrating the nonlinearity
of glucose-insulin dynamics and the effects of the delayed
insulin action on the postprandial glucose excursion can
be found in Boiroux et al. (2010).

The current bolus calculators mainly rely on the patient
ability to correctly estimate the meal size and the insulin-
to-carbohydrates ratio. The computed bolus may then
possibly be adjusted depending on the current glucose level
and the estimated insulin on board

uB =
CHO

ICR
+ CF (G− Ḡ)− IOB (1)

in which uB [U] is the insulin bolus, CHO [g] is the
estimated meal content, ICR [g/U] is the insulin-to-CHO
ratio (the amount of CHO), CF [U/(mmol/L)] is the
correction factor (the amount of insulin needed to decrease
the blood glucose level by 1 mmol/L), G [mmol/L] is the
current glucose level, Ḡ [mmol/L] is the target glucose
level and IOB [U] is the estimated insulin on board (see
e.g. Zisser et al. (2008) for a review of bolus calculators). In
the case where the meal size and time are perfectly known,
it is usually optimal to administer the meal bolus either
at mealtime, or even before, excepted for meals with high-
fat content (Srinivasan et al. (2014)). On the other hand,
if the patient cannot estimate the meal size accurately, it
may be preferable to estimate the bolus size based on the
postprandial glucose dynamics.

In this paper, we want to investigate whether it is prefer-
able to administer the meal bolus at mealtime and rely
solely on the meal announcement provided by the patient,
or to use the information provided by the postprandial
dynamics - here, we consider waiting for 15 or 30 minutes.
Waiting will provide a more accurate information about
the CHO contents of the meals at the expense of a delayed
bolus administration.

This paper proposes an approach based on a continuous-
discrete unscented Kalman filter (CDUKF) to estimate
the current states and parameters of the system. This
estimate is used to compute the optimal prandial bolus in
patient with T1D. The CDUKF has already been tested on
the Bergman minimal model (Eberle and Ament (2012))
and on the Hovorka model (Szalay et al. (2014)). It is
structured as following. Section 2 presents the physiolog-
ical model of the patient used for simulation. Section 3
describes the continuous-discrete filter algorithm and its
implementation. Section 4 introduces the bolus calculator.
Section 5 discusses the simulation results for a population
of 10 patients with T1D. Finally, section 6 summarizes the
main findings of this paper.

2. PHYSIOLOGICAL MODEL

Several models describing the insulin-glucose dynamics
and the CHO absorption have been developed, see e.g.
Hovorka et al. (2004) or Cobelli et al. (2009). More recent
models also include a description of the glucagon-glucose

dynamics, see Herrero et al. (2013) or Dalla Man et al.
(2014). In this paper, we use the Medtronic Virtual Patient
(MVP) model presented in Kanderian et al. (2009). This
model has the main advantage to be easier to identify
compared to the others, and therefore more suitable for
the design of state and parameter estimators. It has been
identified for 10 patients. The parameters for these 10
patients are used for the numerical simulations.

2.1 Insulin absorption subsystem

The insulin absorption subsystem is given by the following
two-compartment model

dISC

dt
(t) =

u(t)

CIτ1
− ISC(t)

τ1
(2a)

dIP
dt

(t) =
ISC(t)− IP (t)

τ2
(2b)

where ISC(t) [mU/L/min] is the subcutaneous insulin
concentration, and IP (t) [mU/L] is the plasma insulin
concentration. u(t) [mU/min] in the insulin infusion rate,
CI [L/min] is the clearance rate. τ1 and τ2 [min] are the
insulin absorption time constants. It must be pointed out
that these time constants are interchangeable.

2.2 Insulin-glucose dynamics

In the MVP model, the effect of insulin on blood glucose
is described by the following ODEs

dIEFF

dt
(t) = −p2IEFF (t) + p2SIIP (t) (3a)

dG

dt
(t) = −(IEFF +GEZI)G(t) + EGP +RA(t)

(3b)

IEFF (t) [min−1] is the effect of insulin. p2 [min−1]
is a parameter and SI [mL/mU] reflects the insulin
sensitivity. The glucose concentration G(t) [mg/dL] is
also affected by the glucose elimination at zero insulin
rate (GEZI) [min−1], the endogenous glucose production
(EGP ) [mg/dL/min] and the glucose rate of appearance
RA(t) [mg/dL/min].

The insulin effect and the glucose dynamics (3) are similar
to the one developed by Bergman et al. (1981). This
formulation allows for an easier parameter identification
compared to other physiological models.

