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Abstract—Economic Model Predictive Control (MPC) is very
well suited for controlling smart energy systems since electricity
price and demand forecasts are easily integrated in the controller.
Electric vehicles (EVs) are expected to play a large role in the
future Smart Grid. They are expected to provide grid services,
both for peak reduction and for ancillary services, by absorbing
short term variations in the electricity production. In this paper
the Economic MPC minimizes the cost of electricity consumption
for a single EV. Simulations show savings of 50-60% of the
electricity costs compared to uncontrolled charging from load
shifting based on driving pattern predictions. The future energy
system in Denmark will most likely be based on renewable energy
sources e.g. wind and solar power. These green energy sources
introduce stochastic fluctuations in the electricity production.
Therefore, energy should be consumed as soon as it is produced
to avoid the need for energy storage as this is expensive, limited
and introduces efficiency losses. The Economic MPC for EVs
described in this paper may contribute to facilitating transition
to a fossil free energy system.

I. INTRODUCTION

Reducing CO2 emissions and becoming independent of

fossil fuels are both major economic and political drivers for

switching from traditional combustion engines to electrifica-

tion of the transport sector through the introduction of Electric

Vehicles (EVs). To facilitate the fossil free electrification of

the transport sector, the amount of renewable energy sources

in the energy system must be increased significantly. By

nature, renewable energy sources like wind and solar power

are stochastic and introduce fluctuations in the otherwise

predictable and stable power system.

In Denmark the penetration of wind power is beyond 20%

and calls for either huge storage solutions or a highly flexible

demand that can be controlled in order to consume power as

it is produced. Electric storage is very expensive, introduces

efficiency losses and is not feasible everywhere. However, the

development and penetration of EVs seems inevitable, and

their batteries could potentially provide a storage opportunity.

The idea is that if the EVs are intelligently charged, they

could become a controllable asset to the grid rather than a

traditional load disturbance. They could help absorb variations

in the power system and help move consumption to off-peak

periods. When parked and plugged into the grid, EVs are

expected to either charge intelligently or discharge, i.e. feed

power back into the grid. However, handling the probabilistic

load behavior of EVs present is a challenge to the balance

responsible.

In the future, large fleets of EVs will be available, and

could potentially provide flexible services to the grid, e.g. load

shifting, balancing power, and frequency response. Another

of these services could be delivery of electricity to the grid

by discharging the EV battery, also known as Vehicle-to-Grid

(V2G). This was first proposed by [1] and is the main reason

why EVs are expected to play an important role in the future

power system. The charging impact of EVs on the power grid

has also been reported in the literature, e.g. [2]. Emphasis is

mainly on the services EVs can provide to the electric energy

system. Currently, it is not clearly understood if a centralized

or decentralized strategy should be applied, and what actual

services EV users require. However, it is clear that there must

be an incentive for EV users to help the balance the power

production and charge during off-peak periods.

Fig. 1 illustrates the Virtual Power Plant (VPP) approach

for handling a fleet of EVs. In a centralized strategy, the

aggregator performs the optimal charge scheduling calcula-

tions and sends out the individual charge plans to EVs. A

decentralized approach could be to broadcast a price signal

and let the individual EV optimize its own charging based on

this price. Less communication is required at the expense of a

larger computation task for the EV. In Denmark EV charging

is billed with the same tariffs as for the standard domestic

loads. So in this paper the price signal is the Elspot price, a

Time of Use (TOU) price for the customer, taken from the

Nordpool day ahead market. This price is settled every day at

noon for the coming day and is thus known 12 to 36 hours in

advance. The amount of wind power in the power grid is thus

also reflected in this signal. Furthermore, since feed-in tariffs

do not yet exist for LV grid producers vehicle-to-grid (V2G)

operation will not be addressed in this study.

[3] considers a decentralized strategy where the charging

costs are minimized for each EV user individually. In addition,
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Fig. 1. Virtual Power Plant framework with EVs. The dashed green line is
the price signal from the aggregator.

a penalty on the deviation from the average EV fleet charge

behavior is added to the objective function. By sending out the

average optimal charging plans to all EVs, the charge strategy

is negotiated by an iteration procedure that is guaranteed to

converge towards a Nash equilibrium.

