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a b s t r a c t

Allocation of electricity reserves is the main tool for transmission system operators to guarantee a
reliable and safe real-time operation of the power system. Traditionally, a deterministic criterion is used
to establish the level of reserve. Alternative criteria are given in this paper by using a probabilistic
framework where the reserve requirements are computed based on scenarios of wind power forecast
error, load forecast errors and power plant outages. Our approach is first motivated by the increasing
wind power penetration in power systems worldwide as well as the current market design of the DK1
area of Nord Pool, where reserves are scheduled prior to the closure of the day-ahead market. The risk of
the solution under the resulting reserve schedule is controlled by two measures: the LOLP (Loss-of-Load
Probability) and the CVaR (Conditional Value at Risk). Results show that during the case study period, the
LOLP methodology produces more costly and less reliable reserve schedules, whereas the solution from
the CVaR-method increases the safety of the overall systemwhile decreasing the associated reserve costs,
with respect to the method currently used by the Danish TSO (Transmission System Operator).

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Electricity is a commodity that must be supplied continuously at
all times at certain frequency.When this requirement is not fulfilled
and there is shortage of electricity, industrial consumers can face
the very costly consequences of outages: their production being
stopped or their systems collapsed. Households will experience
high discomfort and losses too. From a different point of view,
service interruptions also affect electricity producers as they are not
able to sell the output of their power plants. Therefore, it is of high
importance that the demand is always covered. The main tool for
transmission system operators to avoid electricity interruptions is
the allocation of operating reserves. In practice, scheduling reserves
means that the system is operating at less than full capacity and the
extra capacity will only be used in case of disturbances.

The term operating reserves is defined in this paper as “the real
power capability that can be given or taken in the operating time
frame to assist in generation and load balance and frequency con-
trol” [1]. The types of reserves are differentiated by three factors:
mgo@dtu.dk (J.M. Morales),
nsson).
first, the time frame when they have to be activated ranging from
few seconds to minutes; secondly, their activation mode, either
automatically or manually; finally, by the direction of the response,
upwards or downwards. Members of the ENTSO-E (European
Network for System Operators for Electricity) andmore specifically,
the Danish TSO (Transmission System Operator), follow this clas-
sification criterion. Primary control is activated automatically
within 15 s and its purpose is to restore the balance after a devia-
tion of ±0.2 mHz from the nominal frequency of 50 Hz. Secondary
control releases primary reserve and has to be automatically sup-
plied within 15 min or 5 min if the unit is in operation. Manual
reserve releases primary and secondary reserves and has to be
supplied within 15 min. In Denmark, this type of reserve is often
provided by CHP (Combined Heat-and-Power) plants and fast start
units. The activated manual reserves are often referred as regu-
lating power. This paper deals with the total upward reserve re-
quirements, namely the sum of primary, secondary and manual
reserves, neglecting the short-circuit power, reactive and voltage-
control reserves. The result of the proposed optimization models,
namely the schedule of reserves, refers to the total MW of upward
reserve required. It is assumed that the reserve acts instantaneously
to any generation deficit and no activation times are considered.

Currently the provision of reserve capacity in the DK1 area of
Nordpool obeys the following rules, which can be found in the
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official documents issued by the Danish TSO [2]. The requirements
for primary and secondary reserve are ±27 MW and ±90 MW,
respectively. The provision of tertiary or manual reserves follows
the recommendations in both the ENTSO-E Operation Handbook
and the Nordic System Operation Agreement [3], where it is stip-
ulated that each TSO must procure the amount of tertiary reserves
needed to cover the outage of a dimensioning unit in the system
(the so-called N�1 criterion), be it a domestic transmission line, an
international interconnection or a generating unit. The inspection
of the historical data reveals that this criterion roughly results in an
amount of tertiary reserve in between 300 and 600 MW.

The methodologies discussed in this article are mainly targeted
to the current structure of the Danish electricity market, where
reserve markets are settled independently of and before the day-
ahead energy market, implying that, at the moment of scheduling
reserves, no information about which units will be online is known.
At the market closure, the TSO collects bids from producers willing
to provide reserve capacity, and selects them by a cost merit-order
procedure. Most of the existing literature focuses on co-optimizing
the unit commitment and reserve requirements at the same time;
such methods however cannot be applied under the current design
of the Danish electricity market.

This paper is also motivated by the increasing penetration of
wind power production in Europe and, in particular, in Denmark. As
a matter of fact, the commission of the European Countries has set
an ambitious target such that the EU will reach 20% share of energy
from renewable sources by 2020, and in Denmark the target is 30%
[4]. As the share of electricity produced by renewables increases,
several challenges must be faced. Non-dispatchable electricity
generation cannot ensure a certain production at all times, but
instead depends on meteorological factors. The stochastic nature of
such factors inevitably leads to forecast errors that will likely result
in producers deviating from their contracted power, thus causing
the system to be imbalanced. Solutions call for methods capable of
managing the uncertainty that wind power production and other
stochastic variables induce into the system.

The main contributions of this paper are the following:

1. A probabilistic framework to determine the total reserve re-
quirements independently to the generation power schedule in
a power system with high penetration of wind production. The
reserve levels in Denmark are currently computed by deter-
ministic rules such as allocating an amount of reserve equal to
the capacity of the largest unit online [2,3]. Another example is
the rule used in Spain and Portugal, where the upward reserve is
set equal to 2% of the forecast load plus the largest unit in the
system. These rules are designed for systems with very low
penetration of renewable energy and fairly predictable load,
where the biggest largest need for reserve capacity arises from
outages of large generation units. With the increasing share of
renewables (and decentralized production in general) in the
generation portfolio, renewables will naturally have a larger
influence on the system imbalance. Hence, the non-
dispatchable and uncertain nature of these plants needs to be
accounted for when reserve power is scheduled [5]. Previous
studies perform a co-optimization of the energy and reserve
markets, either in a deterministic manner [6] or in a probabi-
listic way [7e13]. However, these methods cannot be applied
directly to the DK1 area of Nord Pool since the reserve market
and the day-ahead energy market are cleared independently at
different times and by different entities. The methodology in
Ref. [14] is not suitable either as the COPT (Capacity Probability
Table) refers to the units that are online; this information is not
available to the Danish TSO at the time of clearing the reserve
market.
2. A flexible scenario-based approach for modeling system un-
certainty, which takes into account the limited predictability of
wind and load, and plausible equipment failures. Moreover, the
distributions from which the scenarios are generated are time-
dependent, being the distributions of the scenarios of fore-
casts errors of load and wind power production non-parametric
and correlated. The authors of [9] characterize the uncertainty in
the system only by scenarios of wind power forecast errors. Load
and wind generation uncertainty is described in Refs. [8,15] by
independent Gaussian distributions and not in a scenario
framework. Other authors [7,15] use outage probabilities as a
constant parameter for each unit and for each hour. The authors
of [14] represent the forecast error distributions of the load and
wind generation by a set of quantiles, assuming both distribu-
tions are independent.

3. Equipment failures are modeled as the amount of MW that fail
in the whole system due to the forced outages of generating
unit. This way we can model and simulate simultaneous out-
ages. Furthermore, the distribution of failures is dependent on
time. Existing literature takes into account just one or two
simultaneous failures [7,8,15] or several [14].

4. Two different methods for controlling the risk of the resulting
capacity reserve schedule. The first one imposes a target on the
probability of load shedding as in Refs. [7], while the second one
is based on the Conditional Value at Risk of the reserve cost
distribution. The latter method minimizes the societal costs,
while penalizing high cost scenarios given a certain level of risk
aversion.

The remaining of the paper is organized as follows. Section 2
presents two different optimization models for reserve determi-
nation. Section 3 describes the methodology to generate scenarios
of load forecast error, wind power forecast error and equipment
failures, which altogether constitute the input information to the
proposed reserve determination models. Section 4 elaborates on
the estimation of the cost of allocating and deploying reserves.
Section 5 discusses the results and comments on the implications of
applying the two reserve determination models to the Danish
electricity market. Conclusions are summarized in Section 6.

2. Modeling framework

This section presents two formulations for determining the
reserve requirements in DK1, both of them solved using a scenario-
based approach. The first limits the LOLP (Loss-Of-Load Probabil-
ity), while the second oneminimizes the CVaR (Conditional Value at
Risk) of the cost distribution of reserve allocation, reserve deploy-
ment and load shedding. Bothmodels aremeant to be run to clear the
reserve market and can be used by the TSO to decide on how many
MW of reserve should be scheduled. In Denmark, where the study
case in this paper is focused, the reservemarket is clearedprevious to
and independentlyof theday-aheadenergymarket. This implies that
the unit commitment problem is not addressed at the timewhen the
reserve market closes and thus neither is it in this paper.

2.1. LOLP-formulation

The objective is to minimize the total cost of allocating reserves,

Minimize
Ri

XM
i

liRi; (1a)

where Ri is a variable representing the total amount of reserve
assigned to producer i and li is the price bid submitted to the
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reserve market by this producer. M is the total number of bids. The
objective (1a) is subject to the following constraints

Ri � Rmax
i ci (1b)

RT ¼
XM
i

Ri (1c)

LOLP ¼
Z∞
RT

f ðzÞdz (1d)

LOLP � b (1e)

RT � 0 ci: (1f)

The set of inequalities (1b) indicates that the amount of reserve
provided by producer i cannot be greater than its bid quantity. The
total reserve to be scheduled is defined in (1c) as the sum of the
reserve contribution from each producer. The probability density
function of balancing requirements is represented by f(z), and
hence the integral from z ¼ RT to z ¼ ∞ is the probability of not
scheduling enough reserves to cover the demand, namely the loss-
of-load probability, defined in (1d). It is constrained by a parameter
target b2½0;1� in Equation (1e), which is to be specified by the
transmission system operator. The smaller b is, the more reserves
are scheduled, as the LOLP is desired to be small. On the other hand,
if b is equal to 1, no reserves are allocated at all.

The optimal solution to problem (1a) can be found analytically,
under the assumption that the objective function (1a) is mono-
tonically increasing with respect to the total scheduled reserve RT

(i.e., reserve capacity prices are non-negative) and because the
LOLP is a decreasing function with respect to RT (note that f(z) is a
density function and therefore, always non-negative). Indeed, un-
der the above assumption, greater RT implies greater costs, thus RT

is pushed as low as possible until the relation LOLP ¼ b is satisfied.
Therefore, at the optimum, it holds that b ¼ R∞

RT f ðzÞdz or similarly
1 � b ¼ F(RT) being F(Z) ¼ P(Z�z) the cumulative distribution
function of Z (the required reserve). Finally, since b is a given
parameter, then the solution is RT

� ¼ F�1ð1� bÞ.
In practice, f(z) can be difficult to estimate in a closed form; one

way of dealing with this issue is to describe the uncertainty by
scenarios. Let zw be the reserve required to cover balancing needs in
scenario w and pw the associated probability of occurrence. Then
the optimal solution to problem (1a) boils down to the quantile
1 � b of the scenarios. In other words, let bF ðZÞ ¼ PðZ � zÞ be the
empirical cumulative distribution function of the set of scenarios
{zw} with bF : ð�∞;∞Þ/ð0;1Þ, then the analytical solution is
RT

� ¼ inffz2ð�∞;∞Þ : ð1� bÞ � bF ðzÞg.
Finally, we define the EPNS (Expected Power Not Served) as the

expected amount of MW of balancing power needed during 1 h
which cannot be covered by the scheduled reserves. It can be
computed,once the total scheduled reserveRT

�
hasbeenobtained, as.