2.3 Meal absorption subsystem

We consider here the two-compartment model used in
Hovorka et al. (2004) to describe the CHO absorption and
conversion to glucose. The model describes the effect of
orally ingested carbohydrates on the rate of appearance
of glucose RA(t) [mg/dL/min] in the blood stream. The
model is

dD1

dt
(t) = d(t)− D1(t)

τG
(4a)

dD2

dt
(t) =

D1(t)−D2(t)

τG
(4b)

RA(t) =
D2(t)

τGVG
(4c)
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d(t) [mg/min] is the meal intake. τG [min] is the meal
absorption time constant and VG [dL−1] is the glucose
distribution volume.

2.4 Sensor model

In this paper, we use the model developed by Facchinetti
et al. (2014) for a DEXCOM Seven Plus sensor. This model
represents the glucose transport from plasma to interstitial
tissues and the sensor noise. The glucose transport is
modeled as

dGSC

dt
(t) =

1

τG,SC
(G(t)−GSC(t)) (5)

where the time constant tauG,SC is 6.7 min.

Then, the noise is represented by the sum of the two
following autoregressive processes

cc(t) = 1.23cc(t− 1)− 0.3995cc(t− 2) + wcc(t) (6a)

v̂(t) = 1.013v̂(t− 1)− 0.2135v̂(t− 2) + w(t) (6b)

in which cc(t) is the noise from the common compo-
nent, v̂(t) is the measurement noise, wcc(t) ∼ N(0,11.3
mg2/dL2) and w(t) ∼ N(0,14.45 mg2/dL2).

3. THE CONTINUOUS-DISCRETE UNSCENTED
KALMAN FILTER (CDUKF)

The unscented Kalman filter (UKF) has been developed
by Julier et al. (2000). In many applications, this filter
shows better performance than the extended Kalman filter
(EKF) without increasing the computational time order.
The UKF propagates the state and covariance estimates
for a set of wisely chosen points (also called sigma points)
such that the nonlinearities are more accurately propa-
gated than for the EKF. The UKF has been applied to
plasma insulin estimation based on glucose measurements,
see Eberle and Ament (2011).

However, this filter was initially designed for discrete-time
systems. Sarkka (2007) presents a continuous-time and
continuous-discrete unscented Kalman filter (CDUKF).
This section recalls the principle and the implementation
of the CDUKF and describes its application for state and
parameter estimation.

The CDUKF estimates the states of the system given a
stochastic continuous-time model and measurements at
discrete times, i.e.

dx(t) = f(t, x(t), u(t), θ)dt+ σdω(t) (7a)

yk = h(tk, x(tk)) + vk (7b)

in which x(t) is the state vector. u(t) is the input vector.
Here, we assume a zero-order hold parametrization, i.e.
u(t) = uk for tk ≤ t < tk+1. θ represents the model
parameters. {ω(t), t ≥ 0} is a standard Wiener process
with covariance Idt. We assume that the matrix σ is
time-invariant. The measurement noise vk is normally
distributed, vk ∼ Niid(0, Rk).

We assume that the initial state x0 is normally distributed
with a known mean and covariance, x0 ∼ N(x̂0|−1, P0|−1).

3.1 Prediction step

For any integer k ≥ 1, we consider the following sigma
points

Xk−1 =
[
x̂k−1 x̂k−1 ± γ

√
Pk−1

]
(8)

where γ =
√
L+ λ. The parameter λ = α2(L + κ) − L is

a scaling parameter. The tuning parameter 0 ≤ α < 1 has
an influence on the spread of the sigma points around the
mean value and is usually set to a small value. Here, we
choose α = 10−4. A square root of Pk−1 (which is in the
general case not unique) can for example be computed by
using the Cholesky factorization.

The weights Wm,c
i are defined as

Wm
0 =

λ

L+ λ
(9a)

W c
0 =

λ

L+ λ
+ 1− α2 + β (9b)

Wm
i = W c

i =
1

2(L+ λ)
, i = 1, 2, ..., 2L (9c)

Here, we set β = 2 since we assume that the process and
output noises follow a Gaussian distribution. Furthermore,
we define

wm = [Wm
0 Wm

1 · · · Wm
2L]

′
(10a)

W = (I − [wm · · · wm]) diag (W c
0 · · ·W c

2L)

(I − [wm · · · wm])
′

(10b)