In practice, when charging a large fleet of EVs in periods

where electricity prices are low, typically at night time, the

price will in the long run start to increase in these periods

reflecting new demand patterns. This price elasticity effect

has been modeled for an EV demand response and a price

flattening was observed [4].

An optimal charge strategy for EVs optimization of both

energy cost and battery health has also been investigated [5].

The proposed battery model is based on a first principles

chemical battery model and a battery degradation map was

determined by simulation. This map was used to determine at

what rates the battery suffers the most. Battery degradation in

detail will not be taken into account in this paper but general

guidelines for improving the life time will.

In [6], [7] methods for planning the individual charging

schedules of a large EV fleet while respecting the constraints

in the low-voltage distribution grid are proposed. Another

proposed ancillary service is to minimize the load variance of

the power system by queuing up charge requests [8]. In this

way, uncertainty in the load and price forecasts are avoided.

However, in this approach the comfort of the EV user is not

taken into consideration.

In this paper, we consider several decentralized EV charging

strategies based on Model Predictive Control (MPC) [9]–[11].

Minimizing the electricity costs of EV charging fits directly

into an Economic MPC framework where the battery model

is formulated as a linear discrete time dynamic state space

model. Forecasts of the load, i.e. the driving pattern, and

handling of the battery storage constraints are handled natively

by the MPC. Electricity prices are assumed to be known and

could be any price signal that is set by an aggregator. It could

Fig. 2. Equivalent electrical circuit model of an EV battery.

also be a price that is the deviation from the day-ahead price

making sure that the load follows the plan. The MPC algorithm

incorporates feedback by its moving horizon implementation.

In this way, forecast errors are compensated for by the MPC

algorithm.

This paper is organized as follows. Section II models an

electric vehicle battery. The battery side behavior is described

as well. In section III, the EV driving pattern used for

simulation is defined based on real data. The Economic MPC

optimization problem is formulated in IV, while different

Economic MPC charge strategies are compared in Section V.

Finally, section VI provides conclusions.

II. ELECTRIC VEHICLE BATTERY MODEL

In this study, an EV is modeled as a flexible energy storage

resource that is capable of exchanging power with the grid

under a predefined charging schedule. EVs have been modeled

in many different manners, depending on the detail and scope

of the study in question. In this paper a model of the State of

Charge (SOC) is used based on [12].

A. Battery model

A simple battery model can be composed of an electric

equivalent circuit with a voltage source in series with the

ohmic impedance [13], see also Fig.2. The only state variable

of this model is the State of Charge (SOC) ζ ∈ [0; 1], i.e. the

normalized battery capacity at time t, that can be modeled as

a simple integrator with loss

ζ̇(t) =
Vpacki(t)

Qn
=

1

Qn
(η+P+

c (t)− η−P−
c (t)) (1)

Pc is the power flowing in or out of the battery during

charging or discharging; Qn is the nominal capacity of the

battery, denoted with a + and − respectively; η is the charger

efficiency. The actual power is bounded by

Pmin ≤ Pc ≤ Pmax (2)

The maximum power is limited by the maximum charge

current. Leaving a margin for other household appliances the

maximum charge power Pmax is set to

Pmax = Vcimax = 230 V · 10 A = 2.3 kW (3)



TABLE I
DESCRIPTION OF VARIABLES AND MODEL PARAMETERS

Description Value Unit

ζ State of Charge (SOC) [0;1]
Vc Grid voltage 230 V
ic Charge current A
Pc Charge power (Pc = Vcic) W
imax Maximum charge current 10 A
imin Minimum charge current 0 A
Δimin Minimum ramp constraint −10 A/h
Δimax Maximum ramp constraint 10 A/h
Qn Nominal battery capacity 40 Ah
η Charger efficiency 0.9
ηEV EV energy efficiency 150 Wh/km
p Electricity price EUR/MWh
ρ Slack variable penalty 105

Ts Model sampling period 0.5 h
N No. of steps in prediction horizon

The charging power of 2.3 kW (230 V, 10 A) is chosen as

the charging rate for this study, as this is the most common

residential use case for EV charging in Denmark today. Con-

sidering standard household electric installations, most grid

connection points only allow charging rates up to 10 A, while

other appliances are running. Furthermore a small EV fleet

consisting of 12% households in a generic LV grid charging

at 6 pm with 2.4 kW can lead to overload of the distribution

transformer [14]. The lower bound, Pmin, could be negative

and equal to −Pmax if Vehicle to Grid (V2G) is considered.