EPNS ¼
Z∞
RT�

zf ðzÞdz: (2)

In the case where the uncertainty of reserve requirements is
characterized by scenarios, the EPNS can be determined as
EPNS ¼ P

w2Sðzw � RT
* Þpw, S ¼ fw2W : zw >RT

� g.
2.2. CVaR (Conditional value at risk) formulation

The following reserve determination model corresponds to a
two-stage stochastic linear program where each scenario is char-
acterized by a realization of the stochastic variable Z “reserve re-
quirements”. Variable RT represents the amount of MW that the TSO
should buy at the reserve market. In the jargon of stochastic pro-
gramming, this variable is referred to as a first stage variable, or
equivalently, as a here-and-now decision, i.e., a decision that must
be made before any plausible scenario zw of energy shortage is
realized. This models the fact that reserve capacity is to be sched-
uled before the scenarios of reserve requirement are realized. For
their part, the second stage variables, or recourse variables, rTw and
Lw, are relative to each scenario w, and represent the deployed
regulating power and the MW of shed load, respectively. Conse-
quently, during the real-time operation of the power system, once a
certain scenario w of wind power production, load and equipment
failures realizes, reserve is activated rTw or some load is shed (Lw). In
such a way, the first stage of our stochastic programming model
represents the reserve availability market and the second stage
represents the reserve activation market. Finally, the probability of
occurrence of each scenario is denoted by pw.

The objective function to be minimized is the CVaRa of the dis-
tribution of total cost. By definition, the Value-at-Risk at the confi-
dence level a (VaRa) of a probability distribution is its a-quantile,
whereas the CVaRa is the conditional expectation of the area above
the VaRa. The CVaR is known to have better properties than the VaR
[16] and hence, it is used in this paper. Parameter a2½0;1Þ repre-
sents the risk-aversion of the TSO, i.e. the greater a is, the more
conservative the solutionwill be in terms of costs. The objective is to
minimize the CVaRa of the distribution of the total cost:

Minimize
RT ;Rg ;rTw;rgw;Lw;x;hw;Costw

CVaRa ¼ xþ 1
1� a

XW
w¼1

pwhw (3a)

where x is, at the optimum, the a�Value at Risk (VaRa) and hw is an
auxiliary variable indicating the positive difference between the
VaR and the cost associated with scenario w. The cost of each sce-
nario, named Costw, is computed in (3b) as the sum of the cost of
allocating and deploying reserve capacity plus the cost incurred by
involuntary load shedding. The objective (3a) is subject to the
following constraints:

Costw ¼
XJ

j¼1

l
cap
j Rj þ

XG
g¼1

lbalg rgw þ VLOLLw cw (3b)

RT ¼
XJ
j¼1

Rj (3c)

rTw ¼
XG
g¼1

rgw cw (3d)

0 � Rj � IRj cj (3e)

0 � rgw � Irg cg;w (3f)

Costw � x � hw cw (3g)
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rTw � RT cw (3h)
zw � rTw � Lw cw (3i)

0 � Lw; hw cw: (3j)

The first term in Equation (3b) represents the cost of allo-
cating RT MWof reserve capacity. The TSO has information about
the marginal cost of allocating reserves at the closure time of the
reserve market, as it is given by the bids submitted by producers
to the reserve market. These bids, however, are treated confi-
dentially and hence, were not available for the study case.
Consequently, we estimate a cost function for the supply of
reserve capacity from the historical series of clearing prices in
the Danish reserve market. Naturally, this function must be
monotonically increasing. The estimation of the parameters of
this function is discussed in Section 3. In order to keep formu-
lation (3) linear, the marginal cost of reserve capacity is further
approximated by a stepwise function consisting of J intervals
of length IRj each, as indicated in (3e), and associated values
l
cap
j , which result from evaluating the estimated reserve cost
function at the midpoint of each interval. The term

PJ
j¼1l

cap
j Rj

represents thus the total cost of allocating RT MW of reserves.
Furthermore, the total allocated reserves are given by (3c). Note
that the formulation would remain equal if the real bids were
used instead of the estimated cost function. One could interpret
l
cap
j and IRj as the bid that producer j submit to the reserve
market and Rj as the MW of reserve capacity provided this
producer.

The second term of (3b) represents the reserve deployment cost.
This cost is unknown at the time of clearing the reserve market and
therefore, has to be estimated by aswell. The estimationprocedure is
discussed in Section 3. Similarly as before, lbalg can be seen as the cost
of deploying rgw MW of reserve in interval g and scenario w. The
length of the intervals is Irg , as stated in (3f), having a total of G in-
tervals. The total deployed reserve in scenariow is then givenby (3d).

The third term of (3b) represents the cost of involuntary load
curtailment. The parameter “Value of Lost Load” VLOL expresses
the societal cost of shedding 1 MWh of load. Often, the VLOL is
interpreted as the maximum price of upward regulation that is
permitted to bid in the market, which in Denmark is
37,500 DKK/MWh or roughly 5,000 V/MWh. In Great Britain, the
VLOL is estimated to be from 1,400 £/MWh to 39,000 £/MWh
depending on the type of consumer and the time of the year
[17]. A study performed on the Irish power system indicates
that, on average, the VLOL is 12.9 V/KWh [18]. In this paper, a
sensitivity analysis is performed to study how the parameter
VLOL affects the solution.

Constraint (3g) is used to linearly define the CVaRa as in
Ref. [19]. Variable hw is equal to zero if Costw < x, and equal to
Costw� x if Costw� x; in other words, hw accounts for the difference
between the cost in each scenario and the VaRa when such a dif-
ference is positive. Equation (3h) indicates that the deployed
reserve cannot be greater than the scheduled reserves. Equation
(3i) is used to define the shed load Lw (or similarly, the lack of
reserve). At the optimum, Lw is equal to zero if zw� RT, implying that
zw ¼ rTw; when zw > RT, then Lw is equal to the difference between
the reserve requirements and the deployed reserves, namely,
zw � rTw. In this case, the deployed reserve is equal to the scheduled
capacity reserve rTw ¼ RT .