The one-step ahead prediction of the mean-covariance is
determined by solving the following system of differential
equations for tk−1 ≤ t ≤ tk

dx̂

dt
(t) = f(X (t), u(t), θ)wm (11a)

dP (t)

dt
= X (t)Wf(X (t), u(t), θ)′+

f(X (t), u(t), θ)WX (t)′ + σσ′ (11b)

with the initial conditions x̂(tk−1) = x̂k−1 and P (tk−1) =
Pk−1. The one-step ahead prediction of the output is

ŷ−k = h(tk,X−
k )wm (12)

3.2 Filtering step

Since we have discrete outputs, the filtering step is similar
to the discrete UKF. The mean variance and covariance of
the process and output noise are

Pxkyk
= X−

k Wh(tk,X−
k )′ (13a)

Pỹkỹk
= h(tk,X−

k )Wh(tk,X−
k )′ (13b)

Similarly to the extended Kalman filter, the Kalman gain
is

Kk = Pxkyk
P−1
ỹkỹk

(14)

and the filtered mean and process covariance are

x̂k = x̂k−1 +Kk

(
yk − ŷ−k

)
(15a)

Further explanations about the CDUKF can be found in
Sarkka (2007).

3.3 Parameter estimation

We perform online parameter estimation by augmenting
the states with the set of parameters we want to estimate.
The continuous-time SDE system becomes[

dx(t)
dθ(t)

]
=

[
f(t, x(t), u(t))

0

]
dt+ σ̄dω(t) (16)

where θ(t) is the set of parameters we want to estimate
and σ̄dω(t) represents the augmented Wiener process. The
filtering and one-step ahead prediction steps presented
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previously are then modified accordingly. In our case, we
want to estimate the insulin sensitivity SI(t) and the meal
compartment D1(t).

Nevertheless, these two states cannot be estimated si-
multaneously. For instance, if a sudden increase in blood
glucose level occurs, it can be either attributed to a change
in patient’s physiology (e.g. an increased resistance to
insulin) or to a meal intake. We use the following switching
strategy to estimate these two states:

• If no meal has been ingested within the three pre-
vious hours, the filter will only estimate the insulin
sensitivity SI(t).

• If a meal has been ingested within the three previous
hours, the filter will only estimate the meal compart-
ment D1(t).

4. BASAL AND BOLUS CALCULATION

Meals are the major disturbance for blood glucose in
patients with T1D. Therefore, a possible approach is to
handle them in a different way. For instance feedforward-
feedback control assumes that the estimated meal size
is announced to the controller (Abu-Rmileh and Garcia-
Gabin (2010); Boiroux et al. (2011)). In this approach,
the insulin administration can be separated between basal
insulin and insulin boluses. Basal insulin must compensate
for endogenous glucose production. It is determined by
determining the steady state of the model, and must be
adjusted to reflect the intra-patient variability. Insulin
boluses are used to mitigate the postprandial glucose
excursion. The bolus size is determined by the state
estimate and the meal size announced by the patient.

At each time sample, the basal insulin infusion rate uss,k

is determined by solving the nonlinear system of equations

f(x(t), uss,k, 0) = 0 (17)

for the glucose level G0 = 6mmol/L.

When a meal is announced to the controller (or 15 or
30 minutes after the meal is announced) at a given time
tk, the optimal bolus and the optimal postprandial blood
glucose trajectory are computed by solving the univariate
constrained optimization problem

min
ubolus

ψ =
1

2

N−1∑
j=0

‖max(ŷj+k+1 − Ḡ, 0)‖22+

κ‖max(Ḡ− ŷj+k+1, 0)‖22 (18a)

s.t. ẋ(t) = f(x(t), uj+k, dj+k) t ∈ [tj+k, tj+k+1[
(18b)

x0 = x̂k (18c)

u0 = uss,k + ubolus (18d)

uj+k = uss,k, j = 0, 1, . . . , N − 1 (18e)

yj+k = Cxj+k (18f)

The parameter κ = 104 heavily penalizes glucose levels
below Ḡ = 4.5 mmol/L. In other words, we want to find
the optimal bolus such that the reference signal is close to
the desired glucose target Ḡ for all times. In this case, the
predictions on the future states of the system are made
using the continuous-time nonlinear model.

