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a b s t r a c t

This article demonstrates the incorporation of stochastic grey-box models for urban runoff forecasting
into a full-scale, system-wide control setup where setpoints are dynamically optimized considering
forecast uncertainty and sensitivity of overflow locations in order to reduce combined sewer overflow
risk. The stochastic control framework and the performance of the runoff forecasting models are tested in
a case study in Copenhagen (76 km2 with 6 sub-catchments and 7 control points) using 2-h radar rainfall
forecasts and inlet flows to control points computed from a variety of noisy/oscillating in-sewer mea-
surements. Radar rainfall forecasts as model inputs yield considerably lower runoff forecast skills than
“perfect” gauge-based rainfall observations (ex-post hindcasting). Nevertheless, the stochastic grey-box
models clearly outperform benchmark forecast models based on exponential smoothing. Simulations
demonstrate notable improvements of the control efficiency when considering forecast information and
additionally when considering forecast uncertainty, compared with optimization based on current basin
fillings only.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

This article investigates the application of probabilistic multi-
step runoff forecasts generated by simple, conceptual stochastic
models (in the form of so-called stochastic grey-box models) in
system-wide, forecast-based optimization for real-time control
(RTC) of urban drainage networks. A drainage network is consid-
ered to be controlled in real time if process variables are monitored
in the system and used to operate actuators affecting the flow
process (Schütze et al., 2004). RTC is an efficient tool for responding
to changing demands that are defined for urban drainage systems
(Rauch et al., 2005; Vanrolleghem et al., 2005) and is increasingly
ent of Environmental Engi-
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applied to operate these infrastructures in an efficient manner (for
example, Mollerup et al., 2013; Nielsen et al., 2010; Pabst et al.,
2011; Pleau et al., 2005; Puig et al., 2009 and Seggelke et al.,
2013). In particular, RTC can support the operation of combined
sewer systems, which are used in most of the larger European cities
and are constantly challenged by increased impervious area and
changing rainfall patterns (Arnbjerg-Nielsen et al., 2013; Willems
et al., 2012).

Most RTC implementations aim to minimize the volume of
combined sewer overflows (CSO). This is achieved by dynamically
controlling flows in the system to achieve an optimal exploitation
of the available storage volume, especially in cases with an uneven
spatial rainfall distribution over the catchment. RTC is classically
performed using static if-then-else rules (Seggelke et al., 2013; for
example) that are optimized off-line based on heuristics and model
simulations, but mathematical optimization routines are also
applied (Pleau et al., 2005, Puig et al., 2009).

Clearly, information on the future evolution of the urban
drainage system (i.e., the runoff expected in the near future) should
contribute to a more efficient optimization of the controlled
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system. Significant developments have been made in the last
decade in terms of radar-based rainfall forecasting (Kr€amer et al.,
2005, 2007; Thorndahl et al., 2014; Vieux and Vieux, 2005) and
radar-based urban runoff forecasting (Achleitner et al., 2009; L€owe
et al., 2014a; Schellart et al., 2014; Thorndahl and Rasmussen,
2013), paving the way for the application of radar-based online
runoff forecasts in RTC.

However, multiple sources of uncertainty affect the runoff
forecasts generated by models (see the discussions in Deletic et al.
(2012), Schilling and Fuchs (1986) and Sun and Bertrand-Krajewski
(2013)): input uncertainty, model structure uncertainty, parameter
uncertainty and measurement uncertainty (e.g., level and flow).
The examples in Schilling and Fuchs (1986), Schilling (1991) and
Schellart et al. (2011) demonstrate that uncertainty of the
measured and forecasted rainfall input is often the major factor
affecting the online performance of runoff forecast models. Previ-
ous studies have evaluated the accuracy of online runoff forecasts
based on radar rainfall input in an urban setting and found the
forecast performance diminished for lead-times greater than
90 min (Achleitner et al., 2009) and between 60 and 120 min
(Thorndahl and Rasmussen, 2013).

Considering the large uncertainties of urban runoff forecasts, it
has been hypothesized that the uncertainties may adversely impact
the efficiency of forecast-based RTC schemes (Breinholt et al., 2008;
Schütze et al., 2004). As a result, RTC algorithms that account for
these uncertainties in mathematical optimization have recently
emerged. Examples include the tree-based control algorithm,
which was proposed for control of (non-urban) drainage water
systems by Maestre et al. (2013), and the dynamic overflow risk
assessment (DORA; Vezzaro and Grum, 2014) for urban drainage
systems that performs a system-wide optimization based on the
computed risk of overflow.

Accounting for the uncertainty of runoff forecasts in RTC re-
quires that an estimate of this uncertainty is provided as an input to
the control algorithm. The literature on uncertainty quantification
in rainfall runoff modelling is abundant. Informal approaches
(GLUE) are popular in urban hydrology (e.g., Dotto et al., 2012; Freni
et al., 2009; Vezzaro and Mikkelsen, 2012), while more formal
Bayesian approaches without (Del Giudice et al., 2015a; Kavetski
et al., 2006) and with data assimilation routines (Moradkhani
et al., 2012; Vrugt et al., 2013) were developed mostly for natural
catchment hydrology. Model estimation and updating in these
approaches are commonly based on Monte Carlo simulations, and
they can therefore be difficult to apply in an online context (Del
Giudice et al., 2015b).

Recent research in the Storm- and Wastewater Informatics
Project (SWI, 2015) has therefore focused on the application of so-
called stochastic grey-box models for probabilistic online runoff
forecasting over multiple prediction horizons. This type of model
combines a simple and fast stochastic model structure with a data
assimilation routine in the form of an extended Kalman filter,
allowing the user to generate probabilistic forecasts with time-
dynamic uncertainty quantification. The application of such
models in urban hydrology was first tested by Carstensen et al.
(1998) and Bechmann et al. (1999). Breinholt et al. (2011, 2012)
developed rainfall-runoff model structures, and the performance
of these for probabilistic flow predictions was assessed by
Thordarson et al. (2012). Finally, L€owe et al. (2014a) analysed the
influence of different rainfall inputs on runoff forecast perfor-
mance, while different options for parameter estimation were
compared in L€owe et al. (2014b).

The work presented here combines these recent developments:
probabilistic, radar-rainfall based runoff forecasts from stochastic
grey-box models have been combined with a risk-based optimi-
zation algorithm that accounts for time-dynamic forecast
uncertainty (DORA, Vezzaro and Grum, 2014) and integrated into a
full-scale, system-wide RTC setup, providing a proof of concept for
the case of applying stochastic forecasts in RTC. The setup is tested
in a case study with noisy real-world measurements and six sub-
catchments with distinctly different characteristics. The purpose
of this article is to.