Once the CVaR problem has been solved, one can calculate the
EPNS by multiplying the lacking reserve from each scenario L�w at
the optimum by its probability of occurrence pw, namely
EPNS ¼ PW

w¼1pwL*w.
3. Cost functions

This section elaborates on the estimation of the cost of allocating
reserves and the cost of providing regulating power.

In practice, the bids that producers submit to the reserve mar-
ket, that are used to define (3b), are available to the Danish TSO at
the closure of the reserve market. Nevertheless, this information is
not available to us for the case study presented in Section 5.
Consequently, in order to adjust the optimization models to the
available data and test the efficiency of such, the bids of producers
are substituted by a cost function, being gR(z) the cost in V/MW of
allocating of zMWof upward reserve. This function is built from the
series of clearing prices in the Danish reserve market, which is
publicly available in Ref. [20]. The price per MWof reserve capacity
is assumed to be quadratic for simplicity, in particular, of the form
gR(z) ¼ az2. The coefficient a¼1.25 � 10�5 is estimated using least-
square method.

A staircase linear approximation of gR(z) is then used in order to
maintain formulation (3) linear. The reason for the choice of a stair-
case function is that, due to market rules, the aggregated bidding
curve is also a stair-case function. The feasible region of RT is split
into intervals of length Irj ¼ 30 MW cj, ranging from 0 to an upper
bound of RT chosen to be 1890 MW. For every interval, we compute
the estimatedmarginal cost lcapj at the mid point of the interval and
set it to the height of each stair. Fig. 1 shows on the left the data
points and the estimated curve of prices in Euro per MW of allo-
cated reserve. The data appears very homoscedastic, for example,
the variability around RT ¼ 300 MW is much lower than around
RT ¼ 450 MW. Nevertheless, the curve is not intended to capture all
the variability of the data but to represent a plausible aggregated
bidding curve in the reserve market.

The cost of deploying reserves is a necessary input to Equation
(3b) andmust be estimated in practice, as it is unknown at the time
of clearing the reserve market. We denote the marginal cost of
deploying zMWof reserve by gr(z). In order to compute this cost, we
approximate the clearing prices of the regulating market by a
quadratic term plus an intercept, gr(z)¼ mþ bz2. The parameters are
estimated using the least-squares method and data relative to the
clearing price of the regulating market in DK1 collected from
Ref. [20]. The regulating power traded versus the market price is
displayed in dots in Fig. 1. The resulting estimates of the parameters
are m ¼ 48.2 and b ¼ 6�10�4. In order to maintain the optimization
problem (3) linear, gr(z) is linearized as a stair-case function, which
is shown in the right plot in Fig. 1. More complex functions could
possibly be estimated, for example using time and other external
factors as explanatory variables. This implementation is left for
future work.

Lastly, it should be noted the difference in scale between the
settlement prices of the two markets. On average, the price of
allocating reserve is approximately 40 times lower than deploying
them. Allocating reserve is cheaper as no energy is actually
deployed but only the capacity is allocated.

4. Scenarios of reserve requirements

The total reserve capacity that should be scheduled and allo-
cated in advance is mainly affected by three factors or uncertainty
sources: the forecast error of wind power production, the forecast
error of electricity demand and the forced outages of power plants,
namely failures of the plants that cause their production to stop.
They are all taken into account in this paper.

Suppose that wind power production is the only source of un-
certainty. We assume that wind power producers bid their ex-
pected production in the day-ahead market. If the actual wind
power production is greater than what was expected, then there
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will be extra power to sell and hence a reduction in power supply
(down-reserves) will be required to maintain the system balance;
if, on the other hand, the realized wind is lower than the expected
value, upward reserves will be required. In other words, if the
forecasts were perfect and the errors equal to zero, no reserve
would be needed. Likewise, as the forecast errors increase, more
reserves are required to account for the possible mismatches be-
tween supply and demand. Similarly with the power load: it is
assumed that the amount of power traded in the day-ahead energy
market is equal to the expected power load demand, therefore
positive errors imply upward reserve requirements while negative
errors imply downward reserve requirements. The predicted out-
ages of power plants lead directly to upward reserve requirements.

The probability distributions of the forecast errors and the po-
wer plant outages can be combined into one by convolving them,
resulting in a function which will represent the probability distri-
bution of the combined balancing requirements f(z). In this paper,
we draw scenarios from each individual distribution and sum them
up to produce scenarios characterizing the total reserve re-
quirements in the DK1 area of Nord Pool. A scenario-based
approach is chosen because the convolution of the probability
distributions of the individual stochastic variables does not have a
closed form and can be highly complex. The remaining of this
section elaborates on how the individual scenarios are obtained.
Fig. 2. The histogram of forecast error scenarios of wind power production and load
during one specified hour shown are shown in gray and white, respectively.
4.1. Scenario generation of wind power production and load
forecast errors

In this subsection both the generation of scenarios of wind po-
wer production and load forecast errors are discussed. Scenarios
from both stochastic variables are generated together to account for
correlation between them.

Regarding the wind power production in DK1, point quantile
forecast have been issued using a conditional parametric model,
i.e., a linear model in which the parameters are replaced by a
smooth unknown functions of one or more explanatory variables.
The explanatory variables are on-line and off-line power mea-
surements from wind turbines and numerical weather prediction
of wind speed and wind direction. The functions are estimated
adaptively. The errors are modeled as a sum of non-linear smooth
functions of variables forecast by the meteorological model or
variables derived from such forecasts. Further information about
the employed modeling approach can be found in Refs. [21e23].

The load in DK1 area has been modeled as a function of the
temperature, the wind, and the solar radiation. The annual trend is
modeled by a cubic B-spline basis with orthogonal columns. The
daily variations are modeled as a combination of different sinu-
soids, one referring to each time of the day. The reader is referred to
[24] for a detailed description of the methodology used in this
paper to model the electricity demand in DK1.