5. NUMERICAL RESULTS AND DISCUSSION

5.1 Scenario Description

We compare different bolus administration strategies for
the 10 patients identified in Kanderian et al. (2009) for
three-day simulations. Each day comprises 3 meals (70g
CHO at 6AM, 75g CHO at noon, 75g CHO at 6PM). We
consider the three following strategies for bolus adminis-
tration (for the simulations, we assume that the meal is
instantly consumed)

• The bolus is administered at mealtime (T+0 min)
• The bolus is administered 15 minutes after mealtime
(T+15 min)

• The bolus is administered 30 minutes after mealtime
(T+30 min)

and for each strategy, we consider the cases where the
mealsize is underestimated by 50%, correctly estimated
or overestimated by 50%. We also double the insulin
sensitivity parameter SI in (3a) to challenge the parameter
estimation of the CDUKF.

We use the 10 patients identified in Kanderian et al. (2009)
and the CGM model described in section 2.4 to generate
a population of patients with type 1 diabetes. We use the
same CGM noise for all patients and all simulations for
comparison purposes.

5.2 Numerical Results

Table 1 illustrates the median time spent in hyper-
glycemia, within target or in hypoglycemia for each case.
In the case where patients underestimate the meal, late
administration of insulin increases the time in target.
Looking at individual statistics shows that 5 patients out
of 10 reduce their time spent in hyperglycemia if they
administer their meal bolus after 15 minutes instead of
administering it at mealtime, and 3 out of 10 reduce the
time spent in hyperglycemia if they administer their meal
bolus after 30 minutes (data not shown). No hypoglycemic
event (i.e. glucose levels below 3.9 mmol/L) were observed.

In the case where the exact meal size is known, the insulin
administration at mealtime is optimal. Later administra-
tion of insulin increases the time spent in hyperglycemia.
Again, no hypoglycemic event were observed. This result
is in line with previous studies establishing that adminis-
tering the bolus at mealtime is optimal in the case where
the meal size is known.

Finally, in the case where the meal size is overestimated
by 50%, waiting before administering the bolus helps to
reduce the time spent in hypoglycemia. In our simulations,
even a large overestimation of the meal size does not
induce severe hypoglycemia (i.e. glucose levels below 3.5
mmol/L).

Glucagon can also be used as a safety hormone in case
of overbolused meal. Recent studies on virtual patients
and in vivo established that this hormone can reduce
the severity of hypoglycemic events and the time spent
in hypoglycemia (El-Khatib et al. (2010); Bátora et al.
(2014)). Due to the nature of the insulin profiles, it
may be expected that an insulin administration strategy
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previously are then modified accordingly. In our case, we
want to estimate the insulin sensitivity SI(t) and the meal
compartment D1(t).

Nevertheless, these two states cannot be estimated si-
multaneously. For instance, if a sudden increase in blood
glucose level occurs, it can be either attributed to a change
in patient’s physiology (e.g. an increased resistance to
insulin) or to a meal intake. We use the following switching
strategy to estimate these two states:

• If no meal has been ingested within the three pre-
vious hours, the filter will only estimate the insulin
sensitivity SI(t).

• If a meal has been ingested within the three previous
hours, the filter will only estimate the meal compart-
ment D1(t).

4. BASAL AND BOLUS CALCULATION

Meals are the major disturbance for blood glucose in
patients with T1D. Therefore, a possible approach is to
handle them in a different way. For instance feedforward-
feedback control assumes that the estimated meal size
is announced to the controller (Abu-Rmileh and Garcia-
Gabin (2010); Boiroux et al. (2011)). In this approach,
the insulin administration can be separated between basal
insulin and insulin boluses. Basal insulin must compensate
for endogenous glucose production. It is determined by
determining the steady state of the model, and must be
adjusted to reflect the intra-patient variability. Insulin
boluses are used to mitigate the postprandial glucose
excursion. The bolus size is determined by the state
estimate and the meal size announced by the patient.

At each time sample, the basal insulin infusion rate uss,k

is determined by solving the nonlinear system of equations

f(x(t), uss,k, 0) = 0 (17)

for the glucose level G0 = 6mmol/L.

When a meal is announced to the controller (or 15 or
30 minutes after the meal is announced) at a given time
tk, the optimal bolus and the optimal postprandial blood
glucose trajectory are computed by solving the univariate
constrained optimization problem

min
ubolus

ψ =
1

2

N−1∑
j=0

‖max(ŷj+k+1 − Ḡ, 0)‖22+

κ‖max(Ḡ− ŷj+k+1, 0)‖22 (18a)

s.t. ẋ(t) = f(x(t), uj+k, dj+k) t ∈ [tj+k, tj+k+1[
(18b)

x0 = x̂k (18c)

u0 = uss,k + ubolus (18d)

uj+k = uss,k, j = 0, 1, . . . , N − 1 (18e)

yj+k = Cxj+k (18f)

The parameter κ = 104 heavily penalizes glucose levels
below Ḡ = 4.5 mmol/L. In other words, we want to find
the optimal bolus such that the reference signal is close to
the desired glucose target Ḡ for all times. In this case, the
predictions on the future states of the system are made
using the continuous-time nonlinear model.