Otherwise Pmin = 0.

For the case study in this paper the battery chemistry is

assumed to be Lithium-ion with capacity Qn = 24 kWh. The

SOC of the EV battery is equal to its normed capacity such

that ζ ∈ [0; 1]. The model (1) is suitable for a generic battery

modeling study. In the context of EV charging management,

the model has been tuned to common EV use conditions. The

choice of Lithium-ion is related to market trend reports for EV

batteries [15], where Li-ion batteries are expected to dominate

the whole EV battery market sector with a 70-80% share by

2015.

Based on the main life time recommendations for optimal

SOC management in [16] and common practice of EV man-

ufacturer’s [17] the SOC of the EV battery is limited to

ζ ∈ [0.2; 0.9] (4)

Other external conditions such as temperature behavior during

operation are not taken into account.

B. Modeling the Charging/Discharging operation

The linear model in section II-A will be used for both

simulation purposes and as the controller model. The nonlinear

behavior outside the region (4) can be modeled by the open

circuit voltage as

Voceq (ζ,Q) = V0 − K

1− ζ
+ a · exp

(
−Q

τ

)
(5)

• a is the exponential zone amplitude [V]

• τ is the exponential zone time constant [Ah]

• V0 is the battery voltage constant [V]

• K is the polarization voltage [V]

• Q is the instant battery capacity [Ah] obtained from Q̇ =
i, where i is the DC current during charging

The real-time EV battery voltage is Vpack = Voc+Req·i, where

i is the current used to charge or discharge the battery. The

voltage drop is considered positive during charging and nega-

tive during discharging. The resistive impedance of a lithium-

iron phosphate (LFP) battery cell, a common class of Li-ion

batteries, has been measured using impedance spectroscopy.

A resulting intrinsic resistance of about 10 mΩ per battery

cell was found from measurements [18]. The charger has

been modeled as a single-phase 230V power converter. The

charger operates in either Constant Current (CC) or Constant

Voltage (CV) mode. During charging/discharging, the battery

cell voltage is continuously monitored and maintained within

a safe operational zone for the battery according to [19]. The

safe voltage region of the LFP 3.3 V - 40 Ah battery cell is

[2.8; 4.0] V, which entails the SOC window 20-90%. The EV

battery is only in discharging mode when driving.

C. State Space Model

The EV battery model in section II-A can be formulated

as a discrete time state space model that fits into the MPC

framework.

xk+1 = Axk +Buk + Edk (6a)

zk = Cxk (6b)

where k ∈ {0, 1, ..., N}. Defining the manipulable u, distur-

bance d and output z. The EV charge control signal is equal

to the charging power u = P+
c while the only state is the

SOC, also equal to the output x = z = ζ. The demand dk, i.e.

battery usage from driving, is modeled as a disturbance to the

battery SOC according to the description in section III. The

state space matrices for the SISO model (6) are

A = 1 B =
η

Qn
Ts C = 1 E = −Ts (7)

This result follows from discretization of the state space

matrices obtained from (1). Note that the efficiency and

capacity is not in E but will be included in the signal dk. u
is kept constant between samples.

III. DRIVING PATTERNS

In order to estimate the driving pattern of the average EV

driver, survey data from [20] including a group of observed

commuters in Denmark was investigated. In Fig. 3 the total

number of parked cars with 5 minute resolution for different

weekdays, i.e. cars that could potentially charge if connected to

the grid, have been plotted. The amount of trips is also shown

as a function of time. The morning and afternoon peaks at

7:30 am and 4:00 pm are both clearly visible. Based on the

presented data, an EV commuter driving pattern scenario was

defined for simulation purposes such that
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Fig. 3. The lower plot shows the no. of trips for difference weekdays. The
upper plot shows the availability, i.e. the amount of parked cars at home
(upper) and at work (lower).