The scenarios of wind production and load are generated in
pairs in order to account for their mutual correlation. Each scenario
is composed by two variables and is built in three steps as in
Ref. [25]: first by a sample of a multivariate Gaussian distribution
where the covariance matrix is estimated recursively as new ob-
servations are collected; then, by applying the inverse probit
function of such sample, and finally by using the estimated inverse
cumulative function of the desired variables.

Fig. 2 shows the distribution of the scenarios of forecast errors of
wind power production and load in gray and white respectively,
during the 15th Dec 2011 from 13:00 to 13:59. Note that the dis-
tribution of the forecast error of wind power is wider, indicating
that, in general, wind power production has a greater impact on
reserve requirements than the load. On average, forecast error
scenarios of wind exhibit five times more variance than the load
scenarios. Finally, note that both distributions are centered around
zero.
4.2. Scenario generation of power plant outages

The modeling of individual power plant outages requires his-
torical data and specific information on each power plant which
might not always be available to the TSO. Secondly, it requires
computing an individual model for each unit, thus increasing
complexity significantly. Thirdly, it requires information about
which units will be on/off during the operation horizon, which is
not available at the clearing of the Danish reserve market. An
alternative approach taken in this paper is to model the total
amount of MW that fail in the entire system by aggregating all the
units into one. The predicted MW failed in the entire system
depend on time and on the load. Historical data of power plant



Fig. 4. Histogram of xt=nt jyt ¼ 1, namely the amount of MW failed divided by the load
at time t, knowing that a failure has occurred. The curve represents the estimated
Gamma distribution.
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outages can be found at the Urgent Market Messages service of
Nord Pool [26]. The left plot in Fig. 3 shows the forced outages in
MW during 2011. The area inside the box corresponds to the MW
failed in May, also zoomed in the right plot. In the course of 2011,
there was 92% of the hours where 0 MW failed; during the rest of
the hours, either an outage of a single unit, a partly outage or
simultaneous outages occurred.

The procedure proposed in this paper to model power plant
outages is comprised of two steps. In the first step, we model the
presence or absence of an outage. In the second step, we model the
amount of MW failed, conditioned on the fact that a failure
occurred. In Ref. [27] we explored alternative methodologies based
on Hidden Markov Models that were proven to perform worse at
predicting future outages.

The variable modeled in the first step Yt is defined as.

Yt ¼
�
1 if failure occurs at time t
0 otherwise:

(4)

It is natural to assume that Yt follows a Bernoulli distribution,
Yt ~ bern(pt), and therefore, it is appropriate to model Yt as a
Generalized Linear Model [28]. The link function chosen is the logit
function. The explanatory variables are the hour of the day, the day
of the week and the month, all represented through sinusoidal
curves. Sinusoidal terms of the form kð1Þ cosð2pðhourt=24ÞÞ,
kð2Þ cosð2pðdayt=7ÞÞ and kð3Þ cosð2pðmontht=12ÞÞ with
kð1Þ ¼ 1…24, kð2Þ ¼ 1…7, and kð3Þ ¼ 1…12, are considered, also
using the sin function. Only the most relevant were kept using a
likelihood ratio test as in Ref. [28]. The final model is

ht¼log
�
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:

(5)

The reduced model indicates that the hour of the day is not
significant when predicting the probability of an outage. The day of
the week and the month are both significant variables. The pa-
rameters of the model are optimized using train data and updated
everyday including data from the previous 24 h during the test
period.

The second stage of the model accounts for the amount of failed
MWat time t, Xt, conditioned on the fact that a failure has occurred.
Note that the more energy is demanded, the more power plants are
online and more generators are subject to fail, meaning that the
load nt will affect our predictions of Xt. The histogram of ðXt=nt jYt ¼
1Þ depicted in Fig. 4 clearly resembles the density of a Gamma
distribution. Thus, we assume that ðXt=nt jYt ¼ 1Þ � Gammaðst ; kÞ,
Fig. 3. Historical data of MW forced to fail in DK1. On the left, data relative to year 2011 is sh
where k is the shape parameter, common for all observations, and st
the scale parameter at time t.

The probability density function of a Gamma distribution is
defined as

f ðxÞ ¼ 1
GðkÞskt

xk�1e�
x
st ; (6)

with mean mt ¼ kst and variance s2 ¼ ks2t . The canonical link for the
gamma distribution is the inverse link h ¼ 1/m [28]. As in the pre-
vious binarymodel, the explanatory variables are several sinusoidal
curves. Several approximate c2-distribution tests were performed
to disregard irrelevant terms. The final model only including the
significant terms is

ht ¼
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(7)

When predicting the ratio Xt/nt, the hour, the week day and the
month are statistically significant.

Scenarios are generated in an iterative process. Every day at 9:00
am, the parameters of bothmodels are updated including data from
the previous day. At this time, 5,000 scenarios for each hour of the
next day are generated, i.e., with lead time ranging from 16 to 40 h.
Each scenario corresponds to an independent simulation of a
own. The area inside the rectangle is zoomed on the right plot and refers to May 2011.
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Bernoulli multiplied by a Gamma simulated value and by the pre-
dicted load nt.