5. NUMERICAL RESULTS AND DISCUSSION

5.1 Scenario Description

We compare different bolus administration strategies for
the 10 patients identified in Kanderian et al. (2009) for
three-day simulations. Each day comprises 3 meals (70g
CHO at 6AM, 75g CHO at noon, 75g CHO at 6PM). We
consider the three following strategies for bolus adminis-
tration (for the simulations, we assume that the meal is
instantly consumed)

• The bolus is administered at mealtime (T+0 min)
• The bolus is administered 15 minutes after mealtime
(T+15 min)

• The bolus is administered 30 minutes after mealtime
(T+30 min)

and for each strategy, we consider the cases where the
mealsize is underestimated by 50%, correctly estimated
or overestimated by 50%. We also double the insulin
sensitivity parameter SI in (3a) to challenge the parameter
estimation of the CDUKF.

We use the 10 patients identified in Kanderian et al. (2009)
and the CGM model described in section 2.4 to generate
a population of patients with type 1 diabetes. We use the
same CGM noise for all patients and all simulations for
comparison purposes.

5.2 Numerical Results

Table 1 illustrates the median time spent in hyper-
glycemia, within target or in hypoglycemia for each case.
In the case where patients underestimate the meal, late
administration of insulin increases the time in target.
Looking at individual statistics shows that 5 patients out
of 10 reduce their time spent in hyperglycemia if they
administer their meal bolus after 15 minutes instead of
administering it at mealtime, and 3 out of 10 reduce the
time spent in hyperglycemia if they administer their meal
bolus after 30 minutes (data not shown). No hypoglycemic
event (i.e. glucose levels below 3.9 mmol/L) were observed.

In the case where the exact meal size is known, the insulin
administration at mealtime is optimal. Later administra-
tion of insulin increases the time spent in hyperglycemia.
Again, no hypoglycemic event were observed. This result
is in line with previous studies establishing that adminis-
tering the bolus at mealtime is optimal in the case where
the meal size is known.

Finally, in the case where the meal size is overestimated
by 50%, waiting before administering the bolus helps to
reduce the time spent in hypoglycemia. In our simulations,
even a large overestimation of the meal size does not
induce severe hypoglycemia (i.e. glucose levels below 3.5
mmol/L).

Glucagon can also be used as a safety hormone in case
of overbolused meal. Recent studies on virtual patients
and in vivo established that this hormone can reduce
the severity of hypoglycemic events and the time spent
in hypoglycemia (El-Khatib et al. (2010); Bátora et al.
(2014)). Due to the nature of the insulin profiles, it
may be expected that an insulin administration strategy
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Table 1. Summary of the results for all the 10 patients - median (interquartile range).

T+0 min T+15 min T+30 min

Underestimated meal size G > 10 mmol/L (%) 18.1 (4.9-32.1) 19.2 (8.9-31.1) 20.7 (10.5-31.6)
by 50% 8 ≤ G ≤ 10 mmol/L (%) 14.1 (10.8-21.4) 13.1 (8.5-19.9) 11.6 (8.5-18.7)

3.9 ≤ G ≤ 8 mmol/L (%) 63.1 (44.4-73.7) 63.8 (49.3-72.5) 63.5 (51.9-72.7)
G < 3.9 mmol/L (%) 0 (0-0) 0 (0-0) 0 (0-0)

Daily insulin administered (U) 40.8 (27.6-51.6) 41.1 (28.0-51.6) 41.3 (29.2-53.5)

Correct meal size G > 10 mmol/L (%) 14.7 (0-28.6) 17.0 (0-29.4) 19.7 (11.9-32.1)
8 ≤ G ≤ 10 mmol/L (%) 11.8 (8.5-14.1) 11.8 (8.1-18.0) 12.1 (8.6-18.8)
3.9 ≤ G ≤ 8 mmol/L (%) 66.6 (55.6-87.7) 65.9 (54.8-80.2) 62.9 (50.9-72.4)
G < 3.9 mmol/L (%) 0 (0-0) 0 (0-0) 0 (0-0)