• The average driving distance to work is dw = 18.92 km

• The average driving time to work is tw = 22.6 min

• Two trips of length dw + 5 km and dw + 10 km, and

duration tw + 10 min and tw + 20 min

• The start time of the two daily trips is at 7:00 am and

4:00 pm

We assume that the EV is connected and able to charge

whenever it is not driving. Furthermore, the estimated energy

efficiency for typical EVs are ηEV ∈ [120; 180] Wh/km [20].

As a compromise we use a fixed average value of ηEV = 150
Wh/km in simulations.

In the simulations in section V, the actual demand dk when

driving is constant for each trip and is equal to the average

energy used for every trip. The actual demand depends on

the driving behavior, i.e. the acceleration of the EV. When

integrated the simulated demand will give exactly the amount

of energy used at the end of the trip.

The minimum charge time is dependent on the sampling

period and, since the price signal is available every hour, this

should be the largest sampling period. In this way a decision

whether to charge or not can be placed at all available price

levels. This paper is a feasibility study intended to demonstrate

Economic MPC. Therefore all simulations use Ts = 30 min.

In practice, we would recommend significantly shorter sample

times.

IV. ECONOMIC MODEL PREDICTIVE CONTROL

In this paper Economic MPC will be applied for EV charge

scheduling. Economic MPC for intelligent energy systems has

previously been proposed in [21], [22]. MPC will minimize the

electricity costs of charging a single EV based on predictions

of the electricity price and the expected driving pattern over

the prediction horizon of N samples. The objective function

to be minimized is φ and the linear MPC can be formulated

as

minimize φ =

N−1∑
k=0

pkuk + ρwk (8a)

subject to xk+1 = Axk +Buk + Edk k ∈ N (8b)

zk = Cxk k ∈ N (8c)

umin ≤ uk ≤ umax,k k ∈ N (8d)

Δumin ≤ Δuk ≤ Δumax k ∈ N (8e)

zk ≥ zmin,k − wk k ∈ N (8f)

zk ≤ zmax + wk k ∈ N (8g)

wk ≥ 0 k ∈ N (8h)

where N ∈ {0, 1, . . . , N} and N is the prediction horizon.

The output z = ζ is constrained by the battery capacity limits,

but the constraints in this problem are softened, i.e. the SOC

is allowed to lie outside the band of operation defined by (4).

This constraint violation is defined by the slack variable wk

that is heavily penalized by the slack variable penalty ρ. Also

note that the lower bound on the output, zmin,k, is time varying

and represents a safety margin to absorb prediction errors.

It can thus be set according to what degree of flexibility is

needed for the individual EV user. When operation decreases

so does flexibility, and the possibility of shifting consumption

and saving money is reduced. However, in this paper we use

zmin,k ≥ 0.2 (see section II-A). p is the electricity price and u
is the input equal to the charge power Pc. The EV is not able

to charge when disconnected from the grid, i.e. when driving,

resulting in a time varying input constraint

umax,k =

{
Pmax for dk = 0

0 otherwise

Likewise, umin,k, could be time varying and negative if V2G

is considered. Δuk = uk − uk−1 is the discrete time rate

of movement input constraint. The input charge current can

change very quickly compared to the time horizons considered,

so these rate limits can be set very high, e.g. Δumin ≥ umin

and Δumax ≥ umax, and can in theory be neglected. However,

when a stochastic model is used they help to smoothen out the

charging and adds robustness against forecast errors.

The optimal EV charging plan within the prediction horizon

is the solution to (8) and is denoted U∗ = {u∗
k}N−1

k=0 . This

charging plan is calculated at every time step k and represents

a decision plan, stating when to charge and how much power

should be used. It is optimal in terms of economy, and is

the cheapest solution based on the predictions and model

assumptions available at time k = 0. The first decision of

the plan, u∗
0, is implemented, i.e. a certain amount of power

is delivered to the battery at the present time step k = 0.