5. Results and discussion

The performance of the proposed reserve determination
models is assessed by comparing the reserve capacity scheduled
by the models and the reserve capacity actually deployed in the
DK1 area of Nord Pool. The latter is calculated as the sum of the
activated secondary reserve, regulating power produced in DK1
and the regulating power exchanged through the in-
terconnections with neighboring areas. Data pertaining to the
activated secondary reserve and the total volume of regulating
power can be downloaded from Refs. [26] and [20], respectively.
The regulating power exchanged through the interconnections
with Germany, Norway, Sweden and East Denmark is estimated
using data from Ref. [20]. More specifically, it is computed by
subtracting the total power scheduled for each interconnector in
the day-ahead market from the actual power that eventually
flows through it. Primary regulation was not considered due to
unavailability of the data. However, conclusions would be barely
affected by considering the primary regulation as it is compar-
atively very low. In the remainder of the paper, a shortage event
is defined as an hour when the scheduled reserves are lower
than the actual reserve deployed. In practice, a shortage event
does not necessarily imply that load is shed. In the Nordic mar-
ket, producers who are scheduled to provide a certain capacity in
the reserve market must place an offer of regulating power of the
corresponding size in the regulating market, 45 min before
operational time. However, other players who are not committed
to provide reserves in the reserve market may still bid in the
regulating market and thereby provide regulating power. This
case is not considered in this paper.

The presented case study has been performed on data spanning
three years. The training period of the scenario-generating models
goes from the 1st January 2009 at 00:00 CET to the 30th June 2011
at 23:00 CET. The test period covers week 36 of year 2011 and
weeks 3, 17 and 22 of 2012, all of them randomly selected.

Recall that scenarios are generated every day at 9:00 am with a
lead time of 16e40 h, namely the next operational day. The opti-
mization models are run using the same lead time, as if they were
to be solved at the clearing of the reserve market. The solutions to
the LOLP and CVaR models are compared with the actual deployed
reserves in DK1 during the four testing weeks.

It is worth stressing that the proposed models for reserve
determination focus on the total reserve requirements, which are
triggered by unexpected fluctuations in the load and in the wind
power production, and by outages of power plants. We do not
distinguish, therefore, between primary, secondary and tertiary
reserve. In the case of the LOLP-formulation, it is up to the TSO to
decide how to split the total reserve requirements into the
different types of reserve that may be considered. Likewise, the
CVaR-formulation can be easily tuned to represent the three types
of reserves through the estimated cost functions. Indeed, if it is
much easier for plants to participate in the tertiary reserve mar-
ket, because providing tertiary reserve is cheaper than providing
primary and secondary reserve, then the distinction between
these should be made through the supply cost function for
reserve, with the tertiary reserve being cheaper than the sec-
ondary and primary ones. If, on the contrary, it is much easier for
the plants to participate in the tertiary reserve market for reasons
that cannot be translated into costs, then the required primary
and secondary reserve should be treated as input information in
the CVaR-method and subtracted from the total reserve
requirements.
5.1. LOLP-model results

This subsection shows the results of applying the LOLP model
introduced in Section 2.1. The model was run during the four
testing weeks and the simulation results are included in Fig. 5. The
actual deployed reserves in DK1 and the total scheduled reserves by
Energinet.dk are also shown in the figure. The shaded areas in the
background represent the solution to the LOLP model for different
values of b. Weeks are separated by vertical lines. The amount of
scheduled reserve varies substantially depending on the level of
uncertainty of the wind, the load and the power plant outages. As
an example, on the Thursday of the fourth week, the prediction of
load and wind power production happened to be wrong, and up to
1,100 MW of regulating power were needed. In this special case,
both the LOLP solution and Energinet.dk's reserve scheduling cri-
terion led to a shortage event.

The reliability plot in Fig. 6 shows the desired or expected LOLP
(parameter b), against the observed LOLP, namely, the number of
shortage events divided by the time span. The whole data set was
used to compute this reliability plot. The ideal case is illustrated by
the dashed line where both quantities, expected and observed, are
equal. The actual performance of the model is represented by the
continuous line, which is fairly close to the ideal one, indicating that
the expected probability of reserve shortage is well adjusted to the
observed one.

It is worth mentioning that the value of the parameter b is
directly connected to the reliability level of the underlying power
system. With this in mind, a simple rule for the TSO to decide on an
appropriate value for this parameter would read as follows: divide
the number of hours in a year where shedding load is tolerated to
happen by the total number of hours in the year. This simple rule
would roughly indicate the probability that, in each hour, the need
for upward balancing power exceeds the scheduled reserves. The
UCTE suggests that enough reserve should be scheduled to manage
energy deviations in 99,9% of all hours during the year [29]. For
example, if the TSO tolerates that there are around 96 h during a
year where some load might not be covered, then the resulting
LOLP would be equal to 0.01. The case presented in Ref. [14] is
performed using LOLP ¼ {1, 0.5, 0.1}. The authors in Ref. [30]
consider five scenarios of demand, where the LOLP is in between
0.005 and 0.016. Note, however, that the LOLP does not account for
how many MW of load are shed or the cost of such load shedding
events.

Next, we perform a sensitivity analysis to asses how changes in b

affect the solution. We choose several plausible values of b which
are displayed in the first column of Table 1, and then compute the
optimal reserve schedule for each of them. The four testing weeks
are considered and the results shown are averaged by the number
of days. The second column shows the numbers of shortage events.
The cost of allocating the reserve given by the LOLP model is dis-
played in the third column. It is computed using the cost function
gR(z), presented in Section 3. The fourth column shows the cost of
deploying the actual reserve computed using the function gr(z),
which estimation is discussed in Section 3. Lastly, the MW shed, or
in other words, the number of MW of actual deployed reserve
exceeding the LOLP solution, is presented in the fifth column.

Note that a decrease in the parameter b implies that the solution
becomes more conservative and hence, more reserve will be
scheduled. For this reason, as b decreases, the number of shortage
events decreases too, at the expense of increasing the allocation
and deploy cost. On the other hand, the amount of MW not covered
by the scheduled reserves, collated in the fourth column, decreases
as b diminishes.

Next, we compare the solution to the LOLP model with the so-
lution given by Energinet.dk. TSO's solution incurs 75 shortage



Fig. 5. The deployed reserves and the actual scheduled reserves by Energinet.dk are plotted as indicated in the text boxes. The shaded areas in the background represent the
solution of the LOLP model for different values of b. Weeks are separated by vertical lines.
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events during the four testing weeks, or equivalently 2.67 shortage
events per day. The estimated total cost of allocating reserve is
4,355 V; the estimated deployment cost is 132,350 V, and the MW
not covered 422.39.