Daily insulin administered (U) 42.4 (30.8-58.7) 42.0 (29.9-56.3) 41.0 (29.0-52.6)

Overestimated meal size G > 10 mmol/L (%) 11.4 (0-25.7) 15.4 (0-28.5) 18.4 (1.5-31.3)
by 50% 8 ≤ G ≤ 10 mmol/L (%) 9.3 (6.0-13.6) 11.2 (7.9-13.6) 10.4 (7.4-14.5)

3.9 ≤ G ≤ 8 mmol/L (%) 71.3 (65.2-88.8) 72.1 (62.9) 69.4 (60.0-84.1)
G < 3.9 mmol/L (%) 0 (0-0.4) 0 (0-0) 0 (0-0)

Daily insulin administered (U) 44.5 (32.6-66.5) 42.7 (31.1)-62.1 41.5 (29.2-55.8)

using frequent CGM measurements and a smart pen could
perform as well as the one using a CGM and a CSII pump.
Even in this case, a bolus administration of glucagon could
be envisaged, if needed.

Fig. 2 shows the glucose and insulin traces for one pa-
tient in the case where the meal size is underestimated
by 50% (Fig. 2(a)), correctly estimated (Fig. 2(b)) and
overestimated by 50% (Fig. 2(c)). These figures show that
the bolus size computed by the UKF is not proportional
to the meal size due to the nonlinearity in glucose-insulin
dynamics, even in the case where the bolus is administered
at mealtime. This shows that the bolus calculator based on
UKF will be less sensitive to mismatch in meal announce-
ment compared to the conventional bolus calculator (1).

6. CONCLUSION

The method presented in this paper suggests that waiting
before administering the meal bolus can reduce the time
spent outside the target in the case where the meal size
cannot be accurately estimated, or can efficiently reduce
the effects of a missed bolus. Also, a sensor-augmented
therapy combined with a smart pen could perform simi-
larly as a sensor- and pump-augmented insulin therapy,
but would be less flexible. Novel technologies, such as
glucagon analogues stable in liquid solution, as well as
faster insulin analogues, more accurate CGMs and better
filtering algorithms will make late bolus insulin adminis-
tration more beneficial in the future.
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(a) Meal size underestimated by 50%.
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(b) Meal size correctly estimated.
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(c) Meal size overestimated by 50%.

Fig. 2. Glucose and insulin traces for a specific patient. The
sampling time is 5 minutes. The insulin sensitivity
SI is twice its nominal value. Green-shaded area:
Euglycemic range. Blue curve: T+0 min. Green curve:
T+15 min. Red curve: T+30 min. Black triangles:
Meals.
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C.D., Carrette, O., Castañeda, J., et al. (2013). Routine
sensor-augmented pump therapy in type 1 diabetes: the
INTERPRET study. Diabetes technology & therapeu-
tics, 15(4), 273–280.

Sarkka, S. (2007). On unscented kalman filtering for state
estimation of continuous-time nonlinear systems. IEEE
Transactions on Automatic Control, 52(9), 1631–1641.

Schmidt, S., Boiroux, D., Duun-Henriksen, A.K., Frøssing,
L., Skyggebjerg, O., Jørgensen, J.B., Poulsen, N.K.,
Madsen, H., Madsbad, S., and Nørgaard, K. (2013).
Model-based closed-loop glucose control in type 1 di-
abetes: The DiaCon experience. Journal of Diabetes
Science and Technology, 7(5), 1255–1264.

Srinivasan, A., Lee, J.B., Dassau, E., and Doyle, F.J.
(2014). Novel insulin delivery profiles for mixed meals
for sensor-augmented pump and closed-loop artificial
pancreas therapy for type 1 diabetes mellitus. Journal
of diabetes science and technology, 8(5), 957 – 968.

Szalay, P., Molnar, A., Muller, M., Eigner, G., Rudas, I.,
Benyo, Z., and Kovacs, L. (2014). Comparison of sigma-
point filters for state estimation of diabetes models. In
2014 IEEE International Conference on Systems, Man
and Cybernetics (SMC), 2476–2481.

Zisser, H., Robinson, L., Bevier, W., Dassau, E., Ellingsen,
C., Doyle III, F.J., and Jovanovic, L. (2008). Bolus cal-
culator: a review of four smart insulin pumps. Diabetes
technology & therapeutics, 10(6), 441–444.

9th IFAC BMS
Aug. 31 - Sept. 2, 2015. Berlin, Germany

164