� demonstrate this new, stochastic, system-wide real-time con-
trol setup for urban drainage systems,

� evaluate how the consideration of runoff forecast uncertainty
influences the efficiency of the RTC scheme, and

� evaluate what runoff forecast performance and what control
efficiency can be obtained with stochastic grey-box models and
radar rainfall input under realistic conditions in a variety of
catchments.

The new control setup applies stochastic grey-box models for
runoff forecasting. However, other probabilistic forecasting
methods (such as the ones presented by Todini (2008), Van
Steenbergen et al. (2012), Vrugt et al. (2005) or Weerts et al.
(2011)) could easily be implemented. Thus, the proposed frame-
work is generic in this respect.

2. Methods

2.1. Stochastic real-time control setup

2.1.1. General setup
A system-wide control setupwas applied. Control points need to

be defined by the users and are typically located at major actuators,
such as the outlet of storage basins or pumping stations. Runoff
forecasts were generated by a separate stochastic model (Section
2.1.2) for the inflow to each control point. Based on the inflow
forecasts and online observations of the current basin fillings, the
DORA algorithm was then used to optimize the outflow from all of
the control points, aiming to minimize the overall overflow risk in
the catchment (Section 2.1.3). A control time step of 2 min was
applied and a maximum forecast horizon of 2 h was considered.
Correspondingly, new runoff forecasts were generated every 2 min
for 2 h into the futurewith a resolution of 60 time steps (intervals of
2 min).

The online operation of the framework is illustrated in Fig. 1. It
can be split into 5 steps that are executed every 2 min:

1. Data collection e the runoff forecast models apply rainfall
forecasts as an input and flow observations for updating the
model states. In addition, the current basin filling is required as
an input to the control algorithm. Depending on the source,
these data are either downloaded as text files through FTP
connections or directly imported from the SCADA system
through the standard OPC UA (Unified Architecture) protocol
(Mahnke et al., 2009).

2. Pre-processing e flow observations are required to update the
states of the runoff forecast models (Section 2.1.2). However, for
many control points, no direct inflow measurements are avail-
able. Instead, these need to be constructed by “software sensors”
from a combination of indirect measurements (such as level in
and outflow from a storage basin). Catchment specific pre-
processing routines (see Appendix A) are therefore imple-
mented in this module. The softwareWaterAspects (Grum et al.,
2004) was applied for this step in our work, while future
implementations will apply JEP and R scripts.

3. Runoff forecasting e a separate stochastic grey-box model
(Section 2.1.2) is applied for forecasting the inflow volume to
each control point. The model output is a distribution of



Fig. 1. Technical integration of stochastic grey-box models and DORA in a STAR Utility Solutions™ control setup.
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forecasted runoff volume for each considered horizon, dis-
cretized in 50 quantiles from 1 to 99%. Each model in our work
was implemented as an executable (FORTRAN-based) that
communicates with the control server via text files. An R-based
setup that directly communicates with the database is currently
being implemented.

4. Identifying set points for the actuators using the DORA algo-
rithm (Section 2.1.3) e this module is implemented in JAVA. The
overflow risk for each control point is computed based on the
current basin filling and the forecasted distribution of runoff
volumes in the form of quantiles.

5. The new outflow set points for the actuators are sent to the
SCADA system through the standard OPC UA protocol.

A control software is required to manage the execution of the
tasks mentioned above, the communication with external data
sources and actuators, data storage in a database and quality con-
trol of measurements and simulation results. In our case, the STAR®

Utility Solutions™ framework (Nielsen and €Onnerth, 1995) was
used. The framework is implemented in JAVA but allows for the
execution of external programs written in, for example, R. The
framework can be installed either on a dedicated control server, on
a cloud server or within the end-user's own virtual server
environment.
2.1.2. Runoff forecasting using stochastic grey-box models

2.1.2.1. Model structure. A simple cascade of three linear reservoirs
was applied for forecasting runoff volume in the inflow to a single
control point. We did not consider more elaborated model struc-
tures as the purpose of this article is to provide a proof of concept.
The model was set up as a stochastic grey-box model in a state-
space layout as described by Breinholt et al. (2011) and shown in
state Eq. (1), which are implemented using stochastic differential
equations (SDEs) and observation Eq. (2). The setup includes an
extended Kalman filter, which updates the model states whenever
new flow observations become available (Kristensen et al., 2004).
The model was implemented in the open source software CTSM-R
(Juhl et al., 2013).
(1)
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Yk ¼
1
K
S3;k þ Dk þ ek (2)

S1, S2 and S3 correspond to the storage states, A to the effective
catchment area, P to the rain intensity, a0 to the mean dry weather
flow and K to the travel time constant. The uncertainty of model
predictions is described in the so-called diffusion term, which is
driven by a vector Wiener process dut (Iacus, 2008). Considering a
time step Dt, an increment Dut of this process is Gaussian with
mean 0 and covariance diag(Dt,Dt,Dt,Dt). The parameters si scale
the standard deviation of the diffusion process, which here in-
creases linearly with the state value Si. We have included the mean
dry weather flow a0 as a state to allow the model to adapt to
varying dry weather flows, which we have observed in some of the
catchments considered in our case study. The index I was 1 during
the updating step of the extended Kalman filter and 0 when
generating runoff forecasts. The last-known estimate of a0 was thus
applied during the generation of multistep runoff forecasts.

The observation Eq. (2) relates time-continuous model pre-
dictions and flow observations Yk at discrete time steps k. This
equation additionally includes a trigonometric function D to
describe the variation of dry-weather flows (Breinholt et al., 2011)
and the observation error ek with standard deviation se.

A Lamperti transformation (Iacus, 2008) was applied to the state
Eq. (1) to remove the dependency of the noise description on the
state (Breinholt et al., 2011), as state-dependent SDEs are difficult to
simulate numerically (Iacus, 2008).

The diffusion term in Eq. (1) accounts for the combined effects of
input and model structure uncertainty. The observation error ek in
Eq. (2) can account for deficiencies in the sensor measurements as
well as for oscillations resulting, for example, from varying
pumping discharges. The latter were treated as noise if they
occurred on short time scales of only few minutes, as such varia-
tions have only little effect on the basin volumes at the control
points. The parameters A and K, the uncertainty scalings si of the
diffusion term and the standard deviation of the observation error
se were estimated as part of the automated calibration routine.