This process is repeated at every time step and constitutes

the principle of a model predictive controller also known as

receding horizon control.

V. SIMULATION

Fig. 4 and 5 show the closed loop MPC charge plan

simulated over one week. Based on the perfect forecasts of



the electricity el-spot price and the demand, i.e. the driving

pattern, the controller charges just the right amount of energy

prior to each trip. The first simulation uses a prediction horizon

of N = 24 h, while the latter uses N = 48 h. The advantage

of using a 48 h horizon is clearly seen; this controller is

able to pick the cheapest charging period seen over a larger

time window. For example, if energy is expensive on Friday

morning, it is cheaper to fill up the battery on Thursday

morning in order to cover the next two days’ consumption.

Knowing more about prices and demand in advance, allows

for a better charging plan and ultimately more money can be

saved. However, forecasts will always contain uncertainty, so

a balance must be found between long prediction horizons,

i.e. more computation time, and how much money can be

saved. Even if a perfect forecast is used, the increase in savings

is very small when the prediction horizon is increased. This

is due to the nature of the day ahead price and the limited

capacity of the battery, i.e. charging all energy needs during

the summer to cover the whole winter period is not possible.

The battery capacity thus limits the amount of energy that can

be shifted using a large number of EVs.

The Economic MPC strategy can be compared to other

strategies like uncontrolled charging, also referred to as dumb
charging, where the EV starts charging whenever it is plugged

in. This can easily be simulated with the MPC controller

by setting the soft lower output bound to {zmin}Nk=0 =
{zmax}Nk=0. It is observed from Fig. 6 that the EV charges to

full capacity after every trip and unfortunately charging takes

place in the most expensive periods.

Another optimal charge strategy could be a fixed cost strat-

egy where the electricity price remains the same throughout

the entire interval. The response using this strategy is seen on

Fig. 7. Obviously the controller does ensure charging takes

place in the cheap periods, since it is cheap during the entire

interval. It does, however, minimize the energy consumption

and charges just enough energy for each trip just before the

EV leaves. A third strategy could be to take advantage of the

deterministic part of electricity price and use a simple timer to

delay the dumb charging to periods where the electricity price

is usually low. However, a charging scenario that is reactive

to a price signal is desired in the decentralized approach.

Comparing the simulation results, it is found that using

MPC with fixed costs saves around 39% of the costs compared

to dumb charging. If Economic MPC with the varying prices is

considered, savings increase to almost 60%. Using the longer

prediction horizon another 0.5% is gained. The computation

time for solving the individual open loop problems are within

micro seconds.

The proposed Economic MPC was also simulated for a

period of one year with the real day ahead price from 2010,

and the results were compared to dumb charging. For the dumb

charging simulation the total energy consumption was found

to be 2.6 MWh. The annual energy consumption obtained

from simulation is very close to the estimates for an average

household in Denmark [23]. The Economic MPC saves an

annual 47% of the electricity costs associated with the Elspot
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Fig. 4. Optimal charging of EV for five days using Economic MPC with
prediction horizon N = 24 h. The upper plot shows the SOC ζ and the driving
pattern or demand dk . The lower plot shows the electricity price variation and
the charge power.
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Fig. 5. Economic MPC charging with N = 48 h.

price.

VI. CONCLUSION

Economic MPC was introduced as a method for charging

EVs in Smart Grid using varying prices. A suitable EV battery

model was derived to be used in the optimization of EV

charge scheduling in a Smart Grid. Realistic commuter driving

patterns were analyzed from real data and used in simulations

along with electricity prices taken from the day-ahead market.

A comparison of different charging strategies were compared

clearly showing the potential of using Economic MPC to

shift the load in a cost efficient way. Perfect forecasts were

used in the simulations. Future work will address the inherent

stochastics of the driving pattern and electricity prices.
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Fig. 6. Uncontrolled dumb charging. {zmin}Nk=0 = {zmax}Nk=0
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Fig. 7. MPC fixed unity price charging with N = 24 h.
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