For the same number of shortage events, the LOLP gives a worse
solution that Energinet.dk's solution: the allocation costs are 3.97%
higher, the deployment cost 1.18% higher and the MW shed in-
crease in 1.15 MW per day. This means that during the four testing
weeks, the LOLPmethodology underperforms the solution given by
Energinet.dk in terms of reliability and economic efficiency. The
main advantage that the LOLP method brings is the analogy of the
parameter b with the probability of a shortage event to occur,
which is a very easy risk measure to interpret. On the other hand,
the method has two drawbacks. As discusses before, its solution
does not depend on the cost of allocating reserves, namely on li or
on the estimated cost function g(z) (as long as it is increasingly
monotonic). Neither it depends on the cost of deploying reserves.
The solution only depends on the parameter b, as the relation
LOLP ¼ b in the optimization problem (1) will always be satisfied at
Fig. 6. Observed LOLP vs expected, namely parameter b.
the optimum, no matter what the cost is. The second disadvantage
is that load shedding costs are not taken into account. These
drawbacks are overcome by the CVaR model, for which results are
presented in the next subsection.
5.2. CVaR-method results

In this section we discuss the results of the CVaR-based reserve
determination method, which has been presented in Section 2.2,
and compare them with the deployed reserves that were actually
needed in DK1 during the simulation horizon.

The CVaR model needs as input two parameters which, in
practice, are to be determined by the TSO: a, which controls the
CVaR risk measure and represents the risk-aversion of the TSO, and
VLOL, which accounts for the cost inV of shedding 1MWof load.We
performed a sensitivity analysis to determine how changes in these
parameters affect the level of procured reserve. The model was run
for values of a ¼ {0, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99} and VLOL ¼ {200,
500, 1,000, 2,000, 5 000} V/MW.

The cost of allocating and deploying reserve capacity, the cost of
shedding load, and the total cost, are displayed on the upper-left,
upper-right, lower-left and lower-right plot of Fig. 7. The cost is
shown on the y-axis inV� 103, while the risk parameter a is shown
on the x-axis. Each line represents a cost of the reserve schedule
solution for a certain VLOL. All costs are averaged by the number of
days in the test period. As the TSO becomes more risk averse, i.e., as
a increases, the allocation and deployment costs increase, because
Table 1
The first column shows several values of parameter b which is an input to the LOLP
model. The second column presents the number of shortage events on average per
day. The third column includes the cost of allocating the amount of reserves given by
the LOLPmodel on average per day. The fourth column displays the cost of deploying
the actual reserve requirements. The number of MW not covered by the scheduled
reserve on average per day when using the LOLP solution are shown on the fifth
column.

b Shortage
events

Alloc. cost in
V � 103

Deploy. cost in
V � 103

MW not
covered

0.2 5.214 1.194 95.643 862.056
0.15 4.107 2.077 110.966 668.879
0.089 2.678 4.528 134.826 423.645
0.07 1.928 6.132 143.782 346.910
0.05 1.464 9.150 153.939 270.271
0.01 0.428 33.032 187.791 85.464



Fig. 7. Sensitivity analysis of the CVaR-based reserve determination model. The parameter a is displayed on the x-axis and the cost in V � 103 on the y-axis. Each line represents the
cost of the solution for a certain VLOL. The cost of allocating and deploying reserve capacity, the cost of shedding load and the total cost are displayed on the upper-left, upper-right,
lower-left and lower-right plot, respectively. All costs are averaged by the number of days in the test period.
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a larger amount of reserve is procured. The same occurs as VLOL

increases, since shortage events become more penalized and more
reserves are scheduled to avoid them. On the other hand, the cost of
curtailing load, depicted in the left-lower plot, decreases as a in-
creases, but does not necessarily increase as VLOL increases. The
reason for this is that, even though the amount of curtailed load
decreases as VLOL increase, the product VLOL � Lw representing the
cost of curtailing load in scenario w may still increase.

The total cost shown in the down-right subplot of Fig. 7 is
computed by summing up the reserve allocation, the reserve
deployment and the load shedding costs. In general, the total cost
increases as the risk-aversion parameter a increases. However, this
is not always the case when VLOL ¼ {1000, 2,000, 5,000}V/MW. The
reason for this discrepancy is that the generated scenarios do not
represent the potential need for reserve capacity accurately
enough. Adding more variables to the scenario representation of
the reserve requirements, increasing the amount of scenarios or
adding more weeks to the test period could solve this issue, in
particular, they underestimate the amount of upward balancing
power that may potentially be required, as confirmed by the plot in
Fig. 6. Finally, one should notice that changes in the total cost are
mainly driven by changes in the VLOL, while changes in a have
smaller impact on the solution.

The scheduled reserves when VLOL ¼ 500 V/MW and
VLOL¼5000 V/MW, over time, are displayed in shadowed areas in
the upper and lower plot of Fig. 8. The actual deployed reserve and
the reserve scheduled by Energinet.dk are drawn on top.Weeks are
separated by vertical lines. It is interesting to note how the reserve
schedule given by the CVaRa based reserve determination model
changes as VLOL changes. When minimizing the CVaR of the cost
distribution of reserve allocation and deployment, and load shed-
ding costs, an increase in VLOL makes the load shedding costs have
more weight in the total costs, and hence the events of reserve
shortage will be penalized to a larger extent. When VLOL is low,
those events are less relevant and the curves look more flat.
Another reason for the flatness of the curves is the linear approx-
imation of the cost functions gR(z) and gr(z), both introduced in
Section 3. The increase in cost when increasing the reserve in one
unit is much higher when jumping from one step of the stepwise
function to another, than when the function remains in the same
step. The step lengths are defined in (3e) and in (3f). A finer line-
arization of such cost functions by reducing the step length would
solve this issue.