2.1.2.2. Parameter estimation. The model parameters were deter-
mined in an automated calibration routine. As an objective func-
tion, we minimized the multistep probabilistic flow forecast error
as described by L€owe et al. (2014b). Using the state prediction
equations of the extended Kalman filter (Eqs. (17) and (18) in
Kristensen et al. (2004)) and subsequently inserting the state pre-
dictions into the output prediction equations (Eqs. (11) and (12) in
Kristensen et al. (2004)), a multistep flow forecast was generated at
each time step k for forecast horizons i ¼ 1…60 with a resolution of
Dt ¼ 2min. The forecasts were assumed Gaussian with mean bYkþijk
and forecast covariance bRkþijk. As an estimate for the probabilistic
forecast error, we computed the continuous ranked probability
score CRPSi,k (Gneiting and Raftery, 2007) for each forecast horizon i
as

CRPSi;k ¼
Z∞
�∞

�bFkþijkðsÞ � H ðs>YkþiÞ
�2

ds; (3)

where bFkþijkðsÞ is the cumulative normal distribution function of
the flow forecast, Ykþi is the observed flow for the corresponding
time step and H is the Heaviside function that takes the value 0 if
s < Ykþi and 1 otherwise. A closed-form solution of the CRPS is
available for Gaussian bFkþijkðsÞ. However, we chose to evaluate the
integral in Eq. (3) numerically for quantiles from 1 to 99% in steps of
2% to make the approach flexible for other distributional assump-
tions. A measure of average performance over all forecast horizons
was defined as

CRPSk ¼
1P60

i¼1ð60� iþ 1Þ

 X60
i¼1

�ð60� iþ 1Þ$CRPSi;k
�!

: (4)

The RTC scheme requires forecasts of runoff volume as an input
(see Section 2.1.3). Therefore, more weight is put on flow forecasts
for shorter forecast horizons in Eq. (4). These have a stronger in-
fluence on forecasts of runoff volume, which are generated as an
integral over flow forecasts for several horizons. Finally, averaging
the CRPSk over all time steps k provided the objective function for
parameter estimation, which we aimed to minimize.

We applied the heuristic optimization algorithm described by
Tolson and Shoemaker (2007) with 2500 objective function eval-
uations for automated parameter estimation. The dry weather flow
variation Dwas fixed during the parameter estimation process. The
corresponding parameters were estimated separately during a dry
weather period.
2.1.2.3. On-line forecast generation. To generate probabilistic runoff
forecasts online, we performed scenario simulations of the model
Eq. (1), starting with the updated states provided by the extended
Kalman filter at time step t and ending at the maximum considered
forecast horizon t þ j. We considered N ¼ 1000 scenarios. The
forecasted flow for each scenario was integrated into a runoff vol-
ume. The resulting empirical distribution of forecasted runoff vol-
umes served as input to the control algorithm in the form of
quantiles with a resolution of 2%. The approach was described in
more detail by L€owe (2014) and L€owe et al. (2014a).

The generation of on-line runoff forecasts was based on scenario
simulations of the stochastic process without distributional
assumption, while assumed-Gaussian forecasts were generated
using the extended Kalman filter during parameter estimation. This
inconsistency is a shortcoming of the current setup, which was
caused by the need to generate forecasts with limited computa-
tional effort during parameter estimation.
2.1.3. Real-time control under uncertainty
We applied the dynamic overflow risk assessment (DORA, see

Vezzaro and Grum (2014) and Vezzaro et al. (2014)) in this study.
This approach, in the terminology of Mollerup et al. (2015), acts on
the optimization layer of the real-time control setup, aiming for a
system-wide (across the entire catchment) reduction of the risk of
CSO using a forecast-based mathematical optimization routine that
accounts for both forecast uncertainty and impact cost.

The overflow risk for each controlled point is calculated by.

1. Subtracting the basin outflow volume over the forecast horizon
and the currently free basin volume from the forecasted prob-
ability distribution of runoff volume, and

2. Multiplying the resulting probability distribution of overflow by
a constant CSO unit cost that is user-defined for each overflow
location (which reflects the sensitivity of the different receiving
waters). More sensitive control points (e.g., discharging to
bathing areas) are given higher CSO unit costs than less sensitive
control points (e.g., discharging close to the wastewater treat-
ment plant (WWTP) inlet).

The motivation for DORA is that stochastic forecasts are needed
because a deterministic forecast only leads to optimal control de-
cisions if the loss function applied in optimization does not depend
on the uncertainty range associated with the forecasted variable.
Even for the simple CSO unit cost applied here, this is clearly not the
case because the overflow risk is a discontinuous function that is



Fig. 2. Schematic representation of the principal steps in DORA. The runoff volume V is forecasted with a probability density function pdf. The part of the pdf used for computing the
probability of overflow is marked in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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zero for small forecasted runoff volumes and increases linearly for
larger forecasted runoff volumes that would lead to an overflow of
the basin.

At each control time step (in this study set to 2 min, i.e., each
time a new set of measurements from the catchment becomes
available), DORA executes the following loop (Fig. 2):

� Step 1: The available storage volume for each basin is calculated
using online measurements.

� Step 2: Runoff forecasts (and the associated uncertainty) are
used to estimate the overflow risk for each controlled point. The
probability density for the forecasted runoff volume is here
described empirically by a set of quantiles provided by the
stochastic grey-boxmodel. This is different from the approach in
Vezzaro and Grum (2014), who described forecast uncertainty
analytically by a Gamma distribution with roughly fixed
parameters.
SPI ¼ 1�
PN

k¼1 V̂ kþ60jk;50% �P60
i¼1 Ykþi$Dt

� �2
PN

k¼1
P60

i¼1 1� lð Þ$YSM;k�1 þ l$Yk
� �

$Dt �P60
i¼1 Ykþi$Dt

� �2 : (5)
� Step 3: A genetic algorithm (Meffert et al.) is used to identify the
optimal set of flows between all of the basins in the catchment,
minimizing the total CSO risk. The settings of the algorithm
were defined for the study area after off-line tests, which
focused on convergence (especially in dry weather conditions,
when CSO risk is low and several solutions form a Pareto front).
By initializing the algorithm from the solution obtained at the
previous time step, a population size of 100 and a maximum of
50 evolutions were sufficient to obtain the desired convergence
and reliability. When the CSO risk is low (e.g., after the end of a
rain event with no new rainfall within the forecast horizon),
DORA empties the controlled system as quickly as possible, with
the highest priority on the control points with the largest CSO
cost.

� Step 4: Optimal set points for each basin outflow are sent to the
actuators in the system.

DORA does not currently account for transport times in the
optimization step 3 (see Vezzaro and Grum (2014)). Instead, an
immediate transfer of outflow volumes is assumed between the
control points.
2.2. Performance evaluation

We validated the stochastic forecasting and control setup in a
two-step procedure. First, we evaluated runoff forecasting perfor-
mance by comparing forecasts and observations. Second, we
determined the efficiency of the control setup with and without
forecast uncertainty and considering different rainfall inputs.

2.2.1. Evaluation of forecast quality
In the evaluation of forecast performance, we focused solely on

lead times of 120 min (60 time steps) into the future because this is
the longest horizon considered in the system-wide control scheme
and may be considered as the worst case.

2.2.1.1. Point forecast skill. To assess point forecast quality, we
applied a skill score defined as:
In Eq. (5), the numerator of the fraction is the mean squared
error of the runoff volume forecasts generated by the stochastic
grey-box models. V

_

kþ60jk;50% is the median of the probabilistic
forecast of runoff volume generated by the stochastic grey-box
models at time step k for a forecast horizon of 60 time steps. Yk
are the flowobservations for the same period. These are available in
intervals of Dt ¼ 2 min and for a total of N time steps during an
event for which the forecast skill is computed.

The denominator of the fraction in Eq. (5) is the mean squared
error of a reference (or benchmark) forecast. As a reference, we
considered locally constant runoff volume forecasts derived using
exponential smoothing (Brown and Meyer, 1961). YSM,t�1 is the
smoothed flow observation obtained for the previous time step and
l is the smoothing parameter, which was tuned to minimize the 60
step forecast error shown in the denominator in Eq. (5) during the
calibration events described in Section 3 and which can vary be-
tween 0 and 1.

We denote the resulting skill score as the smoothed persistence
index (SPI) because it resembles the persistence index described in
Bennett et al. (2013). However, a smoothed value is applied as the
reference forecast instead of the last observation to make the score
more robust towards the noisy flow measurements we
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encountered in our study. Ideally, the SPI would take a value of 1 for
a perfect runoff forecast. Values smaller than 0 indicate that the
forecasts generated by the stochastic grey-box models have a
bigger mean squared error than the locally constant forecast based
on exponential smoothing.
2.2.1.2. Forecast reliability. In a probabilistic sense, it is desirable for
the runoff forecasts to be reliable. An a % prediction interval should
empirically include a % of the observations, i.e., have an observed
coverage rate of a %. This property of the probabilistic forecasts can
be assessed by plotting predicted (or nominal) and observed
coverage rates against each other in reliability diagrams (Murphy
and Winkler, 1977). Such diagrams are easier to understand and
simplify communication with practitioners and were therefore
preferred over the probability integral transform used by, for
example, Hemri et al. (2013) and Renard et al. (2010). Ideally, pre-
dicted and observed coverage rates should be equal. Predicted
coverage rates smaller than the observed coverage rates indicate an
overestimation of forecast uncertainty by the model, while the
reverse indicates an underestimation of forecast uncertainty.
2.2.1.3. Sharpness of forecasts. Finally, given a reliable probabilistic
forecast, it is desirable for it to be as sharp (or “narrow”) as possible.
A common measure is the sharpness or average width of an a %
prediction interval. Jin et al. (2010) normalized this measure with
the observation to obtain the average interval width ARIL. The
observation, however, is not related to the forecast and ARILwill be
difficult to evaluate if the observations approach zero, for example.
We therefore applied a modified version of ARIL in which we
normalized by the absolute value of the forecast median. We
applied this version for the 90% prediction interval as a measure of
forecast uncertainty:

ARIL* ¼ 1
N

XN
k¼1

V̂ 95%;kþ60jk � b̂V 5%;kþ60jk���V̂ 50%;kþ60jk
��� (6)

In (6), bV 95%;kþ60jk,bV 50%;kþ60jk and bV 5%;kþ60jk correspond to the
95%, 50% and 5% quantiles of the probabilistic runoff volume fore-
casts generated at time step k for a lead time of 120 min (60 time
steps). Smaller values of ARIL* indicate narrower prediction
intervals.
Table 1
Main characteristics of the control points considered. Points not controlled by DORA a
optimization algorithm.

Sub-catchment Imper-vious area
[ha]

Storage available for RTC
[m3]

Max outflow [m3/s]

Colosseum (COL) 211 30,914 0.9
East Amager

(EAM)
228 44,425 2.1

Kloevermarken
(KLO)

777 27,500 7.5

Lersoeledning
(LER)

733 27,000 1.1

Lynetten WWTP
(LYN)

564 76 5 (6.4 wet weather
mode)

St. Annæ (SKT) 77 7987 1.3
Strandvaenget
Basin (STB) 92 1020 3.9
Pumping station

(STP)
e 900 2.4

West Amager
(WAM)

97 13,490 1.0

Total 2279 153,312
2.2.2. Evaluation of control efficiency
To evaluate the effect of different forecast inputs on the effi-

ciency of the system-wide control algorithm, simulations need to
be performed in a model that describes flows in all relevant parts of
the catchment, includes all actuators and allows for the evaluation
of CSO in different scenarios (as demonstrated by Seggelke et al.,
2013; for example). In the evaluation, this model (Section 3.2) re-
places the actuators in Fig. 1 and provides current basin fillings as
input to the DORA algorithm.

To compare the performance of the setup in different scenarios,
we focused on the evaluation of overflow volumes and cost accu-
mulated over a number of rain events. Reduced overflow volumes
in a scenario indicate an improved performance of the control
system. The best performing setup minimizes the total overflow
cost, which corresponds to the overflow volume weighted ac-
cording to the expected environmental impact at the location of the
overflow structures. The weighting factors correspond to the CSO
unit cost defined in DORA for the different overflow structures (see
Section 2.1.3 and Table 1 in Section 3).

2.2.3. Considered scenarios
Five scenarios were simulated to (i) evaluate the influence of

runoff forecast uncertainty on the efficiency of system-wide control
and (ii) estimate what forecast performance and what control ef-
ficiency can be achieved under realistic conditions:

1. AU e Rain gauge based runoff forecast with uncertainty: The
inputs for the stochastic grey-box models were the rain gauge
measurements averaged for each sub-catchment (see Section
3.3.1). Rainfall forecasts are required as model input for the
generation of runoff forecasts. In this scenario, perfect rainfall
forecasts derived from the rain gauge measurements for the
forecast period where applied, both when calibrating the pa-
rameters of the runoff forecast models and when evaluating
runoff forecasting performance and control efficiency.

2. ANUe Rain gauge based runoff forecast without uncertainty:
Runoff forecasts were generated in the exact same way as in
scenario AU. However, runoff forecast uncertaintywas neglected
when evaluating control performance by defining a forecast
distribution with negligible standard deviation (the forecast
median divided by 2500) around the forecast median.