The number of interruption events and the amount of load that
is involuntarily shed are further analyzed in Fig. 9, in the left and
right plots, respectively. As a and/or VLOL increase, both the number
of interruptions and the MW shed on average per day decrease.
Under the assumption that only the producers committed to the
reserve market are allowed to participate in the regulating market,
the Danish TSO's solution incurs 75 shortage events during the four
testing weeks. On average per day, the Danish TSO's solution incurs
2.67 shortage events, with an estimated total cost of allocation



Fig. 8. The reserve schedule using the CVaR methodology is displayed for VLOL ¼ 500 V/MW in the upper plot and for VLOL ¼ 5,000 V/MW in the lower plot. The shaded areas in the
background represent the solution of the CVaR model for different values of the risk-aversion parameter a. The actual deployed reserve in DK1 and the reserve capacity scheduled
by Energinet.dk (the Danish TSO) are depicted on top.

Fig. 9. In both plots, the reserve schedule, computed by the CVaR-based method, is compared to the actual deployed reserve in the DK1 area, for different values of VLOL and a. On
the left, we depict the average number of shortage events per day, and on the right, the average MW of load shedding.
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equal to 4,355 V, an estimated deployment cost of 13,2350 V, and
amount of load shed of 422.39 MW. The CVaR-method produces
cheaper results in terms of total cost. The CVaR solution is from
3.38% cheaper with {a ¼ 0.99, VLOL ¼ 200 V/MW}, to 82.9% for
{a ¼ 0.99,VLOL¼5,000 V/MW}, compared to the solution given by
the TSO. Note that the CVaR-method tends to schedule more re-
serves than the Danish TSO's solution, while at the same time the
solution is cheaper, because shedding load is highly penalized by
the coefficient VLOL.

Fig. 10 illustrates the so-called efficient frontier [5]. This plot can
be used by the TSO to choose an appropriate value for the risk-
aversion parameter a according to its attitude towards risk. The
efficiency frontier shows the expected total cost per day, namely,
the expected cost of allocating and deploying reserve plus the load
shedding cost per day, against the expected LOLP, that is, the
expected probability of a load shedding event. The numbers along
the curve indicate the value of the risk parameter a used to obtain
such a point in the curve. The efficient frontier shown in Fig. 10 has
been determined for a VLOL equal to 5,000 V/MW. Needless to say,
the efficient frontier would change for different values of VLOL, but
the interpretation of the resulting curves would remain similar.

The TSO can thus use this efficient frontier to resolve the trade-
off between desired or expected LOLP versus the expected total cost
that such a level of reliability would entail. For example, the TSO
can achieve a LOLP of 0.001 with an expected total cost of
approximately 3�105V per day. To this end, the TSO should set the
risk-aversion parameter a to 0.5. If, for instance, the LOLP is to be
decreased down to 0.0002, the expected total cost would raise up to
3.2 � 105 V per day. In that case, the parameter a should be set to
0.9.



Fig. 10. Efficiency frontier plot of the CVaR model. The expected total cost, computed
as the sum of the expected cost of allocating and deploying reserve, and the expected
cost of shedding load for VLOL ¼ 5,000 V, is shown in the x-axis. In the y-axis, the
expected LOLP is displayed. The numbers along the curve indicate the value of the risk
parameter a used to obtain each of the solutions.
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The main advantage that the CVaR-method offers over the LOLP
method is that the TSO is able to input the cost of shedding load,
VLOL, in the model and, therefore, the reserve dispatch solution is
dependent on it. On the contrary, the LOLPmethod depends only on
the number of interruption events and their associated cost is not
accounted for. Another advantage of the CVaR-method is that the
reserve schedule depends on the reserve costs, both the allocation
and deployment cost. In a real set-up, the solution would depend
on the bids from the producers, while the solution of the LOLP
method is independent of the reserve costs. Lastly, both optimi-
zation models are able to reflect the risk-aversion of the TSO
through the risk parameters b or a. However, the risk parameter a
of the CVaR methodology does not have a straightforward inter-
pretation in real power systems, as compared to the parameter b

from the LOLP-formulation, which has a direct physical
interpretation.

6. Conclusion

In this paper we present two methods to determine the reserve
requirements using a probabilistic approach, suited for a market
structure where the reserves are scheduled independently of and
before to the day-ahead energy market. This is the case in the
Nordic countries and, more specifically, in the DK1 area of Nord
Pool, under which the study case of this paper is framed. The first
method ensures that the LOLP is kept under a certain target. The
second method considers the costs of allocating and deploying
reserve and of shedding load, and minimizes the CVaR of the total
cost distribution at a given confidence level a. Both approaches are
based on scenarios of potential balancing requirements, induced by
the forecast error of the wind power production, the forecast error
of the load, and the forced failures of the power plants in the power
system.

The performance of the proposed reserve determination models
is assessed by comparing the resulting optimal scheduled reserves
with the Danish TSO's solution approach and with the actual
deployed reserves during four testing weeks, in terms of costs and
shortage events. The results from the case study show that the LOLP
method underperforms the Danish TSO's solution in terms of costs,
for the same shortage events. By using a CVaR risk approach, the
cost of allocating reserves is reduced from 3.38% to 82.9%,
depending on the value of the parameters of confidence level and
value of lost load. The CVaR methodology provides adequate levels
of reserves.

Further studies should focus on the applicability of these
methods to the Nordic reserve market, by differentiating between
types of reserves. This could be achieved by modeling the amount
of MWh of each type of reserve required at every hour and the cost
of allocating and activating each of them. Also, further improve-
ments should be done on the modeling of the failed MW in the
whole system. More specifically, time-dependencies could be
modeled, since a power plant is more likely to be off-line if the
previous hour was off-line too. This could be achieved by, for
example, a non-homogeneous Hidden Markov Model, where the
transition probabilities between states depend on time and other
external variables.
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