3. BU e Radar based runoff forecast with uncertainty: Radar
rainfall measurements and forecasts (see Section 3.3.1) were
used as model input for calibrating the runoff forecast models,
re used to calculate the CSO risk, but they are not considered as actuators in the

CSO unit cost
[V/m3]

Controlled by
DORA

Typology

5 X basin, pumped outflow
25 X storage pipes, pumped outflow

5 X pumping station with storage in upstream
pipe network

25 X storage pipe with gate

1 CSO at WWTP inlet

5 basin, pumped outflow

25 X CSO structure, pumped outflow
1 X pumping station

5 X basin, pumped outflow
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for evaluating runoff forecasting performance and for evaluating
control efficiency.

4. BNU e Radar based runoff forecast without uncertainty:
Runoff forecasts were generated in the exact same way as in
scenario BU. However, runoff forecast uncertainty was neglected
when evaluating control performance by defining a forecast
distribution with negligible standard deviation (the forecast
median divided by 2500) around the forecast median.

5. REF e No forecast: This is a reference scenario for the evalua-
tion of control efficiency only. In this scenario, DORA was used
with a zero forecast as described by Vezzaro and Grum (2014).
The control algorithm in this case simply attempts to equalize
the basin fillings in the different sub-catchments, weighted ac-
cording to the CSO unit cost at the overflow points (Table 1).

Scenario AU provides a base case with near-perfect rainfall
forecast. Scenario BU, on the other hand, illustrates the runoff
forecast quality and control efficiency that can be achieved with
more realistic rainfall forecasts. As the skill of radar rainfall fore-
casts strongly decreases with the forecast horizon (Achleitner et al.,
2009; Thorndahl and Rasmussen, 2013), scenario BU would be
expected to yield lower runoff forecasting skill and reduced control
efficiency as a result of the larger uncertainty of the rainfall input
applied in this case.

If the consideration of forecast uncertainty has a (positive)
impact on the performance of system-wide control (as hypothe-
sized by Vezzaro and Grum (2014) and L€owe et al. (2014b)), then
scenarios AU and BU should yield better control results than their
counter parts ANU and BNU.

Finally, the reference scenario REF provides a reasonable
benchmark for the control performance obtained when applying
DORA with and without runoff forecasts as input.

3. Case study

3.1. Catchment

The case study was designed to test the setup in a situation
where the runoff forecast models need to cope with a variety of
sub-catchments with different characteristics (Table 1), where
realistic rainfall forecasts are applied (Section 3.3.1) and where
outflow measurements are far from perfect (Section 3.3.1 and
Appendix C). We considered the catchment of the Lynetten
wastewater treatment plant (WWTP), which covers the central area
of Copenhagen (Denmark) and has a total area of approximately
76 km2. The system-wide control strategy for the Lynetten catch-
ment considers seven sub-catchments and nine overflow struc-
tures (see Fig. 3), discharging to recipients with different
sensitivities to CSO. Large storage basins were implemented in the
catchment over the past three decades as a result of efforts to
minimize CSO and secure bathing water quality in the harbour. The
total storage capacity is approximately 153,000 m3.

Separate stochastic grey-box models were implemented to
forecast runoff volumes for the inflow to each control point. No
runoff forecasts were generated for the sub-catchments discharg-
ing to the St. Annæ basin (SKT) and to the WWTP inlet (LYN) due to
the very poor quality of the available flow and water level obser-
vations. Only the current filling rate at these control points was
included in the optimization strategy to calculate the system-wide
CSO risk and no control decisions were determined for the corre-
sponding actuators. The Strandvænget sub-catchment comprises
two control points at the basin outlet (STB) and the pumping sta-
tion (STP) to the WWTP. Runoff forecasts were only generated for
the basin inflow because the pumping station only receives inflows
from STB. The characteristics of the sub-catchments are
summarized in Table 1.

3.2. Catchment simulation model for the evaluation of control
efficiency

We used a conceptual model of the Lynetten catchment
(implemented inWaterAspectse Grum et al., 2004) to evaluate the
control efficiency. Following the procedure presented by Borsanyi
et al. (2008), this model was calibrated against a detailed MIKE
URBAN model of the catchment. A sketch of the model together
with a comparison of simulated and observed inflows to the control
points EAM, COL, KLO, LER, SKTandWAM is provided in Appendix C
for all rain events.

The generation of runoff was described using the time area
method, and a simple time delay was applied for routing in pipes.
Local controls existing in the catchment (e.g., pumping based on
filling degree in basins) were implemented in themodel. They were
overridden by the DORA set points when system-wide control
strategies were simulated.

Rain gauge measurements averaged over each sub-catchment
(see Section 3.3.1) were used as input for the catchment simula-
tion model.

3.3. Data and simulation periods

3.3.1. Rain data and in-sewer observations
A time step of 2 min was adopted for all of the datasets in this

work, corresponding to the control time step of the existing control
setup. Data available at higher temporal resolution were averaged,
while data with lower temporal resolution were assumed constant
in between observations (“zero order hold”). Online measurements
were available for the period from November 2011 until September
2014.

Rain measurements from 29 gauges in the area (Fig. 3) with a
temporal resolution of 1 min were available from the network of
the Danish Water Pollution Committee (SVK), which is operated by
the Danish Meteorological Institute (Jørgensen et al., 1998). A time
series of mean areal rainfall was determined for each of the sub-
catchments shown in Fig. 3 using Thiessen polygons.

Radar rainfall measurements and forecasts were available from
the C-band radar of the Danish Meteorological Institute in Stevns.
The data had a resolution of 10 min in time and 2 � 2 km in space.
The radar data were time-dynamically adjusted to rain-gauge data
at every time step as described in L€owe et al. (2014a), Thorndahl
et al. (2013) and Thorndahl and Rasmussen (2013). A mean areal
rainfall series was calculated for each sub-catchment from the ra-
dar data by computing a weighted average of the rainfall measured
in different pixels. The weighting factors for this process were
determined from the intersecting area between a pixel and the
corresponding sub-catchment.

Historical radar rainfall forecasts were made available for fore-
cast horizons of 10, 20, 30, 60 and 90 min. We interpolated the
forecasts for horizons of 40, 50, 70 and 80 min and assumed that
the rainfall forecasts for the 100e120 min horizons were equal to
the forecast for the 90 min horizon. This is a limitation in our work
caused by the data that were made available to us. In reality, a
radar-based flow forecasting setup would be expected to perform
slightly better than presented here.

Various level and flow measurements from the sewer network
were available for the considered period (see Appendix A). In most
sub-catchments, no direct measurements of the inflow to the
control point were provided. However, inflow measurements are
required to update the stochastic runoff forecasting models (see Eq.
(2)) and to evaluate forecast performance. They were computed
from the available data using the water balance for each control



Fig. 3. Catchment of the Lynetten wastewater treatment plant (WWTP) with control points in the combined sewer system and their respective sub-catchments.
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point and (in some cases) rating curves (see Appendix A). This
approach led to noisy flow measurements (see Appendix C) and
proved problematic in the LER and STB catchments, where negative
measurements were obtained after rain events because the water
balance was not closed in some situations. Such systematically
negative data were excluded from the updating of the forecast
models and from the evaluation of forecast performance.

3.3.2. Selection of rain events
Rain events were identified from the mean areal radar rainfall

measurements for the six sub-catchments where stochastic runoff
forecasting models were implemented. An event was considered to
start when any of the mean areal rainfall series exceeded a
threshold intensity of 0.2 mm/10 min. The event was considered to
end when the mean areal rainfall series for all sub-catchments
were below this threshold for a period of at least 10 h.

Based on these criteria, a total of 422 rain events were identified
between Nov 2011 and Sep 2014. Many of these events were un-
likely to cause CSO due to the small rainfall volumes involved. In
addition, significant data gaps were observed for many events. The
number of events under consideration was reduced in the three-
stage procedure shown in Table 2.

Appendix B lists all 130 rain events identified after the first two
stages of data inspection, while Appendix C depicts the observed
inflow to the control points for these events. Rain events that were
identified as problematic during visual inspection were excluded
from the evaluation of forecast performance in the corresponding
catchment as well as from the evaluation of control efficiency.
These events are marked in the table in Appendix B and with a grey
background in Appendix C.

In total, between 114 and 127 rain events were considered for
the evaluation of forecast performance in the different sub-
catchments, and 98 events were considered for the evaluation of
control efficiency. Four rain events were selected for estimating
parameters of the forecast models. These were chosen to cover
different rainfall characteristics (short, intense and localized storms
as well as widespread, long lasting rainfall) in different seasons and
are marked in Appendix B.

4. Results

4.1. Forecast performance

This section focuses on the evaluation of runoff forecast per-
formance obtained for the stochastic grey-box models. As
explained in Section 2.2.1, all of the results shown in the following
were derived for forecasts of runoff volume for a forecast horizon of
120 min, corresponding to 60 control time steps.

Fig. 4 shows the point forecast skill SPI obtained in all of the
catchments. Skill values larger than zero indicate that the stochastic
grey-box models outperformed the benchmark forecast derived
from exponential smoothing. This was mostly the case; however,
there is a large spread of the results obtained for different rain
events.

Very high forecast skill was obtained if rain gauge observations
were used as input for runoff forecasting and future rainfall was
assumed known (scenario AU). In the more realistic scenario based
on radar rainfall forecasts (BU), the runoff forecasting skill was
clearly reduced and the spread of the SPI values obtained for
different rain events increased. The impact of this reduction on the
efficiency of the control scheme is shown in the next section.

Lower forecast skills were generally obtained in the LER and STB
sub-catchments for the AU scenario due to the complexity of this
part of the catchment with multiple gates and overflow points.
Such features are hard to capture with the very simple, data-driven
forecast models applied here (Eq. (1)). In addition, the derivation of
flow measurements based on multiple rating curves and with part
of the basin outflows not captured by the sensors lead to significant
uncertainty of the observed basin inflow.

Unexpectedly, in the STB catchment, the SPI tended to be higher
in scenario BU than in scenario AU. This differencewas caused by an
improved forecast skill of the stochastic grey-box model during dry
weather. The estimated uncertainty scaling of the model states (see
Eq. (1)) was larger in scenario BU due to the larger forecast errors
caused by the radar rainfall forecasts. As a result, the extended
Kalman filter could more easily adapt the dry weather state a0 of
the model (see Eq. (1)) to the rather strong variations of observed
dry weather flows in the STB catchment, leading to improved
forecast skill.

Fig. 5 shows reliability diagrams (expected against observed
coverage rates) for scenario AU for the different sub-catchments.
The grey lines (showing results for the single events) illustrate
that, similar to the point forecasting skill SPI, the reliability of
forecasts strongly varied from event to event. Generally, the actual
uncertainty of the forecasts was underestimated. The worst results
in terms of forecast reliability were obtained in the LER and the STB
catchment, where the point forecast skill was also lowest.

Similar results were obtained for scenario BU (Fig. 6). However,
the reliability of forecasts generally improved as a result of the
larger forecast uncertainty.

Fig. 7 shows the ARIL* values obtained for scenarios AU and BU
in the different sub-catchments. ARIL* is an expression of the un-
certainty of runoff forecasts (see Section 2.2.1). As expected, the
ARIL* values strongly increased when radar rainfall forecasts were
used as model input in scenario BU instead of rain gauge obser-
vations (with assumed perfect rainfall forecast) in scenario AU.

An exception was again the STB catchment, where only a very
minor increase in forecast uncertainty was observed for scenario
BU. This result fits well with the improved point forecasting skill
obtained in this catchment.

4.2. Efficiency of system-wide real-time control

The total overflow volumes and cost obtained for the considered
scenarios are shown in Fig. 8. In the reference scenario REF, over-
flow occurred for 87 of the considered rain events, leading to a total
overflow volume of 0.95 106m3 (Fig. 8, left) and 12.0 106 units of
overflow cost (Fig. 8, right). .

Including forecast information in the control scheme in all cases
lead to a strong reduction of overflow volumes and cost. As ex-
pected, overflow volumes and cost were smallest for scenarios AU
and ANU because the future rainfall was considered known during
the generation of runoff forecasts. Control efficiency was reduced if
radar rainfall measurements and forecasts were used as input to the
stochastic runoff forecasting models (for example, scenario ANU
yielded 15% lower overflow volume and 20% lower overflow cost
than scenario BNU). Nevertheless, in scenarios BU and BNU, the
amount of overflow was also greatly reduced compared to the
reference scenario REF.

The results obtained by the system-wide control scheme
improved further if the uncertainty of the runoff forecasts was
accounted for. The total overflow cost (i.e., the objective function of
the control scheme) and volume in scenario AU were reduced by
33% compared to scenario ANU (Fig. 8). In scenario BU, the total
overflow volume was reduced only minimally compared to sce-
nario BNU (Fig. 8). This result was caused by a strong increase in
forecast uncertainty at control point KLO. As a result, the optimi-
zation routine frequently assigned high outflows to this control
point (reducing overflow volumes almost to zero), while outflows
from STP were frequently minimized (leading to a strong increase



Table 2
Procedure for selecting rain events for simulation. The table shows the criteria applied in different stages together with the number of rain events removed from the dataset
according to the different criteria.

Events removed according to criterion Criterion

Stage 1 (automated) e Remove insignificant events
251 observedmaximum inflow at any of the considered control points (after smoothing) did not exceed the peak dryweather flow

by at least a factor of 1.5,
or
a simulation with a conceptual model of the whole catchment without system-wide RTC (Section 3.2) did not yield CSO and
the maximum rain intensity averaged over the whole catchment was below 1 mm/30 min

Stage 2 (automated) e Remove events with bad data quality
32 at least 10% of the in-sewer measurements were missing in at least one of the considered sub-catchments,

or
7 the maximum radar rain intensity, averaged over a 30 min interval and the whole Lynetten catchment, was higher than

30 mm/30 min while no corresponding increased runoff was observed,
or

2 both of the above issues
Stage 3 (manual) e Visual inspection of the remaining events
3 to 16 (depending on sub-catchment

under consideration)
inflow measurements had no relation to the rainfall measured by radar and gauges

Fig. 4. Boxplot of point forecast skill (SPI) for all considered events in the different catchments using rain gauge observations (scenario AU, left) and radar rainfall observations and
forecasts (scenario BU, right) as input for runoff forecasting.
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of overflow volumes at this point). However, the total overflow cost
in this scenario was reduced by 20% compared to scenario BNU,
meaning that CSO were diverted from more to less sensitive
recipients.

5. Discussion

5.1. Dependency of runoff forecast skill on catchment and rainfall
input

On average, the stochastic grey-box models outperformed the
exponential smoothing benchmark in all of the considered sub-
catchments. However, the forecast skill varied strongly between
catchments and rain events.

If future rainfall was assumed to be known (scenario AU), the
highest forecast skill was obtained for the smaller catchments
(EAM, COL, WAM e see Fig. 4), where a reservoir cascade could
suitably describe the runoff processes. For the more complex
catchments, forecasts could be improved if somewhat more com-
plex model structures were considered (Del Giudice et al., 2015a;
L€owe et al., 2014a). However, simple models are desirable for on-
line purposes (see the discussion in Harremo€es andMadsen (1999))
and the work of Del Giudice et al. (2015a) demonstrated only
limited improvement of the predictions beyond a certain level of
model complexity.

The skill of the runoff forecasts (SPI, Fig. 4) was strongly reduced
and varied more between events if radar rainfall forecasts were
used as model input (scenario BU) instead of a perfect rainfall
forecast derived from gauge measurements (scenario AU). The
decrease in forecast skill was most pronounced for the smallest
considered sub-catchment (WAM) and less pronounced for the
larger sub-catchments such as KLO. This behaviour was caused by
the shorter concentration time in smaller catchments, where a
runoff forecast for 2 h into the future is strongly affected by the
uncertainty of the rainfall forecast.

5.2. Reliability of runoff forecasts

Fig. 5 and Fig. 6 compare expected and observed coverage rates
for forecasts of runoff volume on a 120min horizon.We identified a



Fig. 5. Reliability diagrams (expected vs. observed coverage of the observations) for scenario AU (true (observed) rainfall input from gauges in runoff forecasting) for the different
catchments. The results for the single events are marked in grey, while the median coverage rates over all events are marked as black, solid lines.
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general tendency for the runoff forecasts to be unreliable. For
example, a 90% prediction interval covered less than 70% of the
observations in all of the sub-catchments in scenario AU.

The main reason for this result was that the stochastic grey-box
approach aims to model runoff forecast uncertainty for a multitude
of forecast horizons in a single model structure. This approach has
the advantage of providing us with an intrinsic quantification of the
correlation between forecasts for different horizons, but the model
structure is currently not adapted to account for the different ef-
fects occurring at different forecast horizons.

Forecast variance increases nonlinearly from short forecast ho-
rizons (where the updating of the model to current observations
has a strong influence on forecast quality) to longer forecast hori-
zons (where uncertainty from rainfall input and model structure
affects the runoff forecast most). The stochastic differential equa-
tions in Eq. (1), however, assume that forecast variance increases
linearly with lead time because the variance of an increment Dut of
the Wiener process driving the noise term directly corresponds to
the considered time increment Dt. As a result, the stochastic
forecast models tended to be reliable on short forecast horizons and
unreliable on longer forecast horizons (not shown, but demon-
strated in L€owe et al., 2014b).

We identified the following options for addressing this problem
in the grey-box modelling framework in the future:

� Different forecast models could be applied for different forecast
horizons. While this option would yield reliable forecasts, it
would also lead to a strong increase in the number of parame-
ters that need to be identified, and it would not provide the
description of correlation between forecast horizons. The
identification of forecast distributions of runoff volumes would
then require the application of copulas (Madadgar et al., 2014;
Papaefthymiou and Kurowicka, 2009) or recursive estimates of
the correlation of forecast errors for different horizons (L€owe
et al., 2014b; Pinson et al., 2009) to link the stochastic flow
forecasts for different horizons.

� A scaling factor depending on forecast lead time could be
introduced in the diffusion term of the state equations (Eq. (1))



Fig. 6. Reliability diagrams (expected vs. observed coverage of the observations) for scenario BU (radar rainfall forecasts as input in runoff forecasting) for the different catchments.
The results for the single events are marked in grey, while the median coverage rates over all events are marked as black, solid lines.
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and identified as a parameter in the automatic calibration
routine. This option seems preferable, as it could be easily in-
tegrated in the grey-box modelling approach.

Another interesting result was that higher coverage rates were
observed for scenario BU, where radar rainfall forecasts were used
as input to the forecast models, than for scenario AU. The parameter
estimation procedure identifies the uncertainty scaling for the
model states (si) based on howmany observations are located how
far from the centre of the forecasted distribution (see L€owe et al.
(2014b)). During rain periods, runoff forecast errors are much
larger if radar rainfall is used as an input to the models, leading to a
strong increase in the uncertainty parameters in the model and to
increased forecast uncertainties. These, in turn, lead to an increased
reliability of the model during dry weather periods, explaining the
more reliable pattern observed in Fig. 6.

This issue can also be related to a deficiency in the structure of
the stochastic grey-box model because only a single parameter si is
used in Eq. (1) to scale the forecast uncertainty. Alternative
formulations of the diffusion term should distinguish between dry
weather and rain periods.

5.3. Forecast uncertainty and system-wide real-time control

The results shown in Fig. 8 indicate that there is a clear benefit in
using forecast information in the system-wide control algorithm.
All scenarios that apply forecast information (AU, ANU, BU and
BNU) yield much lower overflow volumes and cost than the
reference scenario REF.

In addition, accounting for the uncertainty of runoff forecasts in
the system-wide control algorithm has proven beneficial. The
reduction in total overflow cost (comparing scenarios AU and ANU
as well as BU and BNU) was comparable in magnitude to the in-
crease in total overflow cost caused by the uncertainty of radar
rainfall forecasts (comparing scenarios AU and BU as well as ANU
and BNU).

The results also showed some limitations of the setup. Replacing
perfect rainfall forecasts (scenarios AU and ANU) by radar rainfall



Fig. 7. Boxplot of prediction interval width (ARIL*) for all considered events in the different catchments using rain gauge observations (scenario AU, left) and radar rainfall forecasts
(scenario BU, right) as input for runoff forecasting.

Fig. 8. Total overflow volume (left) and cost (right) over all events and catchments in the different scenarios.
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forecasts (BU and BNU) decreased runoff forecast skill and strongly
increased runoff forecast uncertainty at KLO. This resulted in high
forecasted overflow cost at this point and a prioritization of out-
flows from KLO over those from STP (see Fig. 3), strongly increasing
overflow volumes at STP. Although the total overflow cost in the
system could be reduced, such effects may be undesirable and can
be mitigated by an adjustment of the CSO unit cost.

Generally, DORA prioritizes outflow from overflow points where
runoff forecast uncertainty is high over overflow points where
runoff forecast uncertainty is low. This is desirable because free
storage volume is kept available at points where little is known
about the future runoff, while storage volume at other control
points is used to the fullest. It is, however, important that realistic
estimates of forecast uncertainty are identified. In particular,
combinations of over- and underestimation of forecast uncertainty
at different control points are expected to negatively impact the
performance of the control scheme.
5.4. General applicability of the setup

The aim of the article was to provide a proof of concept for a
forecast- and optimization-based RTC setup that takes forecast
uncertainty into account. The setup was demonstrated in a case
study involving six different sub-catchments in which the perfor-
mance of the runoff forecasting models was tested by comparing
with observations. The process of generating stochastic runoff
forecasts over a horizon of 2 h and identifying set points using the
DORA algorithm required approximately 1 min on a standard PC
(Intel i7-4930k) and is thus well feasible within a control time step
of 2 min.

The sub-catchments had different sizes and structures (Table 1),
and they therefore behaved differently hydraulically. In addition,
flow observations were far from perfect and, in most of the
catchments, were affected by changes in pumping discharges
(Section 3.3.1 and Appendix C). These conditions correspond well
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to what we would expect in other urban catchments. The skilful
forecasts that were obtained for most of the sub-catchments sug-
gest that the forecast setup can be transferred to other catchments.

Current limitations of the setup are that rather unreliable fore-
casts are obtained for long forecast horizons (Section 5.2) and that
only a very simple model structure is considered, while including
effects from, e.g., overflow structures located upstream from the
control point may well improve the forecast skill in some sub-
catchments (Sections 2.1 and 4.1). Conversely, the radar rainfall
forecasts provided as model input in our case study were incom-
plete. In particular, no forecast information was available for hori-
zons beyond 90 min. We would therefore expect somewhat better
rainfall forecasts and thus better performance of the runoff fore-
casts in other catchments with more complete rainfall forecasts.

The derivation of inflow measurements using the water balance
of the control points proved problematic in terms of operational
reliability because each inflow measurement depended on the
correct operation of multiple sensors. In fact, we were able to use
only 98 out of 171 relevant rain events in our data period as a result
of sensors failing at one or multiple control points. This problem
can be avoided by installing redundant level sensors or dedicated
flow measurements. M€annig and Lindenberg (2013) demonstrated
that a reliable operation of a control system can also be achieved
with a large number of 13 control points and more than 100 in-
sewer measurements.

The effect of forecast uncertainty on the optimization-based
control scheme was tested for the first time in an urban setting in
this study. Raso et al. (2014) demonstrated the value of considering
forecast uncertainty in reservoir operation. As we applied a full-
scale catchment in our case study, our results provide a strong
indication that optimization-based control schemes should
consider forecast uncertainty. Nevertheless, this result needs to be
verified in further studies and catchments.

6. Conclusions

A forecast-based, stochastic optimization setup was presented
for system-wide real-time control of combined sewer systems
aimed at reducing combined sewer overflows. The setup combined
stochastic grey-box models for probabilistic forecasting of urban
runoff online and the risk-based optimization algorithm DORA that
accounts for forecast uncertainty and impact cost.

In a case study in Copenhagen, Denmark, involving 6 sub-
catchments of varying sizes and 7 control points we assessed
forecast performance by comparing runoff forecasts to measure-
ments and by testing the efficiency of the control scheme in sim-
ulations. We conclude that:

1. Accounting for forecast uncertainty in the system-wide control
positively affected the results of the control scheme. In the
simulation study performed in this work, the reduction of total
overflow cost resulting from the consideration of forecast un-
certainty was comparable to the increase of total overflow cost
resulting from the uncertainty of radar rainfall forecasts
(comparing simulation results for the case of a perfect, rain
gauge based rainfall forecast to a real-world radar rainfall
forecast).

2. Higher uncertainty of the runoff forecast at a control point leads
to a higher priority of this control point in DORA. It is therefore
important to identify realistic estimates of forecast uncertainty.
In particular, for a robust performance of DORA, forecast un-
certainty must not be underestimated at some control points
and overestimated at others.

3. Using radar rainfall forecasts as input to the stochastic runoff
forecasting models instead of perfect rainfall forecasts based on
rain gaugemeasurements lead to a significant decrease in runoff
forecast skill. Nevertheless, an exponential smoothing model
used as the benchmark forecast was outperformed in all of the
considered sub-catchments. In addition, the control scheme
yielded much better results than in the reference case where
optimization was performed without forecast information, i.e.,
based on the current basin fillings only.

4. Models that forecast the inflow to the control points could be set
up, although direct inflow measurements were not available for
most control points. Inflow measurements were derived using
thewater balance of the storage basins andwere in several cases
strongly influenced by pumping discharges. The stochastic grey-
box models were capable of handling the resulting noisy flow
measurements. However, the considered measurements must
be ensured to fully capture the water balance at a control point.

5. Stochastic runoff forecasting models need to consider a
nonlinear increase of forecast uncertainty with forecast lead
time when generating multistep forecasts.

6. Deriving flow measurements from a multitude of sensors im-
plies that each measurement depends on the correct operation
of multiple sensors. This can severely impact the reliability of
the control setup, a problem that can easily be mitigated by
installing redundant sensors in the most suitable locations
during the implementation of the RTC system.

The present study has provided a proof of concept for consid-
ering forecast uncertainty in a risk-based optimization scheme for
RTC of urban drainage systems. Future work should focus on
improving rainfall forecasts as well as the development of libraries
of runoff forecasting models, where the model structure perform-
ing best for a given control point can be selected automatically.
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